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Introduction-Relative Entropy
– Relative Entropy is a fundamental quantum statistical measure 
   of  how “distinguishable” two states are.

– If       is thermal  with a temperature T,  

–  For unitary theories,  S(⇢1|⇢0) � 0

S(⇢1|⇢0) = Tr(⇢1 ln ⇢1)� Tr(⇢1 ln ⇢0)

⇢0 ⇢0 =
e�H/T

TreH/T

–  Equality corresponds to the usual first law of  thermodynamics. 

S(⇢1|⇢0) = �H � T�S � 0

!!
(Also see Shouvik Datta and Aninda Sinha’s 
   talk)



–       and      are two density matrices  of  2 states of  an entangled  
      subsystem.    

In context of  entanglement
⇢0 ⇢1

  

In context of entanglement 

● Let  ρ
0   

& ρ
1  

describe the reduced density matrices of 2 states of 

an entangled subsystem A.
 

● It is possible to write 

where H called
the Modular Hamiltonian

● So  ρ
0
  is thought of as a thermal state with  T = 1. 

● From positivity of  S( ρ
1
 | ρ

0
 )  

ρ 0 =
e

−H

Tr e
−H

ρ

Δ〈 H 〉⩾Δ S

⇢0 =
e�H

Tr e�H

–“H” is called a “Modular Hamiltonian”.

–So,

�H = �S                                       gives a First Law for Entanglement entropy

!
(JHEP 1308 (2013) 060 by   Blanco, Casini, Hung,Myers,  JHEP 1403 (2014) 051 by Faulkner, Guica,Hartman, 
Myers,Raamsdonk) 
!
(Various applications of  this “First Law” are discussed by Aninda Sinha , Parijat Dey  and Shouvik Datta in their talks)

S(⇢1|⇢0) � 0 ) �H � �S



–   We will restrict ourselves  first  to those theories  where the 
      holographic entanglement entropy can be calculated using  
      Ryu-Takayanagi (’06) prescription. 

Holographic Realization

–  We will only consider a “Spherical” entangling surface.

  

Holographic Calculations 
(Given: an entangling region A at AdS boundary)

● Modular Hamiltonian:

Calculate holographic stress tensor at boundary
 g

μν
:   Boundary metric

 K
μν
:  Extrinsic curvature

and use T
00

 to get H

                
                    (for spherical surfaces)

S (A) =
2π

l p

d
Area (γ A)

Eg: z=√R
2−r

2

T μν =
1

l p

3 ( K μν−gμν K )

H =2π∫∣x∣<R
d

d −1
x

R
2−r

2

2 R
T 00

● Entanglement Entropy:

Find a minimal surface  γ
A
:  z = f (r) 

                                             (spherical surfaces)
                                                

and EE is 
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–  And for the Modular Hamiltonian part:
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Continue…. 
              
                               corresponds :      Spherical surface at the  
                                                          boundary of  empty  AdS. 
                                                           ( dual to a CFT vacua)            
   

                                corresponds :      A small perturbation by a 
                                                            constant stress tensor 
   

⇢0

⇢1

             - At the linear order   �H = �S ) Einstein equation

(JHEP 1308 (2013) 060 by   Blanco, Casini, Hung,Myers,  JHEP 1403 (2014) 051 by Faulkner, Guica,Hartman, 
Myers,Raamsdonk, 
  JHEP 1404 (2014) 195  by Lashkari, McDermott, Raamsdonk, JHEP 1310 (2013) 219  Joytirmoy Bhattacharya, 
Takayanagi )

             - From the positivity of  relative entropy it follows,    

�2S  0

ds

2 =
L

2

z

2
(dz2 + gµ⌫dx

µ
dx

⌫)

gµ⌫ = ⌘µ⌫ + a z

4
Tµ⌫ + a

2
z

8(n1Tµ↵T
↵
⌫ + n2⌘µ⌫T↵�T

↵�)

a =
2

d

`

d�1
p

L

d�1



Now we calculate the second order change in the entanglement           
entropy due this perturbation.

Constraints for two derivative gravity  

Not only the metric but at this order the entangling surface also gets 
 perturbed. 
   

Finally the second order change can be written as,  

�2S = V TMV

The second order change to be negative, all the eigenvalues of  “M”  
 has to be negative.

�2
S = �2

⇣ 2⇡

`

d�1
p

Z
d

d�1
x

p
h

⌘

z =
p
R

2 � r

2 �
`

d�1
p R

2(R2 � r

2)d�1

d(d+ 1)Ld�1
(T i

i +
xixjT

ij

R

2
)



The “Constraints”-Towards Einstein Point 

So we get the following constraints,
n1 + 2(d� 1)n2 � 0

2d+ 1� 4(d+ 1)n1 � 4(d2 � 2)n2 � 0

d+ 2� 4(d+ 1)n1 � 4d(d2 � 1)n2 � 0

Aread =
d2

8(d + 1)2(d� 2)

d ! 1   In         limit the triangle  collapses to the 
                “Einstein” point.

