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Puzzles with black holes:

(a) The entropy puzzle:  Does the `Area entropy’  correspond
to a ‘count of states’ for the black hole ?

A/4G

(b) The information paradox:  How can the Hawking radiation quanta 
carry the information in the hole ?

(b) The infall problem:  What does an infalling observer feel ?

i.e. Can general relativity and 
quantum mechanics co-exist ?



Plan

(a) What is the information paradox ?  
  

(b) Results on fuzzballs: summary
                 
                 2-charge, 3 charge, 4-charge extremal states
                 Nonextremal states: Can see explicitly information
                  preserving ‘Hawking emission’ from one particular
                  microstate 

                  
(c) Dynamical questions: 
                      
                      Collapse of a shell 
                      Infalling observer
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The Information paradox

(a review can be found in SDM 2008)



Hawking radiation

How can the Hawking radiation carry the 
information of the initial matter ?

The information problem: a first pass

(Hawking ’74)



Figure 13: A fourier mode on the initial spacelike surface is evolved to later spacelike surfaces. In the initial
part of the evolution the wavelength increases but there is no significant distortion of the general shape of the
mode. At this stage the initial vacuum state is still a vacuum state. Further evolution leads to a distorted
waveform, which results in particle creation.

this is the crucial result for the physics of information, so we will now spend some time in
understanding it.

5.5 The nature of the created pairs

Consider again fig.13. On the initial surface the wavemode had a very short wavelength. On
later time surfaces the wavelength has been stretched to a longer one, though there is no particle
production because the stretching is almost uniform over the oscillations under consideration.
The wavelength keeps getting longer as we go to later time slices, till the deformation becomes
non-uniform and particles are created. But there is only one length scale in the geometry
– the scale GM – and one can see easily that when particles are produced the wavelength
of the mode has become ∼ GM . At this point the wavemode has also moved to distances
! GM from the horizon, and further deformation stops. Thus the wavelength of the produced
quanta is ∼ GM . These are the Hawking radiation quanta, so we see that this radiation has a
temperature ∼ λ−1 ∼ 1

GM . The exact temperature is [2]

T =
1

8πGM
(5.60)

So the wavemode ends its evolution with a wavelength ∼ GM , but what was its wavelength
on the initial slice that we had drawn? On this initial slice there are modes of all possible
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If a wavepacket sits across the horizon, then we will
get particle creation. The mode gets cut in two parts ...

b

c



A similar state is produced by the wavemode which started off with a shorter wavelength
on the initial slice. We get particle pairs described by

|ψ〉2 = Ceγb̂†2ĉ†2 |0〉b2 |0〉c2 (5.63)

The pairs bk, ck for different k lie in regions that do not overlap, so the overall state on the
late time slice is the direct product of the states |ψ〉k

|ψ〉 = |ψ〉1 ⊗ |ψ〉2 ⊗ |ψ〉3 ⊗ . . . (5.64)

We have presented a simplified discussion of the created pairs; more technical details can be
found in [2, 5, 6, 7]. For a more accurate description we should use a large number of oscillations
in making each wavepacket (we have used just a few), and then we will have to consider many
wavenumbers in each of the intervals on S± over which the wavepackets extend. But the above
approximate description has all the essence of what we need to understand the entanglement
of quanta.

5.6 The entangled nature of |ψ〉

Consider the state |ψ〉1

|ψ〉1 = C

(

|0〉b1 ⊗ |0〉c1 + γb̂†1|0〉b1 ⊗ ĉ†1|0〉c1 +
γ2

2
b̂†1b̂

†
1|0〉b1 ⊗ ĉ†1ĉ

†
1|0〉c1 + . . .

)

= C
(

|0〉b1 ⊗ |0〉c1 + γ|1〉b1 ⊗ |1〉c1 + γ2|2〉b1 ⊗ |2〉c1 + . . .
)

(5.65)

where |n〉b1 means that we have n quanta of type b1 in the state etc.
The important feature of this state is that the b1 and c1 excitations are ‘entangled’. To

understand this in more detail, let us take a simple example of an entangled state.

5.7 Entanglement and the idea of ‘mixed states’

Consider two electrons, kept at two different locations, and let each of them have a ‘spin up’
state and a ‘spin down’ state. Then this system can have ‘factored states’ of the form

|ψ〉 = |ψ〉1 ⊗ |ψ〉2 (5.66)

Examples are

|ψ〉 = | ↑〉1 ⊗ | ↓〉2

|ψ〉 =
1√
2
(| ↑〉1 + | ↓〉1) ⊗

1√
2
(↑〉2 + | ↓〉2) (5.67)

etc. But we can also have ‘entangled states which cannot be written as a product of the type
(5.66), for example

|ψ〉 =
1√
2

(| ↑〉1 ⊗ | ↓〉2 + | ↓〉1 ⊗ | ↑〉2) (5.68)

Suppose we ask: what is the state of electron 1? For states of type (5.66) we can answer this
question: we ignore the state of electron 2 and just give the answer |ψ〉1. But for states of
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The entangled nature of the state

wavelengths. Consider a wavemode with wavelength shorter than the one shown in fig.13.
Then this mode will evolve for a longer time before it suffers a nonlinear deformation.

This situation in depicted in fig.14. On the initial slice we have drawn two wavemodes of
different wavelengths. The one with the longer wavelength becomes distorted first, and creates
the quanta labeled b1 and c1 on the late time slice. The wavemode with shorter wavelength
evolves for a longer time before becoming distorted, and creates the quanta labeled b2, c2.

