GEROCH GROUP DESCRIPTION OF BLACK HOLES

Bidisha Chakrabarty, Amitabh Virmani

Institute of Physics , Bhubaneswar

Indian Strings Meeting 2014, Puri

Bidisha Chakrabarty, Amitabh Virmani (IOPE

Integrability in 2D Gravity

Indian Strings Meeting 2014, Puri

- JHEP11 (2014) 068 by B. Chakrabarty, A. Virmani
- JHEP02(2013)011 by D. Katsimpouri, A. Kleinschmidt and A. Virmani
- Annales Henri Poincare A 46 (1987) 215 by P. Breitenlohner and D. Maison
- Unpublished notes of Breitenlohner and Maison from June 1986.

Dimensional Reduction from 5D to 2D Step 1: 5D to 3D Step 2: 3D to 2D

3 Charge Matrix

• Gravity in (d > 4) is rich.

Bidisha Chakrabarty, Amitabh Virmani (IOPE

Indian Strings Meeting 2014, Puri 4/

- Gravity in (d > 4) is rich.
- Exact solutions in higher dimensional gravity theories are less in number. In *d* ≥ 6 the exact solutions become even rarer.

- Gravity in (d > 4) is rich.
- Exact solutions in higher dimensional gravity theories are less in number. In *d* ≥ 6 the exact solutions become even rarer.
- So, efforts to study exact solution generating techniques.

- Gravity in (d > 4) is rich.
- Exact solutions in higher dimensional gravity theories are less in number. In *d* ≥ 6 the exact solutions become even rarer.
- So, efforts to study exact solution generating techniques.
- In the present talk we consider cases with $d \le 5$

 Dimensionally reduced gravity theories have symmetry groups like 5D gravity in 3D: SL(3,R)

- Dimensionally reduced gravity theories have symmetry groups like 5D gravity in 3D: SL(3,R)
- These symmetries have been used to study various features of BHs.

- Dimensionally reduced gravity theories have symmetry groups like 5D gravity in 3D: SL(3,R)
- These symmetries have been used to study various features of BHs.
- Higher dimensional gravity theories when reduced to 2D has infinite no of symmetries → Integrability. The symmetry group is called the Geroch group.

- Dimensionally reduced gravity theories have symmetry groups like 5D gravity in 3D: SL(3,R)
- These symmetries have been used to study various features of BHs.
- Higher dimensional gravity theories when reduced to 2D has infinite no of symmetries → Integrability. The symmetry group is called the Geroch group.
- these symmetries can be useful in constructing various exact solⁿs

Outline

Dimensional Reduction from 5D to 2D

- 3 Charge Matrix
- 4 Summary & open problems

Dimensional Reduction from 5D to 2D

Perform dimensional reduction of a five-dimensional gravity theory to 2Dim^{*n*}s in two steps.

- Reduce the theory to 3D
- Reduce it from 3 to 2 dimⁿs.

Outline

Dimensional Reduction from 5D to 2D Step 1: 5D to 3D Step 2: 3D to 2D

3 Charge Matrix

• vacuum gravity in 5D:

$$\mathcal{L}_5 = R_5 \star 1 \tag{1}$$

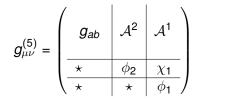
《曰》 《聞》 《臣》 《臣》 三臣 …

- Assume two commuting Killing vectors exist : $\frac{\partial}{\partial x^5}$ (space-like) and $\frac{\partial}{\partial x^4}$ (time-like).
- Dimensionally reduce theory from 5D to 3D, first reduction over x^5 , then over x^4 .

