
GEROCH GROUP DESCRIPTION OF BLACK
HOLES

Bidisha Chakrabarty, Amitabh Virmani

Institute of Physics , Bhubaneswar

Indian Strings Meeting 2014, Puri

Bidisha Chakrabarty , Amitabh Virmani (IOPB) Integrability in 2D Gravity
Indian Strings Meeting 2014, Puri 1 /

39



References:

JHEP11 (2014) 068 by B. Chakrabarty, A. Virmani
JHEP02(2013)011 by D. Katsimpouri, A. Kleinschmidt and
A. Virmani
Annales Henri Poincare A 46 (1987) 215 by P. Breitenlohner and
D. Maison
Unpublished notes of Breitenlohner and Maison from June 1986.

Bidisha Chakrabarty , Amitabh Virmani (IOPB) Integrability in 2D Gravity
Indian Strings Meeting 2014, Puri 2 /

39



Outline

1 Motivation

2 Dimensional Reduction from 5D to 2D
Step 1: 5D to 3D
Step 2: 3D to 2D

3 Charge Matrix

4 Summary & open problems

Bidisha Chakrabarty , Amitabh Virmani (IOPB) Integrability in 2D Gravity
Indian Strings Meeting 2014, Puri 3 /

39



Motivation

Motivation

Gravity in (d > 4) is rich.

Exact solutions in higher dimensional gravity theories are less in
number. In d ≥ 6 the exact solutions become even rarer.

So, efforts to study exact solution generating techniques.

In the present talk we consider cases with d ≤ 5
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Motivation

Motivation

Dimensionally reduced gravity theories have symmetry groups like
5D gravity in 3D: SL(3,R)

These symmetries have been used to study various features of
BHs.

Higher dimensional gravity theories when reduced to 2D has
infinite no of symmetries→ Integrability.
The symmetry group is called the Geroch group.

these symmetries can be useful in constructing various exact
solns
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Dimensional Reduction from 5D to 2D

Dimensional Reduction from 5D to 2D

Perform dimensional reduction of a five-dimensional gravity theory to
2Dimns in two steps.

1 Reduce the theory to 3D
2 Reduce it from 3 to 2 dimns.
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Step 1: 5D to 3D

vacuum gravity in 5D:

L5 = R5 ? 1 (1)

Assume two commuting Killing vectors exist : ∂
∂x5 (space-like) and

∂
∂x4 (time-like) .

Dimensionally reduce theory from 5D to 3D, first reduction over
x5, then over x4.



Dimensional Reduction from 5D to 2D Step 1: 5D to 3D

Dimensional Reduction of 5D vacuum Gravity to 3D

Kaluza-Klein metric ansatz:

ds2
5 = e

1√
3
φ1+φ2ds2

3 + ε2e
φ1√

3
−φ2

(
dz4 +A2

)2

+ε1e−
2φ1√

3

(
dz5 + χ1dz4 +A1

)2
(2)

g(5)
µν =


gab A2 A1

? φ2 χ1
? ? φ1


3D fields are:
––metric g,
––Dilatons φ1, φ2 ,
––one axion χ1,
––two Maxwell-like one form
potentials A1 & A2

3D fields are independent of x4 and x5
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Dimensional Reduction from 5D to 2D Step 1: 5D to 3D

Dualising 1-form potentials into axions

Dualise the Maxwell-like one form potentials A1 & A2 in 3D into
scalar axions χ2 and χ3.

3D Lagrangian in dualised variables:

L3 = R3 ? 1− 1
2
? d ~φ ∧ d ~φ− 1

2
ε1ε2e−

√
3φ1+φ2 ? dχ1 ∧ dχ1

−1
2
ε2e
√

3φ1+φ2 ? dχ2 ∧ dχ2

−1
2
ε1e2φ2 ? (dχ3 − χ1dχ2) ∧ (dχ3 − χ1dχ2). (3)

where
ε1,ε2 = ±1
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Dimensional Reduction from 5D to 2D Step 1: 5D to 3D

Coset Model Construction

3D scalar Lagrangian can be parametrised by the SL(3,R)
SO(2,1) coset

representative

V = e
1
2φ1h1e

1
2φ2h2eχ1e1eχ2e2eχ3e3 . (4)

where h1,h2 → Cartan Generators of sl(3)
e1,e2,e3 → positive root generators of sl(3)

V→ Upper triangular matrix.
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Dimensional Reduction from 5D to 2D Step 1: 5D to 3D

Coset Model Construction

Construct
M = V T V , (5)

The 3D Lagrangian

L′3 = R ? 1− 1
4

tr(?(M−1dM) ∧ (M−1dM)) . (6)

is manifestly SL(3,R) invariant

M → gT Mg
∴ M−1dM → g−1(M−1dM)g
∴ tr(?(M−1dM) ∧ (M−1dM))→ invariant.
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Dimensional Reduction from 5D to 2D Step 2: 3D to 2D
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Step 2: 3D to 2D

In Step2 of Dimensional Reduction, reduce over a space-like
Killing vector to 2D.