Figure 14: On the initial spacelike slice we have depicted two fourier modes: the longer wavelength mode is
drawn with a solid line and the shorter wavelength mode is drawn with a dotted line. The mode with longer
wavelength distorts to a nonuniform shape first, and creates an entangled pairs b1, c1. The mode with shorter
wavelength evolves for some more time before suffering the same distortion, and then it creates entangled pairs
b2, c2.

The state of the first pair b1, c1 is of the form

|ψ〉1 = Ceγb̂†1ĉ†1|0〉 (5.61)

Here b̂†1 is an operator that creates a quantum in the localized wavepacket depicted as b1 in

fig.14, and similarly ĉ†1 creates the quantum of the wavepacket labeled c1. Because we have
broken up wavemodes into localized wavepackets, we can define a sort of local vacuum |0〉b1 in
the region occupied by this mode b1. If we are in this vacuum state then there are no quanta
in this region, if we act with b̂†1 once then we have one quantum with this wavepacket, if we act

with b̂†1b̂
†
1 then we have two quanta of this type, and so on. Doing the same for the modes on

S− we can write the state (5.61) as

|ψ〉1 = Ceγb̂†1ĉ†1 |0〉b1 |0〉c1 (5.62)

26 wavelengths. Consider a wavemode with wavelength shorter than the one shown in fig.13.
Then this mode will evolve for a longer time before it suffers a nonlinear deformation.

This situation in depicted in fig.14. On the initial slice we have drawn two wavemodes of
different wavelengths. The one with the longer wavelength becomes distorted first, and creates
the quanta labeled b1 and c1 on the late time slice. The wavemode with shorter wavelength
evolves for a longer time before becoming distorted, and creates the quanta labeled b2, c2.

Figure 14: On the initial spacelike slice we have depicted two fourier modes: the longer wavelength mode is
drawn with a solid line and the shorter wavelength mode is drawn with a dotted line. The mode with longer
wavelength distorts to a nonuniform shape first, and creates an entangled pairs b1, c1. The mode with shorter
wavelength evolves for some more time before suffering the same distortion, and then it creates entangled pairs
b2, c2.

The state of the first pair b1, c1 is of the form

|ψ〉1 = Ceγb̂†1ĉ†1|0〉 (5.61)
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(a) The b quanta are entangled with the c quanta

(b) Thus there is no state as such for the b quanta alone,
     but there is a state for the b and c quanta together

(c) If the black hole vanishes, then the b quanta are
     left ‘entangled with nothing’

(d) There is not supposed to be any such state in quantum mechanics !!

??

c b



Our state is of this essential form

type (5.68) we cannot do this, and only the state of the entire system makes sense. Suppose we
nevertheless want to ignore electron 2 in some way. Then we can make a ‘density matrix’

ρ = |ψ〉〈ψ| (5.69)

For the two electron system we get

ρ =
1

2
| ↑〉1 ⊗ | ↓〉2 1〈↑ |⊗ 2〈↓ |

+
1

2
| ↑〉1 ⊗ | ↓〉2 1〈↓ |⊗ 2〈↑ |

+
1

2
| ↓〉1 ⊗ | ↑〉2 1〈↑ |⊗ 2〈↓ |

+
1

2
| ↓〉1 ⊗ | ↑〉2 1〈↓ |⊗ 2〈↑ | (5.70)

We can now ‘trace over’ the states of system 2, which for the above case means that the bra
and ket states of system 2 must be the same in the terms that we keep. Then we get a ‘reduced
density matrix’ describing system 1

ρ1 =
1

2
| ↑〉1 1〈↑ | +

1

2
| ↓〉1 1〈↓ | (5.71)

In general we get a density matrix of the form ρ1 =
∑

m,n Cmn |m〉1 1〈n|. The probability to
find system 1 in state k is given by the coefficient Ckk. These probabilities must add up to
unity, so we have trρ = 1. The entropy that results from ignoring system 2 is given by

S = −tr ρ ln ρ (5.72)

For the density matrix (5.71) we can compute S easily since it is a diagonal density matrix

S = −[
1

2
ln

1

2
+

1

2
ln

1

2
] = ln 2 (5.73)

If the state |ψ〉 in (5.69) is ‘factorized’ as in (5.66) then when we make ρ1 and compute S then
we get S = 0. Roughly speaking, S gives the log of the number of terms in a sum like (5.68).
The entropy is thus a measure of how ‘entangled’ the systems 1 and 2 are.

5.8 Entropy of the Hawking radiation

Let us now return to the black hole. The state (5.65) is not factorized between the b1 and c1

excitations. The number γ is order unity, so the first few terms in the sum will be of relevance.
To explain the significance of the entangled nature of the state we will for convenience replace
the state (5.65) by the simpler state

|ψ〉1 =
1√
2

(|0〉b1 ⊗ |0〉c1 + |1〉b1 ⊗ |1〉c1) (5.74)

The quanta of type b1 lie on the part S+ of the spacelike surface which is outside the hori-
zon, while the quanta of type c1 lie on the part S− which is inside the horizon. Due to the
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ber is

Γ = σ(k)
d3k

(2π)3
1

e
ω
T − 1

(6.77)

The semiclassical radiation from the hole is ‘thermal’ in this sense. But the essential problem
that we have is not created by this ‘thermality’, but by the entangled nature of the state.
Whether we have the entangled state (5.65) (which can be shown to be ‘thermal’ in the above
sense) or the entangled state (5.74), which is very different from ‘thermal’, we face the same
problem. There is order unity entropy of entanglement from the state created by each pair of
operators (b̂†k, ĉ

†
k), and so there is an entanglement entropy (5.76) for the radiation which is

order Sbek. It is this entanglement that will eventually lead to information loss. By contrast, if
a piece of coal burns away completely to radiation, then this radiation is in a pure state, even
though it looks much more ‘thermal’ than a state which has the form (5.74) for each of the

(b̂†k, ĉ
†
k).