Dimensional Reduction of 5D vacuum Gravity to 3D

• Kaluza-Klein metric ansatz:

$$ds_{5}^{2} = e^{\frac{1}{\sqrt{3}}\phi_{1}+\phi_{2}}ds_{3}^{2} + \epsilon_{2}e^{\frac{\phi_{1}}{\sqrt{3}}-\phi_{2}}\left(dz_{4}+\mathcal{A}^{2}\right)^{2} + \epsilon_{1}e^{-\frac{2\phi_{1}}{\sqrt{3}}}\left(dz_{5}+\chi_{1}dz_{4}+\mathcal{A}^{1}\right)^{2}$$



3D fields are:

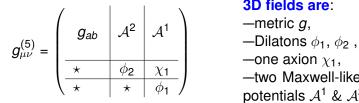
- -metric g,
- -Dilatons ϕ_1 , ϕ_2 ,
- -one axion χ_1 ,
- -two Maxwell-like one form potentials \mathcal{A}^1 & \mathcal{A}^2

(2)

Dimensional Reduction of 5D vacuum Gravity to 3D

• Kaluza-Klein metric ansatz:

$$ds_{5}^{2} = e^{\frac{1}{\sqrt{3}}\phi_{1}+\phi_{2}}ds_{3}^{2} + \epsilon_{2}e^{\frac{\phi_{1}}{\sqrt{3}}-\phi_{2}}\left(dz_{4}+\mathcal{A}^{2}\right)^{2} + \epsilon_{1}e^{-\frac{2\phi_{1}}{\sqrt{3}}}\left(dz_{5}+\chi_{1}dz_{4}+\mathcal{A}^{1}\right)^{2}$$



3D fields are:

- -two Maxwell-like one form potentials \mathcal{A}^1 & \mathcal{A}^2

• 3D fields are independent of x⁴ and x⁵

(2)

Dualising 1-form potentials into axions

Dualise the Maxwell-like one form potentials A¹ & A² in 3D into scalar axions χ₂ and χ₃.

Dualising 1-form potentials into axions

- Dualise the Maxwell-like one form potentials A¹ & A² in 3D into scalar axions χ₂ and χ₃.
- 3D Lagrangian in dualised variables:

$$\mathcal{L}_{3} = R_{3} \star 1 - \frac{1}{2} \star d\vec{\phi} \wedge d\vec{\phi} - \frac{1}{2}\epsilon_{1}\epsilon_{2}e^{-\sqrt{3}\phi_{1}+\phi_{2}} \star d\chi_{1} \wedge d\chi_{1}$$
$$-\frac{1}{2}\epsilon_{2}e^{\sqrt{3}\phi_{1}+\phi_{2}} \star d\chi_{2} \wedge d\chi_{2}$$
$$-\frac{1}{2}\epsilon_{1}e^{2\phi_{2}} \star (d\chi_{3}-\chi_{1}d\chi_{2}) \wedge (d\chi_{3}-\chi_{1}d\chi_{2}). \tag{3}$$

Bidisha Chakrabarty, Amitabh Virmani (IOPE

Indian Strings Meeting 2014, Puri

Dualising 1-form potentials into axions

- Dualise the Maxwell-like one form potentials A¹ & A² in 3D into scalar axions χ₂ and χ₃.
- 3D Lagrangian in dualised variables:

$$\mathcal{L}_{3} = R_{3} \star 1 - \frac{1}{2} \star d\vec{\phi} \wedge d\vec{\phi} - \frac{1}{2}\epsilon_{1}\epsilon_{2}e^{-\sqrt{3}\phi_{1}+\phi_{2}} \star d\chi_{1} \wedge d\chi_{1}$$
$$-\frac{1}{2}\epsilon_{2}e^{\sqrt{3}\phi_{1}+\phi_{2}} \star d\chi_{2} \wedge d\chi_{2}$$
$$-\frac{1}{2}\epsilon_{1}e^{2\phi_{2}} \star (d\chi_{3}-\chi_{1}d\chi_{2}) \wedge (d\chi_{3}-\chi_{1}d\chi_{2}). \tag{3}$$

where

 $\epsilon_1, \epsilon_2 = \pm 1$

Coset Model Construction

 3D scalar Lagrangian can be parametrised by the SL(3,R) SO(2,1) coset representative

$$\mathbf{V} = \mathbf{e}^{\frac{1}{2}\phi_1\mathbf{h}_1} \mathbf{e}^{\frac{1}{2}\phi_2\mathbf{h}_2} \mathbf{e}^{\chi_1\mathbf{e}_1} \mathbf{e}^{\chi_2\mathbf{e}_2} \mathbf{e}^{\chi_3\mathbf{e}_3}.$$
 (4)