3D metric ansatz: ds2
3 = f 2(dρ2 + dz2) + ρ2dϕ2 ;

ρ, z →Weyl Canonical Coordinates, f →Conformal factor, ∂ϕ →
Spacelike Killing Vector.



Dimensional Reduction from 5D to 2D Step 2: 3D to 2D

Dimensional Reduction to 2 dimn s

The 2D system is Integrable⇒ Lax pair exists and its compatibility
condition is the eqns of the 2D gravity system.

Lax equations require the generalization V (x)→ V(t , x)
with V(0, x) = V (x)

t satisfies certain space-time dependent Differential eqn

t → Space-time dependent Spectral Parameter
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Dimensional Reduction from 5D to 2D Step 2: 3D to 2D

Dimensional Reduction to 2 dimns

Solves to
t±(w , x) = 1

ρ

[
(z − w)±

√
(z − w)2 + ρ2

]
= − 1

t∓ (w , x),
w → Integration const( Space-time Independent Spectral
Parameter)

(V(t , x))T = VT (−1
t , x
)
, like M(x) before here Monodromy

matrix
M(t , x) = VT

(
−1

t
, x
)
V(t , x). (7)
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Dimensional Reduction from 5D to 2D Step 2: 3D to 2D

∂±M(t , x) = 0→M(t , x) is space-time independent (using Lax
Eqns).

M(t , x) =M(w) . (8)

The Geroch group allows one to associate a space-time
independent matrix to a space-time configuration that
effectively depends on only two coordinates.
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Dimensional Reduction from 5D to 2D Step 2: 3D to 2D

Relation between M(x) andM(w)

2D space spanned by (ρ, z) coordinates→ Factor Space

Boundary ρ = 0 consists of a union of Intervals
[Hollands & Yazadjiev gr-qc 0707.2775].

Two adjacent intervals meet at the corners.
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Dimensional Reduction from 5D to 2D Step 2: 3D to 2D

Relation between M(x) andM(w)

We concentrate in the ρ = 0, z < −R region of the factor space.

The important relation is

M(ρ = 0, z = w with z < −R) =M(w). (9)

This relation is obtained via Lax equations.
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Dimensional Reduction from 5D to 2D Step 2: 3D to 2D

Geroch Group Matrices

Consider SL(3) matrices with simple poles in w with constant residue
matrices of rank one:

M(w) = Y +
N∑

k=1

Ak

w − wk
(10)

with residue matrix Ak = αkakaT
k where α’s are constants chosen to

satisfy coset conditions.
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Dimensional Reduction from 5D to 2D Step 2: 3D to 2D

Solitonic matrices SL(3)

Consider the case whenM(w) has two poles at w1 = +c and
w2 = −c .
This works well for the two examples we consider:

1 5D Myers-Perry
2 5D Dyonic Kaluza Klein
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Dimensional Reduction from 5D to 2D Step 2: 3D to 2D

Geroch Group Matrices for Black Holes

Example 1 : 5D Myers-Perry

Consider a doubly spinning Myers-Perry BH in 5D with three
independent parameters ( mass m, angular momenta l1 and l2). In
5D two independent rotation planes.

Perform KK reduction over appropriately chosen space-like and
time-like Killing directions.
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Dimensional Reduction from 5D to 2D Step 2: 3D to 2D

Geroch Group Matrices for Black Holes

Resulting matrix M(r , x) has the asymptotic behaviour

M(r , x) = Y +O
(

1
r2

)
, (11)

To construct the monodromy matrixM(w) from M(r , x) change to
canonical coordinates (ρ, z) and take the limit ρ→ 0 , z near −∞ .

Final form ofM(w):

M(w) = Y +
A1

w − α
+

A2

w + α

where A1 = α1a1aT
1 , A2 = α2a2aT

2
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Dimensional Reduction from 5D to 2D Step 2: 3D to 2D

Geroch Group Matrices for Black Holes

Example 2 : Dyonic Kaluza Klein

Kaluza Klein Black Hole is written in terms of four parameters
p,q,m,a corresponding to electric and magnetic KK charges ,
mass and angular momentum.

In this case M(x) = gT MKerr (x)g ; g ∈ SO(2, 1)
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Dimensional Reduction from 5D to 2D Step 2: 3D to 2D

Geroch Group Matrices for Black Holes

MKerr (x) =

1 + 2mr
r2−2mr+a2x2 0 − 2amx

r2−2mr+a2x2

0 1 0
− 2amx

r2−2mr+a2x2 0 1 + 2m(2m−r)
r2−2mr+a2x2



With some thinking g has been calculated.

g = exp(−γk3) · exp(−βk1) · exp(αk2). (12)

Finally M(w) = I +
A1

w − c
+

A2

w + c
,

where A1 = α1a1aT
1 , A2 = α2a2aT

2 .
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Charge Matrix

Charge matrix

The charge matrix Q for a 4 D asymptotically flat configuration is
defined as

M(x) = I − Q
r
+O

(
1
r2

)
. (13)

(Bossard, Nicolai, Stelle JHEP 0907,003(2009))

Q satisfies characteristic eq.