Thus ‘thermality’ is not really the issue; the issue is the entangled nature of the state created
in the process of black hole evaporation.

6.2 Can small quantum gravity effects encode information in the radiation?

Consider the derivation of Hawking radiation discussed in the above sections. We have used a
classical metric and a quantum field φ on this ‘curved space’, but gravity itself has not been
treated as quantized; this is called the semiclassical approximation. Thus the semiclassical com-
putation of radiation does not use the physics of quantum gravity anywhere. Since spacetime
curvature was low in the regions where the wavemodes deformed and created particles, this
would seem to be a good approximation. But one can still wonder if the small corrections that
would arise from quantum gravity effects could change the state of the radiation to a pure state.
There are two aspects to this question:

(a) The first point to note is that a small change in the state of the quantum field will not
succeed in making the state of the b quanta a pure state. Focusing again on a given set (b1, c1)
we see that their state is a mixed one like (5.65). To get no entanglement of the b1 quanta with
the c1 quanta we would need a state like

|ψ〉1 = (C0|0〉b1 + C1|1〉b1 + . . .) ⊗ (D0|0〉c1 + D1|1〉c1 + . . .) (6.78)

But the state (6.78) is not a small perturbation on a state like (5.65). The two states are
completely different, so we need an order unity change in the state of each set (bk, ck) before
the state can become pure. Thus if quantum gravity is to help us, then it must completely
change the evolution of the wavemodes that we have been drawing in the above sections.

(b) The second point is that even if we had a state like (6.78), and thus the radiation quanta
bk formed a pure state by themselves, it would not solve the information problem. Consider
the Penrose diagram in fig.16(a). There are not two but three kinds of matter involved in the
problem. There is the matter that fell in to make the hole, marked Q. Then there are the
Hawking radiation quanta bk (we have labeled them B) and their entangled partners, the ck

(labeled C in the figure).
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A factored state would be of the form

The essential point is that a small change in our state will 
not make it a factored state : 

Ψ = ψ(x)e−iωt (201)

L =
1

2
∂µφ∂µφ (202)

τ (203)

|ψ〉1 =
1√
2

(1.1|0〉b1 ⊗ |0〉c1 + 0.9|1〉b1 ⊗ |1〉c1) (204)

11

is almost as entangled as the initial state we had



Thus a small change in the evolution of the wavemode will NOT 
solve the information problem

We need a change of ORDER UNITY in the evolution of low 
energy outgoing radiation modes

If we do not find such an order unity change, we will have to give 
up either General Relativity or Quantum Mechanics



The Hawking ‘theorem’:

If we are given that

(a) All quantum gravity effects are confined
    to within a bounded distance like planck length or string length 

and 

(b) The vacuum of the theory is unique

Then there WILL be information loss

Large distance
(much bigger than planck length)



Review of fuzzball results



The fuzzball picture

√
N − n

√
n + 1 ≈

√
N

√
n + 1

dn

dt
∝ (n + 1) n (175)

ωR =
1

R
[−l − 2 − mψm + mφn] = ωgravity

R (176)

m = nL + nR + 1, n = nL − nR (177)

|λ − mψn + mφm| = 0, N = 0 (178)

λ = 0, mψ = −l, n = 0, N = 0 (179)

ωI = ωgravity
I (180)

|0〉 |ψ〉 < 0|ψ〉 ≈ 0 (181)
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In the traditional black hole, quantum gravity effects are assumed to stretch 
only over distances         , and so the state near the horizon is the vacuum.

But a black hole is made of a large number of quanta     ,  so we must
ask if the relevant length scales are         or  
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The paradigm for extremal holes

A supersymmetric brane state in string theory:  Mass = Charge
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Microscopic entropy
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Entropy arises
from different ways
of partitioning the 
effective string
into loops

(Maldacena and Susskind 96,
Seiberg and Witten 98)

Ψ = ψ(x)e−iωt (201)

L =
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2
∂µφ∂µφ (202)

τ (203)
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2

(1.1|0〉b1 ⊗ |0〉c1 + 0.9|1〉b1 ⊗ |1〉c1) (204)

E = mc2 E = mc2 − GMm
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E ∼ 0 r ∼ GM

c2
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. . .

⊗ [|0〉b1|0〉c1 + |1〉b1|1〉c1] (206)
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c, !, G (208)
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G
∼ √

n1np ∼ Smicro (209)

R R + R2 (210)
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K3 × T 2 (212)

S = 2
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√

n1n5 (213)
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√
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pn

′
1 (189)
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(Susskind 93, 
Sen 94,  Vafa 95)



L =
∫

dx[−1
4
F a

µνFµνa +
i

2
ψ̄∂ψ + . . .]