Coset Model Construction

 3D scalar Lagrangian can be parametrised by the SL(3,R) SO(2,1) coset representative

$$\mathbf{V} = \mathbf{e}^{\frac{1}{2}\phi_{1}\mathbf{h}_{1}} \mathbf{e}^{\frac{1}{2}\phi_{2}\mathbf{h}_{2}} \mathbf{e}^{\chi_{1}\mathbf{e}_{1}} \mathbf{e}^{\chi_{2}\mathbf{e}_{2}} \mathbf{e}^{\chi_{3}\mathbf{e}_{3}}.$$
 (4)

where $h_1, h_2 \rightarrow$ Cartan Generators of sl(3) $e_1, e_2, e_3 \rightarrow$ positive root generators of sl(3)

V ightarrow Upper triangular matrix.

Bidisha Chakrabarty , Amitabh Virmani (IOPE

Step 1: 5D to 3D

Coset Model Construction

Construct

$$\boldsymbol{M} = \boldsymbol{V}^{\mathsf{T}} \boldsymbol{V},\tag{5}$$

• The 3D Lagrangian

$$\mathcal{L}'_3 = \mathsf{R} \star 1 - rac{1}{4} \mathrm{tr} (\star (\mathsf{M}^{-1} \mathsf{d} \mathsf{M}) \wedge (\mathsf{M}^{-1} \mathsf{d} \mathsf{M}))$$

is manifestly SL(3,R) invariant

Bidisha Chakrabarty, Amitabh Virmani (IOPE

Indian Strings Meeting 2014, Puri

(6)

Coset Model Construction

Construct

$$M = V^T V, \tag{5}$$

• The 3D Lagrangian

$$\mathcal{L}_3' = \mathsf{R} \star 1 - rac{1}{4} \mathrm{tr}(\star(\mathsf{M}^{-1}\mathsf{d}\mathsf{M}) \wedge (\mathsf{M}^{-1}\mathsf{d}\mathsf{M}))$$
 .

is manifestly SL(3,R) invariant

$$M \rightarrow g^T M g$$

 $\therefore M^{-1} dM \rightarrow g^{-1} (M^{-1} dM) g$
 $\therefore \operatorname{tr}(\star (M^{-1} dM) \wedge (M^{-1} dM)) \rightarrow \operatorname{invariant.}$

Bidisha Chakrabarty , Amitabh Virmani (IOPE

Indian Strings Meeting 2014, Puri

(6)

Outline

Dimensional Reduction from 5D to 2D Step 1: 5D to 3D Step 2: 3D to 2D

3 Charge Matrix

 In Step2 of Dimensional Reduction, reduce over a space-like Killing vector to 2D.

• 3D metric ansatz: $ds_3^2 = f^2(d\rho^2 + dz^2) + \rho^2 d\varphi^2$;

 $\rho, z \rightarrow$ Weyl Canonical Coordinates, $f \rightarrow$ Conformal factor, $\partial_{\varphi} \rightarrow$ Spacelike Killing Vector.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Dimensional Reduction to 2 dimⁿ s

The 2D system is Integrable⇒ Lax pair exists and its compatibility condition is the eqⁿs of the 2D gravity system.

Dimensional Reduction to 2 dimⁿ s

- The 2D system is Integrable⇒ Lax pair exists and its compatibility condition is the eqⁿs of the 2D gravity system.
- Lax equations require the generalization $V(x) \rightarrow \mathcal{V}(t, x)$ with $\mathcal{V}(0, x) = V(x)$

Dimensional Reduction to 2 dimⁿ s

- The 2D system is Integrable⇒ Lax pair exists and its compatibility condition is the eqⁿs of the 2D gravity system.
- Lax equations require the generalization $V(x) \rightarrow \mathcal{V}(t, x)$ with $\mathcal{V}(0, x) = V(x)$
- *t* satisfies certain space-time dependent Differential eqⁿ
- $t \rightarrow$ Space-time dependent Spectral Parameter

Dimensional Reduction to 2 dimⁿs

• Solves to

$$t_{\pm}(w, x) = \frac{1}{\rho} \left[(z - w) \pm \sqrt{(z - w)^2 + \rho^2} \right] = -\frac{1}{t_{\mp}}(w, x),$$

