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What this talk is about .. 

• Study classically the most general D3 branes in                that 
preserve 2 out of 32 supercharges. 

• Focus on a particular sub-class of solutions (wobbling dual-
giants). Quantize the configuration space of these branes / 
count D3 branes. Compare with gauge theory.

Solve  -symmetry equations. D-branes are classified by 
constraints on the pullback of space-time forms. 
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• Background and motivation

• Classical analysis

• Geometry of             

• Kappa symmetry constraints and some solutions

• Quantization

• Classical phase space and symplectic 2-form (examples)

• Geometric quantization

• Results and open questions

Outline

AdS5 × S
5

3



Background and Motivation

Important to improve existing technology so as to generalize to 
other branes/backgrounds.  

Duality between giant gravitons and dual-giant gravitons. This has 
been confirmed in the               sector by [BGLM, MS]. States in a 
3d harmonic oscillator.  Is this also true for                 sector ? 

(J1, J2, J3)
(S1, S2, J1)

Most discussions of branes in               use either the embedding 
of the background in the ambient space                or use explicit 
embedding ansatz such as the round     .
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Tests of AdS/CFT in the BPS sector.  
Match counting of operators in gauge theory to counting D-brane 
states in the gravity theory. 

Counting states that preserve 2 supercharges is potentially useful 
for accounting for the entropy of the Gutowski-Reall black hole. 

Original motivation for project. A simple and complete 
characterization of 1/16-BPS objects conducive to quantization 
still missing.
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Geometry 
Φ0 = cosh ρeiφ0 Z1 = sinαeξ1

Φ1 = sinh ρ cos θeiφ1 Z2 = cos α sinβeiξ2

Φ2 = sinh ρ sin θeiφ2 Z3 = cos α cos βeiξ3

|Φ0|
2 − |Φ1|

2 − |Φ2|
2 = 1 |Z1|

2 + |Z2|
2 + |Z3|

2 = 1

such that

ds2

AdS5
= − cosh2 ρdφ2

0 + dρ2 + sinh2 ρ(dθ2 + cos2 θdφ2

1 + sin2 θdφ2

2)

ds2

S5 = sin2 α dξ2

1 + dα2 + cos2 α(dβ2 + sin2 β dξ2

2 + cos2 β dξ2

3)
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Impose projections that preserve 2 supercharges. These were 
already discussed in the context of dual-giants by [MS].

The kappa symmetry equations for the embedding of a D3-brane in 
this background is given by 

γτσ1σ2σ3
ε = i

√

det h ε

γi = ∂iX
µ
Γµwhere

It is possible to choose a frame such that both spaces are written as 
Hopf fibrations.      is given by a        fibration over       .         is given 
by a time-like Hopf  fibration over       . 

S
5 U(1) CP

2 AdS5

C̃P
2

e
0

e
1,2,3,4

e
5,6,7,8

e
9

(ρ, θ, φ01, φ02) ∈ C̃P
2

(α, β, ξ12, ξ13) ∈ CP 2
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ε = e
−

1

2
(Γ79−iΓ5γ̃)α)

. . . e

1

2
Γ57ξ1

. . . e
−

1

2
φ2Γ24

ε0

is a constant 32-component Weyl spinor that satisfiesε0

Γ11ε0 = −ε0

The projection conditions take the form

Γ09ε0 = Γ13ε0 = Γ24ε0 = −Γ57ε0 = Γ68ε0 = −i ε0

The projection conditions leads to a particularly simple form of the 
Killing spinor

ε = e
i(φ0+φ1+φ2+ξ1+ξ2+ξ3)

ε0

The Killing spinor of the background is of the form
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If we define new combinations of vielbein
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the (15) BPS equations can be packaged into the simple form

P [EABCD] = 0

P [EAB
∧ (e09 + i(ω̃ − ω)] = 0

One can check that all known supersymmetric embeddings of D3 
branes satisfy these equations.

What about solutions ? A D3 brane in ten dimensions is specified 
by 6 real equations. 

                                                     

Volume form on the D3 brane: P [e09
∧ (ω̃ − ω)]
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There are two types of solutions studied in the literature.