P =
2πnp

L
=

2π(n1np)
LT

p =
2πk

LT
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knk = n1np

e2π
√
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√
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S = 2π
√
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LT = n1L
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1

‘Naive NS1-P
geometry’

Ψ = ψ(x)e−iωt (201)

L =
1

2
∂µφ∂µφ (202)

τ (203)

|ψ〉1 =
1√
2

(1.1|0〉b1 ⊗ |0〉c1 + 0.9|1〉b1 ⊗ |1〉c1) (204)

E = mc2 E = mc2 − GMm

r
E ∼ 0 r ∼ GM

c2
(205)

|Ψ〉 = [|0〉b1|0〉c1 + |1〉b1|1〉c1]
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. . .
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eiθ e−iθ (207)

c, !, G (208)

A

G
∼ √

n1np ∼ Smicro (209)

R R + R2 (210)

Sbw =
A

2G
= 4π

√
n1n2 = Smicro (211)

K3 × T 2 (212)

S = 2
√

2π
√

n1n5 (213)

AdS3 × S3 × T 4 (214)
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Actual NS1-P
geometry

Actual D1D5 
geometry



D1-D5 
CFT state

D1-D5 
gravity
dual

   S,T
dualities

r = 0 (129)

r = 2M (130)
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∆h̄ =
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− m̄)
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8
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(Lunin+SDM ’01,

Lunin+Maldacena+Maoz 02

Taylor 05, Skenderis+Taylor 06)

Geometry for D1-D5



Energy gaps exactly agree between the CFT and the gravity solution...

Wavefunctions
of supergravity
quanta

??

We must have ‘caps’
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=
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√
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√
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√
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Scale of the ‘fuzzball’

(Lunin+SDM ’02)
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Consider the typical state, and draw a boundary where it departs from the
naive metric by order unity
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∼
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S = 2
√

2π
√

n1n5 (213)

AdS3 × S3 × T 4 (214)

∼ (n1n5)
1

6 lp (215)
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2-charge extremal D1D5 : 

3-charge extremal D1D5 P ?

?? ??



and for k ≥ 0

|− k〉total = (J+,total
−(2k−2))

n1n5(J+,total
−(2k−4))

n1n5 . . . (J+,total
−2 )n1n5(J+,total

0 )n1n5 |1〉total (2.15)

Similarly, for k > 1

|k〉total = (J−,total
−(2k−2))

n1n5(J−,total
−(2k−4))

n1n5 . . . (J−,total
−2 )n1n5 |1〉total (2.16)

3 Constructing the gravity duals

In [?] the 2-charge D1-D5 solutions were found by dualizing to the FP system, which has
a fundamental string (F) wrapped on S1 carrying momentum (P) along S1. Metrics for
the vibrating string were constructed, and dualized back to get D1-D5 geometries. The
general geometry was thus parametrized by the vibration profile !F (v) of the F string.
But a 1-parameter subfamily of these D1-D5 geometries had been found earlier [?, ?], by
looking at extremal limits of the general axially symmetric D1-D5 geometry found in [?].

We do not have an analogue of the procedure of [?] for 3-charge systems. We will
follow instead the analogue of [?, ?] and take an extremal limit of the general 3-charge
solution to obtain solutions with D1, D5 and P charges. Taking the limit needs some
care, and it will be important to know in advance the properties of the CFT states for
which we will be finding the duals. The procedure will give us the duals of the states
|n〉total which were discussed in the last section. We will find that the dual geometries
are completely smooth, with no horizon and no singularity.

3.1 Spectral flow in the gravity description

In [?, ?] the following 2-charge D1-D5 solution was found (setting Q1 = Q5 = Q for
simplicity)

ds2 = −1

h
(dt2 − dy2) + hf

(
dθ2 +

dr2

r2 + a2

)
− 2aQ

hf
(cos2 θdydψ + sin2 θdtdφ)

+ h

[(
r2 +

a2Q2 cos2 θ

h2f 2

)
cos2 θdψ2 +

(
r2 + a2 − a2Q2 sin2 θ

h2f 2

)
sin2 θdφ2

]
+ dzidzi

(3.1)

where

a =
Q

R
, f = r2 + a2 cos2 θ, h = 1 +

Q

f
(3.2)

Let R >>
√

Q. In the region r <<
√

Q the geometry (??) becomes

ds2 = −(r2 + a2 cos2 θ)

Q
(dt2 − dy2) + Q

(
dθ2 +

dr2

r2 + a2

)

− 2a(cos2 θdydψ + sin2 θdtdφ) + Q(cos2 θdψ2 + sin2 θdφ2) (3.3)

5

√
α′

α′ <
g2α′3n1np

V4LM

∼ ls ∼ lp ∼ (n1n5)αlp

L, V4, g

AdS3 × S3 × T 4

4

Geometry for simple
state (winding =1)

Generic D1D5P CFT state
Simple states: all components the same,
excitations fermionic, spin aligned

Can make geometries for 
these simple states :

U(1) X U(1) symmetry



The numerator is r2dr2 = r2
Ndr2

N , and we get a cancellation of the factors r2
N . We will

see below that in the extremal metric the point rN = 0 acts like an origin of polar
coordinates, so the choice (??) is the correct one to define a coordinate rN with range
(0,∞).

We also find that other terms in the metric and gauge field are finite in the extremal
limit; this can be verified using (??),(??). We get the extremal solution (in the string
frame)

ds2 = −1

h
(dt2 − dy2) +

Qp

hf
(dt− dy)2 + hf

(
dr2

N

r2
N + a2η

+ dθ2

)

+ h

(
r2
N − na2η +

(2n + 1)a2ηQ1Q5 cos2 θ

h2f 2

)
cos2 θdψ2

+ h

(
r2
N + (n + 1)a2η − (2n + 1)a2ηQ1Q5 sin2 θ

h2f 2

)
sin2 θdφ2

+
a2η2Qp

hf

(
cos2 θdψ + sin2 θdφ

)2

+
2a
√

Q1Q5

hf

[
n cos2 θdψ − (n + 1) sin2 θdφ

]
(dt− dy)

− 2aη
√

Q1Q5

hf

[
cos2 θdψ + sin2 θdφ

]
dy +

√
H1

H5

4∑

i=1

dz2
i (4.21)