 $w \rightarrow$ Integration const(Space-time Independent Spectra
Parameter)

Dimensional Reduction to 2 dimⁿs

• Solves to

$$t_{\pm}(w, x) = \frac{1}{\rho} \left[(z - w) \pm \sqrt{(z - w)^2 + \rho^2} \right] = -\frac{1}{t_{\mp}}(w, x),$$

 $w \rightarrow$ Integration const(Space-time Independent Spectra
Parameter)

•
$$(\mathcal{V}(t,x))^T = \mathcal{V}^T \left(-\frac{1}{t}, x\right)$$
, like $M(x)$ before here **Monodromy**
matrix
 $\mathcal{M}(t,x) = \mathcal{V}^T \left(-\frac{1}{t}, x\right) \mathcal{V}(t,x).$ (7)

Bidisha Chakrabarty , Amitabh Virmani (IOPE

Indian Strings Meeting 2014, Puri

• $\partial_{\pm}\mathcal{M}(t,x) = 0 \rightarrow \mathcal{M}(t,x)$ is space-time independent (using Lax Eqns).

$$\mathcal{M}(t,x) = \mathcal{M}(w) \ . \tag{8}$$

• $\partial_{\pm}\mathcal{M}(t,x) = 0 \rightarrow \mathcal{M}(t,x)$ is space-time independent (using Lax Eqns).

$$\mathcal{M}(t,x) = \mathcal{M}(w) \ . \tag{8}$$

 The Geroch group allows one to associate a space-time independent matrix to a space-time configuration that effectively depends on only two coordinates.

Step 2: 3D to 2D

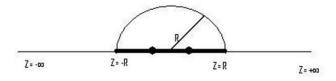
Relation between M(x) and $\mathcal{M}(w)$

• 2D space spanned by (ρ, z) coordinates \rightarrow **Factor Space**

- Boundary $\rho = 0$ consists of a union of Intervals [Hollands & Yazadjiev gr-qc 0707.2775].
- Two adjacent intervals meet at the corners.

Relation between M(x) and $\mathcal{M}(w)$

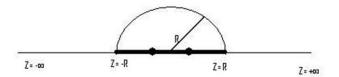
• We concentrate in the $\rho = 0$, z < -R region of the factor space.



Indian Strings Meeting 2014, Puri

Relation between M(x) and $\mathcal{M}(w)$

• We concentrate in the $\rho = 0$, z < -R region of the factor space.



The important relation is

$$M(\rho = 0, z = w \text{ with } z < -R) = \mathcal{M}(w). \tag{9}$$

This relation is obtained via Lax equations.

Bidisha Chakrabarty, Amitabh Virmani (IOPE

Integrability in 2D Gravity

Indian Strings Meeting 2014, Puri

Geroch Group Matrices

Consider SL(3) matrices with simple poles in w with constant residue matrices of rank one:

$$\mathcal{M}(w) = Y + \sum_{k=1}^{N} \frac{A_k}{w - w_k}$$
(10)

with residue matrix $A_k = \alpha_k a_k a_k^T$ where α 's are constants chosen to satisfy coset conditions.

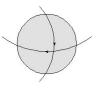
Solitonic matrices SL(3)

- Consider the case when $\mathcal{M}(w)$ has two poles at $w_1 = +c$ and $w_2 = -c$.
- This works well for the two examples we consider:
 - 5D Myers-Perry
 5D Dyonic Kaluza Klein

Step 2: 3D to 2D

Geroch Group Matrices for Black Holes

Example 1 : 5D Myers-Perry



- Consider a doubly spinning Myers-Perry BH in 5D with three independent parameters (mass m, angular momenta l₁ and l₂). In 5D two independent rotation planes.
- Perform KK reduction over appropriately chosen space-like and time-like Killing directions.

• Resulting matrix M(r, x) has the asymptotic behaviour

$$M(r,x) = Y + \mathcal{O}\left(\frac{1}{r^2}\right),\tag{11}$$

To construct the monodromy matrix *M*(*w*) from *M*(*r*, *x*) change to canonical coordinates (*ρ*, *z*) and take the limit *ρ* → 0, *z* near −∞.