Giants are point-like in        and wrap 3-surfaces in the   .  The 
volume form takes the form

AdS5 S
5

Dual-giants are point-like in the    and wrap 3-surfaces in        . The 
volume form is

S
5 AdS5

dvol3 = P [e9
∧ ω]

dvol3 = P [e0
∧ ω̃]

Giants Mikhailov giants Wobbling giants

Dual-giants
Mandal-Suryanarayana 

dual- giants 
Wobbling dual-giants (new)

             
              quantum no.        (J1, J2, J3) (S1, S2, J1)

There are four classes of   -BPS D3-branes:  1

8

DUALITY
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In what follows, we will restrict ourselves to those branes that 
carry angular momenta                . (S1, S2, J1)

Z2 = Z3 = 0

These preserve 4 supercharges. Without loss of generality, we 
choose the brane to have angular momentum along the          
circle. This automatically implies that

α =
π

2

These are already 2 complex constraints, so we require one more 
equation to completely specify the D3-brane:

F (ρ, θ, φi, α, β, ξi) = 0

This leads to the differential constraint           . This can be written 
in terms of the vielbein introduced earlier.    

dF = 0

∑

i

(

aiE
i
+ āiE

ī

)

= 0
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Z2 = Z3 = 0 ⇒ P [E5] = P [E6] = 0

This, combined with the non-trivial differential constraint can be 
used to solve for three of the ten one-forms. Substituting this into 
the BPS equations lead to differential equations whose solution is 
given by 

F (Φ0Z1,Φ1Z1,Φ2Z1) = 0

Here,     is a pure phase. Z1

These are the “wobbling” dual-giants [AS]. Exchanging the roles 
played by          and          lead to Mikhailov’s giant gravitons.E

{1,2}
E

{3,4}

F (Φ0Z1,Φ0Z2,Φ0Z3) = 0 Φ0 = ei
t

l

Z1 = e
−i

t

l

Both of them are solutions to the same set of BPS equations.
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Mini Summary

• Choice of frame (Hopf fibration)

• kappa-symmetry constraints imposed

• Found 2 simples classes of solutions

• Wobbling dual-giants

• Mikhailov giants

• There is a dual description for each of these D-branes found 
by [MS] that is much easier to quantize and count. 
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Classical Phase Space

Consider world-volume theory of a probe D3-brane that solves the 
BPS equations. These are given by

F (Yi) =
∑

i,j,k

cijkY
i
0 Y

j
1

Y
k
2 Ya = Z1Φa

The c’s span the space of classical solutions to the BPS equations. 
This is also the classical phase space of the probe theory. The 
symplectic form on this phase space is given by [C-W, Z]

The idea is to write                                         after integration.   ω = fijklmn(c) δcijk ∧ δclmn

θ =

∫
Σ

pµ δxµ ω = δθ .

Here, p’s are the momenta (or charges) carried by the D-brane. The 
variations      are those that do not take one away from the space of 
classical solutions. They are  -forms on phase space.  

δx
µ

1

14



General expressions for the momenta can be easily obtained for a 
probe D-brane using

pa =

∂L

∂ea
⇒ pµ = ea

µ pa

Variations can be computed for specific examples. For instance, for 
the spherical dual-giant

f(Yi) = Y0 − c = 0

Embedding 
σ1 σi

ρ θ φi α β ξi

The one-form on phase space is given by                                  . θ =

∫
Σ

[pρδρ + pξ1
δξ1]

Result: The symplectic 2-form                                           .           ω = −i N δc̄ ∧ δc |c| > 1

For a spherical giant, we get an identical result, except           . |c| < 1

15



CP
1 C̃P

1

This maps the exterior of the unit disk to the complex plane. Now, 
let us start with the complex plane with the symplectic form equal 
to the Kahler form. Consider the further change of variables

C
1

ζ =
r

l
eiφ c =

√

1 +
r2

l2
eiφ ⇒ ω = δc̄ ∧ δc = δζ̄ ∧ δζ

ζ = b

√

1

1 ± |b|2
ωC=⇒ ωCP 1

ω
C̃P

1
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The phase spaces are Kahler manifolds and their quantization is well 
known using the methods of geometric (holomorphic) quantization.