C2 =
a
√

Q1Q5 cos2 θ

H1f
(−(n + 1)dt + ndy) ∧ dψ

+
a
√

Q1Q5 sin2 θ

H1f
(ndt− (n + 1)dy) ∧ dφ

+
aηQp√

Q1Q5H1f
(Q1dt + Q5dy) ∧

(
cos2 θdψ + sin2 θdφ

)

− Q1

H1f
dt ∧ dy − Q5 cos2 θ

H1f

(
r2
N + (n + 1)a2η + Q1

)
dψ ∧ dφ (4.22)

e2Φ =
H1

H5
(4.23)

f = r2
N − a2η n sin2 θ + a2η (n + 1) cos2 θ

h =
√

H1H5, H1 = 1 +
Q1

f
, H5 = 1 +

Q5

f
(4.24)
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4.2 Taking the extremal limit

To get the extremal limit we must take

M → 0, δi →∞ (i = 1, 5, p) (4.11)

keeping the Qi fixed. This gives

cosh2 δi =
Qi

M
+

1

2
+ O(M)

sinh2 δi =
Qi

M
− 1

2
+ O(M) (4.12)

We must also take suitable limits of a1, a2 so that the angular momenta are held fixed.
It is useful to invert (??):

a1 = −
√

Q1Q5

M

γ1 cosh δ1 cosh δ5 cosh δp + γ2 sinh δ1 sinh δ5 sinh δp

cosh2 δ1 cosh2 δ5 cosh2 δp − sinh2 δ1 sinh2 δ5 sinh2 δp

a2 = −
√

Q1Q5

M

γ2 cosh δ1 cosh δ5 cosh δp + γ1 sinh δ1 sinh δ5 sinh δp

cosh2 δ1 cosh2 δ5 cosh2 δp − sinh2 δ1 sinh2 δ5 sinh2 δp

(4.13)

Using (??) we find

a1 = −(γ1 + γ2) η

√
Qp

M
− γ1 − γ2

4

√
M

Qp
+ O(M3/2)

= −a η

√
Qp

M
+ a

2n + 1

4

√
M

Qp
+ O(M3/2)

a2 = −(γ1 + γ2) η

√
Qp

M
+

γ1 − γ2

4

√
M

Qp
+ O(M3/2)

= −a η

√
Qp

M
− a

2n + 1

4

√
M

Qp
+ O(M3/2) (4.14)

where we have defined the dimensionless combination

η ≡ Q1Q5

Q1Q5 + Q1Qp + Q5Qp
(4.15)

and in the second equalities we have used the specific values for γ1 and γ2 given in (??).
We thus see that for generic values of γ1, γ2 and Qp the parameters a1 and a2 diverge

when M → 0. There are two exceptions:
(a) Qp = 0, which is the case considered in [?, ?]; in this case a1 and a2 go to finite values
when M → 0.

9
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2-charges, 4+1 dimensions, noncompact excitations:   Lunin+SDM ’01

2-charges, 4+1d, torus excitations:  Lunin+Maldacena+Maoz ’02,  Skenderis          
                                                                                        +Taylor 07
2-charges, 4+1d, fermionic excitations: Taylor ’05

3-charge,  4+1 d, U(1) X U(1) axial symmetry:  Giusto+SDM+Saxena ’04,
                                                                  Lunin ’04

3-charge,  4+1 d,  U(1) axial symmetry:   Bena+Kraus ’05,
                                                         Berglund+Gimon+Levi ’05 

3-charges, 4+1 d, one charge ‘test quantum’ wavefunction;                                                                     
                                                             SDM+Saxena+Srivastava ’03

3 charges, 3+1 d, U(1) axial symmetry:  Bena+Kraus ’05

4-charges, 3+1 d, U(1)XU(1) symmetry:  Saxena+Giusto+Potvin+Peet ’05

4 charges, 3+1 d, U(1) symmetry:  Balasubramanian+Gimon+Levi ’06



Non-extremal geometries, 3 charges, 4+1 d, U(1)XU(1) axial symmetry: 
                                                                       Jejjala+Madden+Ross+Titchener 05

Non-extremal geometries, 4 charges, 3+1 d, U(1)XU(1) axial symmetry:
                                                                    Giusto+Ross+Saxena 07

2-charges, 4+1 d, K3 compactification:  Skenderis+Taylor 07

2-charges, 1-point functions: Skenderis+Taylor 06

General structure  of extremal solutions:  hyperkahler base + 2-d fiber
(Gauntlett+Gutowski+Hull+Pakis+Reall 02,  Gutowski+Martelli+Reall 03)

Decomposing known microstate solutions into base + fiber:
      hyperkahler            psedo-hyperkahler
                                                         (Giusto+SDM 04)



Bound states of branes is on Higgs branch. Dipole charges form,
are held apart by fluxes ... 
                                                              (Bena+Warner 05)

If we reduce to 3+1 dimensions, get  metrics for ‘branes at 
angles’ (Denef ’02,  Balasubramanian+Gimon+Levi 05)

S1 → y y : (0, 2πR) (175)

ClV̂ [l] V̂ (176)

N = n1n5 (177)

√
N − n

√
n + 1 ≈

√
N

√
n + 1

dn

dt
∝ (n + 1) n (178)

ωR =
1

R
[−l − 2 − mψm + mφn] = ωgravity

R (179)

m = nL + nR + 1, n = nL − nR (180)

|λ − mψn + mφm| = 0, N = 0 (181)

λ = 0, mψ = −l, n = 0, N = 0 (182)

ωI = ωgravity
I (183)

|0〉 |ψ〉 〈0|ψ〉 ≈ 0 (184)

n1, n2, n3 n4 (185)

1/n1n2n3 (186)

(n1n5)
αlp (187)

n1n5

∑

k mk = n1n5 n5 (188)

n′
p = n1 n′

1 = n5,
∑

k mk = n′
pn

′
1 (189)

Smicro = 2π
√

2
√

n1n5 Smicro = 4π
√

n1n5 (190)

R2 (191)

Sbek =
A

2G
= Smicro (192)

∑

k mk = n1np (193)

1

!
(194)

∆E =
4π

n1n5L
(195)

g → 0 (196)

g nonzero (197)
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Recent work (Bena+Bobev+Ruef+Warner 08) ... supertubes in the `throat’ 
might give correct order for number of states ...