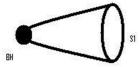
• Resulting matrix M(r, x) has the asymptotic behaviour

$$M(r,x) = Y + \mathcal{O}\left(\frac{1}{r^2}\right),\tag{11}$$

- To construct the monodromy matrix *M*(*w*) from *M*(*r*, *x*) change to canonical coordinates (*ρ*, *z*) and take the limit *ρ* → 0, *z* near −∞.
- Final form of $\mathcal{M}(w)$:

$$\mathcal{M}(w) = Y + \frac{A_1}{w - \alpha} + \frac{A_2}{w + \alpha}$$

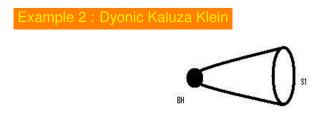
where
$$A_1 = \alpha_1 a_1 a_1^T$$
, $A_2 = \alpha_2 a_2 a_2^T$



 Kaluza Klein Black Hole is written in terms of four parameters p, q, m, a corresponding to electric and magnetic KK charges, mass and angular momentum.

Step 2: 3D to 2D

Geroch Group Matrices for Black Holes



 Kaluza Klein Black Hole is written in terms of four parameters p, q, m, a corresponding to electric and magnetic KK charges, mass and angular momentum.

• In this case
$$M(x) = g^T M_{Kerr}(x)g$$
; $g \in SO(2,1)$

•
$$M_{Kerr}(x) = \begin{pmatrix} 1 + \frac{2mr}{r^2 - 2mr + a^2x^2} & 0 & -\frac{2amx}{r^2 - 2mr + a^2x^2} \\ 0 & 1 & 0 \\ -\frac{2amx}{r^2 - 2mr + a^2x^2} & 0 & 1 + \frac{2m(2m-r)}{r^2 - 2mr + a^2x^2} \end{pmatrix}$$

Bidisha Chakrabarty , Amitabh Virmani (IOPE

•
$$M_{Kerr}(x) = \begin{pmatrix} 1 + \frac{2mr}{r^2 - 2mr + a^2x^2} & 0 & -\frac{2amx}{r^2 - 2mr + a^2x^2} \\ 0 & 1 & 0 \\ -\frac{2amx}{r^2 - 2mr + a^2x^2} & 0 & 1 + \frac{2m(2m-r)}{r^2 - 2mr + a^2x^2} \end{pmatrix}$$

• With some thinking *g* has been calculated.

$$g = \exp(-\gamma k_3) \cdot \exp(-\beta k_1) \cdot \exp(\alpha k_2). \tag{12}$$

Bidisha Chakrabarty , Amitabh Virmani (IOPE

Step 2: 3D to 2D

Geroch Group Matrices for Black Holes

•
$$M_{Kerr}(x) = \begin{pmatrix} 1 + \frac{2mr}{r^2 - 2mr + a^2x^2} & 0 & -\frac{2amx}{r^2 - 2mr + a^2x^2} \\ 0 & 1 & 0 \\ -\frac{2amx}{r^2 - 2mr + a^2x^2} & 0 & 1 + \frac{2m(2m-r)}{r^2 - 2mr + a^2x^2} \end{pmatrix}$$

• With some thinking *g* has been calculated.

$$g = \exp(-\gamma k_3) \cdot \exp(-\beta k_1) \cdot \exp(\alpha k_2).$$
 (12)

• Finally
$$\mathcal{M}(w) = I + \frac{A_1}{w - c} + \frac{A_2}{w + c}$$
,
where $A_1 = \alpha_1 a_1 a_1^T$, $A_2 = \alpha_2 a_2 a_2^T$.