(n1, n2) = (
1

2
,� 1

8(d� 1)
)

(JHEP 1405 (2014) 029  Banerjee, AB, Kaviraj, Sen and  Sinha)



        Further constraints…… 
Now we write the metric as
gµ⌫ = ⌘µ⌫ + az4Tµ⌫ + a2z8

⇣
(
1

2
+ �n1)Tµ↵T

↵
⌫ + (� 1

8(d� 1)
+ �n2)⌘µ⌫T↵�T

↵�
⌘

�n1 = n1 �
1

2

�n2 = n2 +
1

8(d� 1)

It satisfies, RAB � 1

2
(R+

12

L2
) = TAB

As in case of  relative entropy we can write, T = V T .M.V
V is a (d-1)(d+1)/2 component vector consists of  independent  
 components of        .     T↵�

We impose “Null Energy” condition TAB⇣
A⇣B � 0



  We get, 

        Continue…… 
(3d� 2)�n1 + 4d(d� 1)�n2 � 0

(2d� 1)�n1 + 2d(d� 1)�n2  0

�n1 + 2(d� 1)�n2  0

The solution is obvious, 

�n1 = �n2 = 0

           So the null energy condition by itself  picks out  
                          only the “Einstein Point”

        Combining Null energy and relative entropy constraints we get,

Figure 1: (colour online) For d > 2 we get the allowed n1, n2 region to be the blue triangle above for a
generic stress tensor. The region above the blue solid line and below the blue dashed and dotted lines
are allowed from the relative entropy positivity. For d ! 1 the region collapses to a line 0  n1  1
indicated in green. The Einstein value (n1, n2) = (12 ,� 1

8(d�1)) is shown by the black dot. The region
below the solid red line and above the dashed and dotted red lines are allowed by the null energy
condition. By turning on a generic component of the stress tensor only the Einstein value is picked out.
By switching o↵ certain components of the stress tensor, various bands bounded by the solid, dashed
and dotted lines are picked out.

As an example consider turning on a constant T01 in d = 4. Then we find

RAB � 1

2
gAB(R +

12

L2
) = T bulk

AB , (34)

with T bulk
AB working to be

T bulk
AB = 16z6T 2

01

"
3

2
(�n1 + 4�n2)�

z
A�

z
B + (�n1 + 6�n2)�

0
A�

0
B � (�n1 + 6�n2)�

1
A�

1
B � 2(�n1 + 3�n2)

X

i=2,3

�iA�
i
B

#
.

(35)

Here �n1 = n1�1/2 and �n2 = n2+1/24. Using this we find that the null energy condition T bulk
AB ⇣A⇣B � 0

8

(JHEP 1405 (2014) 029  Banerjee, AB, Kaviraj, Sen and  Sinha)



–  Perturbing by non-constant stress tensor- but restricted to only  
    two derivative acting on the stress tensors.

        Perturbation by non-constant stress tensor 

Allowed region 
has shrunk

38

Einstein theory

Shamik Banerjee,  Apratim Kaviraj,  AS 2014

Wednesday, 28 May 14



–   We will consider Gauss-Bonnet gravity in 5 dimensions. 

Higher derivative Gravity

–  Entanglement area functional for this case is the  
    Jacobson-Myers entropy functional.

SEE =
2⇡

`

3
p

Z
d

3
x

p
h

⇣
1 + �L

2R
⌘

( Jacobson-Myers’95, Hung,Myers, Smolkin ’10)

–  We then calculate the second variation for this case.

1� f1 + f2
1� = 0

S = � 1

2`3p

Z
d

5
x

h
R+

12

L

2
+ �L

2(RABCDR

ABCD � 4RABR
AB +R

2)
i

gµ⌫ = ⌘µ⌫ + z4Tµ⌫ + z8(n1Tµ↵T
↵
⌫ + n2⌘µ⌫T↵�T

↵�)

n1 =
1

2

1 + 2f1�

1� 2f1�
, n2 = � 1

24

1 + 6f1�

1� 2f1�



Gauss-Bonnet Gravity 

–   Finally we get the result for the second order change, 

�2S = �8⇡3L3
AdS(1� 2f1�)

`3p
(C1T

2 + C2T
2
ij + C3T

2
i0)

–   From this we get,  �2S  0 ) 1� 2f1� � 0 ) � >
1

4

–This is equivalent of  positivity of  two point function of  stress tensor. 

C1 , C2 , C3 > 0



Extremal Surface Constraints

\

-Demanding the smoothness of  the extremal surface inside the bulk 
  space time we can get some bound on the Gauss-Bonnet coupling. 
    
 We start off  with a ansatz for the extremal surface: 

f(z) =
1X

i=0

ci(zh � z)↵+i

               is a point inside the bulk where the extremal surface closes off. zh

-We then solve the extremal surface equation coming from  
  minimizing  Jacobson -Myers functional and find out  
    

c0

-We do this for different types of  entangling surfaces.

f 0(z = zh) ! 1 ) 0 < ↵ < 1

              and                            c0 2 Real



        Continue… 

-And we get , 
    Type of  Entangling 
    Region 
    

c0

Sphere                          Independent of  
                                        Gauss-Bonnet                           No constraints 
                                          coupling 
    
Cylinder                             

r
2

3

q
zh(1 + 4f1� ±

p
1� 10f1�+ 16f2

1�2) �  7

64

Slab(Strip)
r

2

3

p
zh(1 + 4f1�) � 5

16
 �  1

4

Combining and in terms of  central charge we get,  
    1

3
 a

c
 5

3
(JHEP 1405 (2014) 029  Banerjee, AB, Kaviraj, Sen and  Sinha)

The lower bound matches with the bound for non-supersymmetric  
 theories  with  free bosons coming from the positive energy constraints.  
    (Maldacena, Hoffman ‘08)

c0 2 Real



Conclusions
–   We have shown that using the positivity of  the relative entropy 
      one can constrain gravity theories 

–  For higher curvature gravity one gets a bound on the coupling

–   Using smoothness of  the entangling surface one can obtain 
     non trivial bounds on the higher curvature couplings and hence 
     on the central charges.

–  A non perturbative statement?

                                                        Lot more to explore !!!

–  Also one might get more non trivial bounds from smoothness  
    analysis if  one consider other entangling surfaces. 
 