Structure of general 3-charge and 4-charge geometries :



(Jejalla, Madden, 
Ross Titchener ’05)

D1-D5 CFT has both 
left and right moving 
excitations

Gravity dual again has
no horizon or singularity

The Non-Extremal Hole :

?? ??



2 The non-extremal microstate geometries: Review

In this section we recall the microstate geometries that we wish to study, and explain how a
suitable limit can be taken in which the physics can be described by a dual CFT.

2.1 General nonextremal geometries

Let us recall the setting for the geometries of [13]. Take type IIB string theory, and compactify
10-dimensional spacetime as

M9,1 → M4,1 × T 4 × S1 (2.1)

The volume of T 4 is (2π)4V and the length of S1 is (2π)R. The T 4 is described by coordinates
zi and the S1 by a coordinate y. The noncompact M4,1 is described by a time coordinate t, a
radial coordinate r, and angular S3 coordinates θ,ψ,φ. The solution will have angular momenta
along ψ,φ, captured by two parameters a1, a2. The solutions will carry three kinds of charges.
We have n1 units of D1 charge along S1, n5 units of D5 charge wrapped on T 4 × S1, and np

units of momentum charge (P) along S1. These charges will be described in the solution by
three parameters δ1, δ5, δp. We will use the abbreviations

si = sinh δi, ci = cosh δi, (i = 1, 5, p) (2.2)

The metrics are in general non-extremal, so the mass of the system is more than the minimum
needed to carry these charges. The non-extremality is captured by a mass parameter M .

With these preliminaries, we can write down the solutions of interest. The general non-
extremal 3-charge metrics with rotation were given in [23]

ds2 = − f
√

H̃1H̃5

(dt2 − dy2) +
M

√

H̃1H̃5

(spdy − cpdt)2

+

√

H̃1H̃5

(
r2dr2

(r2 + a2
1)(r

2 + a2
2) − Mr2

+ dθ2

)

+

(
√

H̃1H̃5 − (a2
2 − a2

1)
(H̃1 + H̃5 − f) cos2 θ

√

H̃1H̃5

)

cos2 θdψ2

+

(
√

H̃1H̃5 + (a2
2 − a2

1)
(H̃1 + H̃5 − f) sin2 θ

√

H̃1H̃5

)

sin2 θdφ2

+
M

√

H̃1H̃5

(a1 cos2 θdψ + a2 sin2 θdφ)2

+
2M cos2 θ
√

H̃1H̃5

[(a1c1c5cp − a2s1s5sp)dt + (a2s1s5cp − a1c1c5sp)dy]dψ

+
2M sin2 θ
√

H̃1H̃5

[(a2c1c5cp − a1s1s5sp)dt + (a1s1s5cp − a2c1c5sp)dy]dφ

+

√

H̃1

H̃5

4
∑

i=1

dz2
i (2.3)

4

where

H̃i = f + M sinh2 δi, f = r2 + a2
1 sin2 θ + a2

2 cos2 θ, (2.4)

The D1 and D5 charges of the solution produce a RR 2-form gauge field given by [6]

C2 =
M cos2 θ

H̃1
[(a2c1s5cp − a1s1c5sp)dt + (a1s1c5cp − a2c1s5sp)dy] ∧ dψ

+
M sin2 θ

H̃1
[(a1c1s5cp − a2s1c5sp)dt + (a2s1c5cp − a1c1s5sp)dy] ∧ dφ

−Ms1c1

H̃1
dt ∧ dy − Ms5c5

H̃1
(r2 + a2

2 + Ms2
1) cos2 θdψ ∧ dφ. (2.5)

The angular momenta are given by

Jψ = − πM

4G(5)
(a1c1c5cp − a2s1s5sp) (2.6)

Jφ = − πM

4G(5)
(a2c1c5cp − a1s1s5sp) (2.7)

and the mass is given by

MADM =
πM

4G(5)
(s2

1 + s2
5 + s2

p +
3

2
) (2.8)

It is convenient to define

Q1 = M sinh δ1 cosh δ1, Q5 = M sinh δ5 cosh δ5, Qp = M sinh δp cosh δp (2.9)

Extremal solutions are reached in the limit

M → 0, δi → ∞, Qi fixed (2.10)

whereupon we get the BPS relation

Mextremal =
π

4G(5)
[Q1 + Q5 + Q5] (2.11)

The integer charges of the solution are related to the Qi through

Q1 =
gα′3

V
n1 (2.12)

Q5 = gα′n5 (2.13)

Qp =
g2α′4

V R2
np (2.14)

2.2 Constructing regular microstate geometries

The solutions (2.3) in general have horizons and singularities. One can take careful limits of
the parameters in the solution and find solutions which have no horizons or singularities. In
[24] regular 2-charge extremal geometries were found while in [6, 7] regular 3-charge extremal

5
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(Jejalla, Madden, Ross 
Titchener ’05)



As in any statistical system, each microstate radiates a little differently

Ψ = ψ(x)e−iωt (201)