Q3 − 1
2

Tr(Q2)Q = 0, (14)
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Charge Matrix

Charge matrix

Asymptotic form ofM (w) in terms of Q is

M(w) = I + Q
w +O

( 1
w2

)
.

Q =
∑N

i=1 αiai(ai)
T .
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Summary & open problems

Outline
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2 Dimensional Reduction from 5D to 2D
Step 1: 5D to 3D
Step 2: 3D to 2D

3 Charge Matrix

4 Summary & open problems
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Summary & open problems

Summary and Open Problems

We have constructed Geroch Group matrices for 5D rotating
Myers-Perry and Dyonic Kaluza Klein BHs.

Both cases are two soliton solutions, solitons sitting at two
poles of Monodromy matrix with residues of rank one.

We identify M(ρ = 0, z = w with z < −R) =M(w).

We presented some of the relations between the Geroch group
matrices and the charge matrices.

Future interest can be in studying cases where monodromy
matrix is not a constant at infinity i.e w has a pole at infinity.
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Summary & open problems

THANK YOU!
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Summary & open problems

3D Lagrangian

The reduced 3D Lagrangian :

L3 = R3 ? 1− 1
2
? d ~φ ∧ d ~φ− 1

2
ε1ε2e−

√
3φ1+φ2 ? F(1) ∧ F(1)

−1
2
ε1e−

√
3φ1−φ2 ? F1

(2) ∧ F
1
(2) −

1
2
ε2e−2φ2 ? F2

(2) ∧ F
2
(2)

(15)

where
ε1,ε2 = ±1

& F(1) =dχ1, F1
(2) =dA1

(1) +A
2
(1) ∧ dχ1, F2

(2) =dA2
(1)

(16)

are the field strengths for χ1, A1
(1), and A2

(1) respectively.
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Summary & open problems

Dualising 1-form potentials into axions

The Hodge Dual of a 1-form potential (2-form Field strength)
in 3D is a scalar.

The full hidden symmetry of a theory can be manifested after the
gauge potentials are dualised into scalar axions.

A1
(1) → χ2 , A2

(1) → χ3

For Dualisation add Lagrange Multiplier terms

−χ2d(F1
(2) −A

2
(1) ∧ dχ1)− χ3dF2

(2) (17)

to the 3D Lagrangian.
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Summary & open problems

Dualising 1-form potentials into axions

Eliminating F1
(2) and F2

(2) we obtain Duality Relations

ε1e−
√

3φ1−φ2 ? F1
(2) = dχ2, ε2e−2φ2 ? F2

(2) = dχ3 − χ1dχ2 (18)

(Eqns of motion and Bianchi identities get interchanged).
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Summary & open problems

Relation between M(x) andM(w)

t± have two branch points at ρ = ±Im(w), z=Re(w)

V±(w , ρ, z) = V(t±(w , ρ, z), ρ, z)

V+(w ,0, z) = V (0, z),
V−(w ,0, z) = (V T (0, z))−1C(w), solving Lax Eqs
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Summary & open problems

Relation between M(x) andM(w)

At each branch point t± have same values, therefore

V+(w , ρ, z)
∣∣
ρ=Im(w), z=Re(w),

= V−(w , ρ, z)
∣∣
ρ=Im(w), z=Re(w)

(19)

Using eq. (14) and Im(w)→ 0,

C(w) = M(0,w). (20)

Therefore

M(w) = VT
−(w ,0, z)V+(w ,0, z),

= ((V T (0, z))−1M(0,w))T V (0, z),
= M(0,w). (21)
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Summary & open problems

Geroch Group Matrices for Black Holes

For MP BH: For l1 → 0 and l2 → 0 (5D Schwarzschild case)

α1 = m, a1 = {0,0,1} , (22)

α2 = −1, a2 =

{√
2`,− m

2
√

2`
,0
}
. (23)

Further for m→ 0 , residue at w = +α vanishes (5D Minkowski
case monodromy matrix simplifies to

M(w) = Y +
α2a2aT

2
w

, (24)

with α2 = −1 and a2 =
{√

2`,0,0
}

.).
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Summary & open problems

Geroch Group Matrices for Black Holes

For KK BH : Vectors a1 and a2 are

a1 = gT aKerr
1 , aKerr

1 = {ζ,0,1} , (25)

a2 = gT aKerr
2 , aKerr

2 = {1,0, ζ} , (26)

where ζ =
m−
√

m2−a2

a .

In the limit a→ 0 , the residue vectors are smooth.

a1 = gT aKerr
1 , aKerr

1 = {0,0,1} , (27)

a2 = gT aKerr
2 , aKerr

2 = {1,0,0} , (28)
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