We will discuss two generalizations

Y0 = c

k∏

i=1

(Y0 − ci) = 0 c0Y0 + c1Y1 + c2Y2 = c

SU(1, 2) rotation

-BPS
1

2
quantum numbers                 . (S1, S2, J1)

What is the classical phase space for these generalizations ?

So far, we have discussed the phase space of the single giant and 
single dual-giant with quantum numbers            . (0, 0, J1)

(S1, S2, J1)For the 6 parameter single dual-giant with                ,  we find that 
the classical phase space is just       .             C̃P

3
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For the multiple dual-giants which are 1/2-BPS, the configuration 
space is just the symmetric product space. However, we have yet to 
take into account the stringy exclusion principle.

For giants, there is an upper limit on the angular momenta  

Pξ1
≤ N

For dual-giants, there is an upper bound on their number  ≤ N

deg (f(Y0)) ≤ N

Configuration space is the phase space        .                   C̃P
N

Can we generalize this to                                      ?   f(Yi) =
∑

i,j,k

cijkY i
0 Y j

1
Y k

2
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Repeating our analysis for this more general polynomial seems 
difficult for technical reasons. However there seems a natural guess 
for the classical phase space of the general polynomial.

C̃P
m−1

where m is a regulator and is the number of terms in the 
polynomial. Of course, this agrees with the earlier results which 
have been derived carefully.

We cannot prove this conjecture, however, we can do some checks.

For Mikhailov giants,            was proposed and proved by [BGLM] 
based on a discussion of homogeneous polynomials that define the 
giant gravitons.

CP
m−1

Conjecture for implementing stringy exclusion principle

f(Yi) =
N∑

i=0

∑

j,k

cijkY i
0 Y j

1
Y k

2
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Geometric (Kahler) Quantization 

Symplectic 2-form is the Kahler form.

Choose (holomorphic) polarization                                .             D̄φ = (∂̄ + θz̄)φ = 0

Choose adapted Kahler potential for the Kahler-covariant derivative.
θ = −i ∂K dz

Wave-functions are automatically holomorphic functions.

Functions on phase space get mapped to operators in the quantum 
theory:                                   and these act on the wave-functions 
in  the Hilbert space.       

f −→ i ∂if ωijDj + f

Partition functions can be defined to be
Z = TrH e

−βiJi

where the     are the operator representations of the angular 
momenta.

Ji
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Partition Function
The angular momenta of a given dual-giant configuration is given by

J1

N
= f(b)

∑

n0,n1,n2

n0|bn0,n1,n2
|2

Si

N
= f(b)

∑

n0,n1,n2

ni|bn0,n1,n2
|2

where the b’s are related to the c’s in the defining equation. These 
are now functions on phase space and can be written as operators 
in the quantum theory.

The wave-functions are holomorphic functions of the b’s. Choosing 
a basis of monomials

φ(b) =
∏

n0,n1,n2

(bn0,n1,n2
)pn0,n1,n2

J1 =

∑

n0,n1,n2

n0 pn0,n1,n2
Si =

∑

n0,n1,n2

ni pn0,n1,n2

0 < n0 ≤ N
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In this Hilbert space, the partition function defined earlier takes the 
simple form

Z =

N∏

n0=1

∞∏

n1,n2=0

1

1 − qn0

0
qn1

1
qn2

2

When the regulator is taken to infinity, the Hilbert space coincides 
with that of an arbitrary number of bosons in a 3-dim harmonic 
oscillator such that level # of one of them is            . n0 ≤ N

It matches the one obtained using giants with the same quantum 
numbers [MS].
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Immediate open questions

Count 1/16-BPS D-branes from the gravity side to account for 
entropy of Gutowski-Reall black hole.

Include EM fields on the brane and repeat quantization methods. 
Does not seem very straightforward.

Generalize to Sasaki-Einstein spaces.

Find simple way to characterize the 1/16-BPS D-brane 
configurations.
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