Large N Yang-Mills Theories at Finite Density (and holography)

Arnab Kundu Saha Institute of Nuclear Physics & U. Barcelona

Indian Strings Meeting, 2014

Puri December 18th, 2014 Collaboration

Collaborators

Anton Faedo (U. Barcelona) David Mateos (U. Barcelona) Javier Tarrio (U. Barcelona) Christiana Pantelidou (U. Barcelona)

References

1410.4466 with Anton, David & Javier

To appear, Ongoing etc ... with Anton, Christiana, David, Javier

Introduction and Motivation conventional wisdom, gauge-string duality as a tool

Gauge-string duality and fundamental flavours *introducing a charge density*

"Identifying the Ground State" emergence of scaling geometries (HV-type) in the IR

Features of the IR-geometries

RG-flows, thermodynamics, etc..

Conclusions and Outlook General lessons etc. Motivation

The complete phase diagram of QCD at finite density e.g. color-flavour locked (CFL) phase

Alford et. al.

Strong coupling posits a considerable challenge Lattice calculations suffer from the "sign" problem

Representative soluble models

gauge-string duality provides a variety of examples need to consider flavours ~ colours: backreaction & Veneziano limit

Schuster et. al

Ingredients from string theory

$$O(IV)$$
-quiver gauge theories for IV coincident branes

$$|||$$
 $AdS_5 \times X^5$ - background geometry

(e.g.,
$$\mathcal{N}$$
=4 SYM $\equiv \mathrm{AdS}_5 \times S^5$)

Adding flavours

Background geometry is made of $N\,\mathrm{D3}\,\textsc{-}\mathsf{branes}$

Add N_f D7-branes

3-3 strings: adjoint sector

3-7 strings: fundamental matter

7–7 strings: global symmetry $U(N_f)$

D7-branes are typically probes of the geometry

Our goal is to go beyond the probe approximation

Introducing charge density

Dynamics is described by Dirac-Born-Infeld

Excite a U(1) -field on the "flavour"-brane $F_2 = A'_t(r) dt \wedge dr$

"Large charge" limit: $S_{\text{DBI}} \implies S_{\text{NG}}$

(non-dynamical external quarks)

Replace the "flavour brane + flux" by an explicit external "String-sources"

We want to consider the following system:

 $S_{\text{total}} = S_{\text{IIA/IIB}} + S_{\text{Strings}}$

Hard to solve!!

So we smear (in a particular way)

Prem Kumar

	t	r	$ec{x}_p$	Ω_{8-p}
$\mathrm{D}p$		•		●
F1				

The UV-behaviour

Thus:

$$S_{\rm Strings} = \frac{N_q}{2\pi\alpha'} \int \left(\sqrt{-G_{tt}G_{rr}}dt \wedge dr - B\right) \wedge \Xi_8$$

 $\Xi_8 \sim dx^1 \wedge \ldots \wedge dx^p \wedge \omega_{8-p}$

Schematically:

The IR-solutions

Dimensionally reducing on the compact manifold: hyperscaling violating-Lifshitz type background

$$ds^{2} = r^{\frac{-2\theta}{p}} \left[-r^{2z}dt^{2} + r^{2}d\vec{x}_{p}^{2} + \frac{dr^{2}}{r^{2}} \right]$$

$$e^{\phi} = Q^{\frac{p-7}{2}} r^{\frac{p(p-7)}{2(p-4)}}, \quad G_{\Omega\Omega} \sim Q^{\frac{3-p}{4}} r^{\frac{p(3-p)}{4(p-4)}}, \quad Q \sim \frac{N_q}{N^2}$$

$$z = \frac{16 - 3p}{4 - p}$$
, $\theta = \frac{p(3 - p)}{4 - p}$

Faedo et. al.

The IR-solutions

Dimensionally reducing on the compact manifold: hyperscaling violating-Lifshitz type background

$$ds^{2} = r^{\frac{-2\theta}{p}} \left[-r^{2z}dt^{2} + r^{2}d\vec{x}_{p}^{2} + \frac{dr^{2}}{r^{2}} \right]$$

$$e^{\phi} = Q^{\frac{p-7}{2}} r^{\frac{p(p-7)}{2(p-4)}} , \quad G_{\Omega\Omega} \sim Q^{\frac{3-p}{4}} r^{\frac{p(3-p)}{4(p-4)}} , \quad Q \sim \frac{N_q}{N^2}$$

The $Q \to 0$ limit is singular for $p < 7$

$$z = \frac{16 - 3p}{4 - p}$$
, $\theta = \frac{p(3 - p)}{4 - p}$

what is happening at p = 4?

The special case

The p = 4 case yields $\operatorname{AdS}_2 \otimes_w \mathbb{R}^4$

$$ds^2 = r^{1/2} \left[-r^2 dt^2 + \frac{dr^2}{r^2} + d\vec{x}_4^2 \right] \ , \quad e^{\phi} \sim Q^{-3/2} r^{3/2}$$

It can also be obtained from the general solution by setting:

$$z \to \infty$$
, $\theta \to \infty$, $z/\theta = -1$

This has an M-theory uplift of the form: $AdS_3 \times \mathbb{R}^4$

Thursday, December 18, 14

The special case

It can also be obtained from the general solution by setting:

$$z \to \infty$$
, $\theta \to \infty$, $z/\theta = -1$

This has an M-theory uplift of the form: $AdS_3 \times \mathbb{R}^4$

Thursday, December 18, 14

The HV-Lif geometry

The metric:
$$ds^2 = r^{\frac{-2\theta}{p}} \left[-r^{2z} dt^2 + r^2 d\vec{x}_p^2 + \frac{dr^2}{r^2} \right]$$

These geometries lack IR-completion: curvature singularity, infinite tidal forces etc..

 \exists smooth numerical interpolating solutions, for all cases

Faedo et. al.

With dynamical quarks

The example of:
$$p=2$$
 , $z_{\mathrm{IR}}=5$, $heta_{\mathrm{IR}}=1$

Making the flavours dynamical: $N\,$ number of $\,\mathrm{D2}\,\text{-}\mathrm{branes}\,$ + $N_f\,$ $\,\mathrm{D6}\,\text{-}\mathrm{branes}\,$ with flux

 $(N \sim N_f)$

$$S_{\rm total} = S_{\rm IIA} + S_{\rm D6}$$

To appear, Ongoing

Conclusions

The HV-Lif type geometries naturally emerge in the IR, Universality

The "IR-completion" may be physically very interesting

A more "physical" case is the (3 + 1) -dimensional one Typically, issues with Landau pole etc ...

Provides a good starting point to explore further

Looking for the right ground state: properties of the IR-geometry, exploring instabilities etc ...

Perhaps towards the breaking of the gauge symmetry

Towards the effect of color superconductivity