Outline

Dimensional Reduction from 5D to 2D
Step 1: 5D to 3D
Step 2: 3D to 2D

3 Charge Matrix

4 Summary & open problems

• The charge matrix Q for a 4 D asymptotically flat configuration is defined as

$$M(x) = I - \frac{Q}{r} + O\left(\frac{1}{r^2}\right).$$
(13)

(Bossard, Nicolai, Stelle JHEP 0907, 003(2009))

• The charge matrix Q for a 4 D asymptotically flat configuration is defined as

$$M(x) = I - \frac{Q}{r} + O\left(\frac{1}{r^2}\right).$$
(13)

(Bossard, Nicolai, Stelle JHEP 0907, 003(2009))

• Q satisfies characteristic eq.

$$\mathcal{Q}^3 - \frac{1}{2} \text{Tr}(\mathcal{Q}^2) \mathcal{Q} = 0, \qquad (14)$$

 \bullet Asymptotic form of $\mathcal M$ (w) in terms of $\mathcal Q$ is

$$\mathcal{M}(w) = I + \frac{\mathcal{Q}}{w} + \mathcal{O}\left(\frac{1}{w^2}\right).$$

Indian Strings Meeting 2014, Puri

29

 \bullet Asymptotic form of $\mathcal M$ (w) in terms of $\mathcal Q$ is

$$\mathcal{M}(w) = I + \frac{\mathcal{Q}}{w} + \mathcal{O}\left(\frac{1}{w^2}\right).$$

•
$$\mathcal{Q} = \sum_{i=1}^{N} \alpha_i \mathbf{a}_i (\mathbf{a}_i)^T$$
.

Outline

Motivation

Dimensional Reduction from 5D to 2D
Step 1: 5D to 3D
Step 2: 3D to 2D

3 Charge Matrix

• We have constructed Geroch Group matrices for 5D rotating Myers-Perry and Dyonic Kaluza Klein BHs.

- We have constructed Geroch Group matrices for 5D rotating Myers-Perry and Dyonic Kaluza Klein BHs.
- Both cases are two soliton solutions, solitons sitting at two poles of Monodromy matrix with residues of rank one.

- We have constructed Geroch Group matrices for 5D rotating Myers-Perry and Dyonic Kaluza Klein BHs.
- Both cases are two soliton solutions, solitons sitting at two poles of Monodromy matrix with residues of rank one.
- We identify $\mathbf{M}(\rho = \mathbf{0}, \mathbf{z} = \mathbf{w} \text{ with } \mathbf{z} < -\mathbf{R}) = \mathcal{M}(\mathbf{w}).$

- We have constructed Geroch Group matrices for 5D rotating Myers-Perry and Dyonic Kaluza Klein BHs.
- Both cases are two soliton solutions, solitons sitting at two poles of Monodromy matrix with residues of rank one.
- We identify $\mathbf{M}(\rho = \mathbf{0}, \mathbf{z} = \mathbf{w} \text{ with } \mathbf{z} < -\mathbf{R}) = \mathcal{M}(\mathbf{w}).$
- We presented some of the relations between the Geroch group matrices and the charge matrices.

- We have constructed Geroch Group matrices for 5D rotating Myers-Perry and Dyonic Kaluza Klein BHs.
- Both cases are two soliton solutions, solitons sitting at two poles of Monodromy matrix with residues of rank one.

• We identify
$$\mathbf{M}(\rho = \mathbf{0}, \mathbf{z} = \mathbf{w} \text{ with } \mathbf{z} < -\mathbf{R}) = \mathcal{M}(\mathbf{w}).$$

- We presented some of the relations between the Geroch group matrices and the charge matrices.
- Future interest can be in studying cases where monodromy matrix is not a constant at infinity i.e w has a pole at infinity.

THANK YOU!

Bidisha Chakrabarty , Amitabh Virmani (IOPE

3D Lagrangian

• The reduced 3D Lagrangian :

$$\mathcal{L}_{3} = R_{3} \star 1 - \frac{1}{2} \star d\vec{\phi} \wedge d\vec{\phi} - \frac{1}{2}\epsilon_{1}\epsilon_{2}e^{-\sqrt{3}\phi_{1}+\phi_{2}} \star \mathcal{F}_{(1)} \wedge \mathcal{F}_{(1)} \\ - \frac{1}{2}\epsilon_{1}e^{-\sqrt{3}\phi_{1}-\phi_{2}} \star \mathcal{F}_{(2)}^{1} \wedge \mathcal{F}_{(2)}^{1} - \frac{1}{2}\epsilon_{2}e^{-2\phi_{2}} \star \mathcal{F}_{(2)}^{2} \wedge \mathcal{F}_{(2)}^{2}$$
(15)