L =
1

2
∂µφ∂µφ (202)

τ (203)

|ψ〉1 =
1√
2

(1.1|0〉b1 ⊗ |0〉c1 + 0.9|1〉b1 ⊗ |1〉c1) (204)

E = mc2 E = mc2 − GMm

r
E ∼ 0 r ∼ GM

c2
(205)

|Ψ〉 = [|0〉b1|0〉c1 + |1〉b1|1〉c1]
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Occupation numbers
of left, right excitations
Bose, Fermi distributions
for generic state

Emission
vertex

Occupation  numbers
for this particular
microstate

Emission from the special microstate is peaked at definite frequencies
and grows exponentially, like a laser .....
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Thus for a set of (nongeneric) microstates we can explicitly see  
‘information carrying radiation’ which is the ‘Hawking radiation’ for these 
microstates

Emission happens, not from a horizon,
but from an ergoeregion

(Cardoso, Dias, Jordan, Hovdebo, 
Myers, ’06, Chowdhury+SDM 07, 08)



Dynamical questions:

(A) Collapse of a shell



Suppose we make a black hole by collapsing a shell of matter

How can this shell change into a fuzzball ?

??

Light cones point inwards

How does data get out to horizon ?



Perhaps the interior of a black hole is very quantum ... 

Amplitude to tunnel 
from any state in horizon
region to any other state
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Two simple estimates :

(A) m = nL = n + R + 1, n = nL − nR Exppo[ωCFT
I t] (223)

gtt = 0 gtt > 0 (224)

S =
1

16πG

∫

Rd4x (225)

R ∼ 1

L2
∼ 1

(GM)2
(226)

d4x ∼ (GM)2 (227)

S ∼ GM2 (228)
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Toy model

Put a quantum in a potential well

Tunneling probability is small

But there are many neighboring wells

In a time of order unity, the quantum spreads to a linear combination
of states in all potential wells

(SDM 08)



Tunneling is just ‘de-phasing’ of eigenstates :

= +
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|ψ〉 =
1

2
|ψS〉 +

1

2
|ψA〉 → 1

2
e−iESt|ψS〉 +

1

2
e−iEAt|ψA〉 (229)

12



(B) How long does it take for the shell to become a general linear 
combination of fuzzballs ?

If it takes more than Hawking evaporation time, fuzzballs dont help !
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energy E. We choose E to be small, so the backreaction
of the quantum on the geometry can be ignored. The
quantum will fall down the throat, reach the cap, and
eventually reflect back up the throat. How do we describe
this evolution in terms of the energy eigenstates of the
system?

We can find the energy eigenstates of the quantum by
solving the wave-equation !φ = 0. (For the simple ge-
ometries of fig.10 the wavefunctions have been explicitly
computed60.) We get a set of energy eigenfunctions. The
lowest energy state is localized in the cap (as shown in
fig.10), the next one extends a little further out, the next
one still further, etc. The infalling quantum starts high
up the throat, so we must superpose these energy eigen-
functions with suitable coefficients to obtain this initial
wavepacket

|ψ〉 =
∑

k

ck|Ek〉 (48)

where |Ek〉 is the eigenfunction with energy Ek.
This is all just standard quantum mechanics, and we

would do a similar computation for describing a localized
quantum moving in the potential of a harmonic oscillator.
The evolution of the wavepacket down the throat is ob-
tained by evolving the energy eigenfunctions; since these
eigenfunctions have slightly different energies, the rela-
tive phases between their coefficients change with time
and cause the wavepacket to move downwards towards
the cap. The essential point in the above discussion is
that even though the quantum is localized quite high up
the throat up the start, if we want to express its wave-
function in terms of the stationary states of the system
then we have to construct the detailed energy eigenfunc-
tions |Ek〉 in the entire geometry, and these will depend
sensitively on the structure of the cap.

(2) Now let us imagine that the energy of the infalling
quantum is a bit higher. We would therefore like to take
into account the small backreaction that the infalling
quantum would create on the geometry. How should we
do this?

We still have to follow the same basic scheme: we
have to find the energy eigenstates of the system and
superpose them with appropriate coefficients. The evo-
lution will then be given by the changing phases of the
coefficients. But what are the energy eigenstates this
time? Clearly, we should find solutions to the full sys-
tem of gravity plus scalar field φ, with the backreaction
of the φ excitation included, and arrive at some eigen-
states ψk[g, φ] which are functionals of both the metric g
and the scalar field φ. Note in particular that the energy
Ek of this state will reflect the energy of the background
extremal 2-charge geometry as well as the energy of the
quantum. So we are making energy eigenstates around
an energy

Etotal = Eextremal + Equantum (49)

The number of states of the system increase with the
energy, and we observe here that the set of eigenstates
that will be involved in a sum like (48) will be the number
at energy Etotal, and not at the base energy Eextremal.

(3) Now let us imagine increasing the energy of the in-
falling quantum still further, so that a classical analysis
would indicate the formation of a horizon at some point
in the throat, much before the cap is reached. This is
of course the case that we are really interested in under-
standing. The basic scheme will remain the same as in
the above two cases, but now we have to find all energy
eigenstates of the system with an energy Etotal where
the contribution Equantum is not small. According to
our postulate, these energy eigenstates are horizon sized
fuzzballs, pictured in fig.7(c). Thus the initial infalling
quantum has to be written in the form (48) as a set of
very quantum fuzzball states; these states are very nu-
merous and have a nontrivial structure all the way upto
the horizon.