3D Lagrangian

• The reduced 3D Lagrangian :

$$\mathcal{L}_{3} = R_{3} \star 1 - \frac{1}{2} \star d\vec{\phi} \wedge d\vec{\phi} - \frac{1}{2} \epsilon_{1} \epsilon_{2} e^{-\sqrt{3}\phi_{1} + \phi_{2}} \star \mathcal{F}_{(1)} \wedge \mathcal{F}_{(1)} \\ - \frac{1}{2} \epsilon_{1} e^{-\sqrt{3}\phi_{1} - \phi_{2}} \star \mathcal{F}_{(2)}^{1} \wedge \mathcal{F}_{(2)}^{1} - \frac{1}{2} \epsilon_{2} e^{-2\phi_{2}} \star \mathcal{F}_{(2)}^{2} \wedge \mathcal{F}_{(2)}^{2}$$
(15)

where

$$\epsilon_{1},\epsilon_{2} = \pm 1$$
& $\mathcal{F}_{(1)} = d\chi_{1}, \quad \mathcal{F}_{(2)}^{1} = d\mathcal{A}_{(1)}^{1} + \mathcal{A}_{(1)}^{2} \wedge d\chi_{1}, \quad \mathcal{F}_{(2)}^{2} = d\mathcal{A}_{(1)}^{2}$
(16)

are the field strengths for χ_1 , $\mathcal{A}^1_{(1)}$, and $\mathcal{A}^2_{(1)}$ respectively.

- The Hodge Dual of a 1-form potential (2-form Field strength) in 3D is a scalar.
- The full hidden symmetry of a theory can be manifested after the gauge potentials are dualised into scalar axions.

$$\mathcal{A}^1_{(1)} o \chi_2$$
 , $\mathcal{A}^2_{(1)} o \chi_3$

- The Hodge Dual of a 1-form potential (2-form Field strength) in 3D is a scalar.
- The full hidden symmetry of a theory can be manifested after the gauge potentials are dualised into scalar axions.

$$\mathcal{A}^1_{(1)} o \chi_2$$
 , $\mathcal{A}^2_{(1)} o \chi_3$

• For Dualisation add Lagrange Multiplier terms

$$-\chi_2 d(\mathcal{F}^1_{(2)} - \mathcal{A}^2_{(1)} \wedge d\chi_1) - \chi_3 d\mathcal{F}^2_{(2)}$$
(17)

to the 3D Lagrangian.

• Eliminating $\mathcal{F}^1_{(2)}$ and $\mathcal{F}^2_{(2)}$ we obtain **Duality Relations**

$$\epsilon_1 e^{-\sqrt{3}\phi_1 - \phi_2} \star \mathcal{F}^1_{(2)} = d\chi_2, \quad \epsilon_2 e^{-2\phi_2} \star \mathcal{F}^2_{(2)} = d\chi_3 - \chi_1 d\chi_2 \quad (18)$$

(Eqns of motion and Bianchi identities get interchanged).

• Eliminating $\mathcal{F}^1_{(2)}$ and $\mathcal{F}^2_{(2)}$ we obtain **Duality Relations**

$$\epsilon_1 e^{-\sqrt{3}\phi_1 - \phi_2} \star \mathcal{F}^1_{(2)} = d\chi_2, \quad \epsilon_2 e^{-2\phi_2} \star \mathcal{F}^2_{(2)} = d\chi_3 - \chi_1 d\chi_2 \quad (18)$$

(Eqns of motion and Bianchi identities get interchanged).

Relation between M(x) and $\mathcal{M}(w)$

• t_{\pm} have two branch points at $\rho = \pm Im(w)$, z=Re(w)

•
$$\mathcal{V}_{\pm}(\boldsymbol{w},\rho,\boldsymbol{z}) = \mathcal{V}(\boldsymbol{t}_{\pm}(\boldsymbol{w},\rho,\boldsymbol{z}),\rho,\boldsymbol{z})$$

•
$$\mathcal{V}_+(w, 0, z) = V(0, z),$$

 $\mathcal{V}_-(w, 0, z) = (V^T(0, z))^{-1}C(w),$ solving Lax Eqs

Bidisha Chakrabarty , Amitabh Virmani (IOPE

Relation between M(x) and $\mathcal{M}(w)$

• At each branch point t_{\pm} have same values, therefore

$$\mathcal{V}_{+}(\boldsymbol{w},\rho,\boldsymbol{z})\big|_{\rho=\mathsf{Im}(\boldsymbol{w}),\,\boldsymbol{z}=\mathsf{Re}(\boldsymbol{w}),}=\mathcal{V}_{-}(\boldsymbol{w},\rho,\boldsymbol{z})\big|_{\rho=\mathsf{Im}(\boldsymbol{w}),\,\boldsymbol{z}=\mathsf{Re}(\boldsymbol{w})} \quad (19)$$

• Using eq. (14) and $\mathbf{Im}(w) \rightarrow 0$,

$$C(w) = M(0, w).$$
 (20)

Indian Strings Meeting 2014, Puri

Therefore

$$\mathcal{M}(w) = \mathcal{V}_{-}^{T}(w, 0, z)\mathcal{V}_{+}(w, 0, z),$$

= $((V^{T}(0, z))^{-1}M(0, w))^{T}V(0, z),$
= $M(0, w).$ (21)

• For MP BH: For $l_1 \rightarrow 0$ and $l_2 \rightarrow 0$ (5D Schwarzschild case)

$$\alpha_{1} = m, \qquad a_{1} = \{0, 0, 1\}, \qquad (22)$$

$$\alpha_{2} = -1, \qquad a_{2} = \left\{\sqrt{2}\ell, -\frac{m}{2\sqrt{2}\ell}, 0\right\}. \qquad (23)$$

• For MP BH: For $I_1 \rightarrow 0$ and $I_2 \rightarrow 0$ (5D Schwarzschild case)

$$\alpha_{1} = m, \qquad a_{1} = \{0, 0, 1\}, \qquad (22)$$

$$\alpha_{2} = -1, \qquad a_{2} = \left\{\sqrt{2}\ell, -\frac{m}{2\sqrt{2}\ell}, 0\right\}. \qquad (23)$$

Further for m→ 0, residue at w = +α vanishes (5D Minkowski case monodromy matrix simplifies to

$$\mathcal{M}(w) = Y + \frac{\alpha_2 a_2 a_2^T}{w}, \qquad (24)$$

with
$$\alpha_2 = -1$$
 and $a_2 = \{\sqrt{2}\ell, 0, 0\}$.

• For KK BH : Vectors *a*₁ and *a*₂ are

$$a_{1} = g^{T} a_{1}^{Kerr}, \qquad a_{1}^{Kerr} = \{\zeta, 0, 1\}, \qquad (25)$$

$$a_{2} = g^{T} a_{2}^{Kerr}, \qquad a_{2}^{Kerr} = \{1, 0, \zeta\}, \qquad (26)$$

where
$$\zeta = rac{m-\sqrt{m^2-a^2}}{a}$$
 .

Bidisha Chakrabarty, Amitabh Virmani (IOPE

• For KK BH : Vectors a₁ and a₂ are

$$a_{1} = g^{T} a_{1}^{Kerr}, \qquad a_{1}^{Kerr} = \{\zeta, 0, 1\}, \qquad (25)$$

$$a_{2} = g^{T} a_{2}^{Kerr}, \qquad a_{2}^{Kerr} = \{1, 0, \zeta\}, \qquad (26)$$

where
$$\zeta=rac{m-\sqrt{m^2-a^2}}{a}$$
 .

In the limit
$$a \rightarrow 0$$
, the residue vectors are smooth.

$$a_{1} = g^{T} a_{1}^{Kerr}, \qquad a_{1}^{Kerr} = \{0, 0, 1\}, \qquad (27)$$

$$a_{2} = g^{T} a_{2}^{Kerr}, \qquad a_{2}^{Kerr} = \{1, 0, 0\}, \qquad (28)$$

0