Now suppose we did not know that there were all these
fuzzball states, and we wrote the sum (48) with only the
states that we see in the traditional picture of the black
hole. Then we would be using a much smaller number
of states. For example if we took the infalling quantum
to have spherical symmetry, then we might (erroneously)
assume that the black hole background should be a classi-
cal spherically symmetric state. But from what we have
seen of fuzzball states, they are in general not spheri-
cally symmetric. Spherical symmetry of the overall state
is obtained by superposing with equal coefficient a non-
spherical geometry with all of its rotates. Thus if we write
the initial shell as a superposition of spherically symmet-
ric fuzzball states, then these states will have large fluc-
tuations δg

g
.

In short, the fuzzball picture would give a much larger
sum of states in (48) as compared to a traditional pic-
ture which does not explicitly recognize the degrees of
freedom corresponding to the Bekenstein entropy. As
the phases of the coefficients ck evolve, the initial state
with the quantum will change to a general linear super-
position of fuzzball states, something we cannot see in
the traditional classical infall.

It is interesting to note the phase evolution of the ck

becomes important in a time that is shorter than the
Hawking evaporation time. Suppose we have a shell of
mass M that collapses to form a black hole. Let the
Schwarzschild radius of the hole be denoted by R. To
make the shell collapse we must localize the matter in
the shell so that it fits in a radius " R. This needs a
momentum spread for the shell

∆P # 1

R
(50)

For a nonrelativistic shell, the energy of the shell is E ∼
P 2

2M , and the uncertainity in E will; be

∆E ∼ P∆P

M
# (∆P )2

M
# 1

MR2
(51)
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The different fuzzball states |Ek〉 making up the shell
wavefunction |ψ〉 will go ‘out of phase’ over a time
tdephase so that the state will look like a linear combina-
tion of generic fuzzball states rather than a well defined
shell. We have

tdephase ∼ 1

∆E
# MR2 (52)

But the Hawking evaporation time for a Schwarzschild
hole (in all dimensions) is

tevap ∼ MR2 (53)

Thus we find that the time over which the the wavefunc-
tion ‘dephases to fuzzballs’ is shorter than the Hawking
evaporation time

tdephase # tevap (54)

This is important, since this ‘dephasing’ would not be of
interest if it took longer than the Hawking evaporation
time.

(Note that if we take a relativistic shell with E ∼ M

instead of E ∼ P 2

2M then we get an even shorter time
tdephase. Now we would have

∆E ∼ ∆P $ 1

R
(55)

This gives

tdephase # R # MR2 (56)

where we recall that we are measuring all quantities in
planck units, and M $ mpl, R $ lpl.)

3. The effect of phase space volume

Having obtained a rough picture of how black hole in-
fall may be studied using fuzzball states, let us consider
a toy model which illustrates in more detail how wave-
functions ‘spread’ during evolution.

In fig.13 we sketch a system where a quantum can move
along the r direction, from r = ∞ to r = 0. If we have
only this direction r to move in, the motion of a quantum
would be straightforward. But now let us assume that
there is another direction y in our space. Let there be a
potential

V =
1

2
k(r)y2 (57)

Let k(r) vanish at large and small r and be high in-
between, with the peak at r = r0.

Now let us see what this toy model represents. If k(r)
vanishes near r = 0, then the wavefunction can easily
spread over a large range of values of y once the quan-
tum gets close to r = 0. This represents the fact that
there is a large phase space of fuzzball states (given by

FIG. 13: The wavepacket travels in from r = ∞ towards
r = 0. The lines of constant potential are sketched; they
allow the wavepacket to spread as it reaches r → 0.

the Bekenstein entropy) which can be accessed once an
infalling shell comes close enough to the origin. For larger
r there are much fewer states for the given energy, while
at infinity there are again many states possible because
of the large volume of space available.

First consider a classical particle moving in this r − y
space. We can assume y = 0, py = 0 consistently, and
the particle just reaches the point r = 0, y = 0 at the end
of its motion.

Now consider the quantum problem, and start with a
wavepacket e−αy2

at large r. If α is large enough, the
wavepacket will manage to pass through the location of
steep potential at r = r0, and emerge into the region at
small r. But in this region there is no potential limiting
the wavefunction in the y direction, so it can spread over
the region −∞ < y < ∞.

Thus while the classical solution suggested that the
endpoint of the motion is at r = 0, y = 0, the actual wave-
function can spread over all y on reaching r = 0. This
effect becomes more pronounced if we have a large num-
ber of transverse directions like y. In our actual problem
the wavefunction of a collapsing shell can spread over
the very large of eSbek fuzzball states after the shell be-
comes smaller than a certain size. It is possible that the
consequent spreading of the wavefunction invalidates a
classical analysis of the motion of the shell.

4. Summary

Let us summarize the above discussion on the possible
dynamics of fuzzballs. A principal feature characteriz-
ing black holes is their large entropy. The traditional
picture of the hole does not exhibit the microstates re-
quired to explain this entropy. If we take the presence
of the large number of microstates into account, then
the wavefunction of a collapsing shell might spread to a
nontrivial extent over this vast phase space of allowed
solutions. The resulting dynamics would not correspond
to a given quantum moving on a given black hole geom-
etry, but rather lead to a wavefunctional ψ[g, φ] that is
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and the scalar field φ. Note in particular that the energy
Ek of this state will reflect the energy of the background
extremal 2-charge geometry as well as the energy of the
quantum. So we are making energy eigenstates around
an energy

Etotal = Eextremal + Equantum (49)

The number of states of the system increase with the
energy, and we observe here that the set of eigenstates
that will be involved in a sum like (48) will be the number
at energy Etotal, and not at the base energy Eextremal.

(3) Now let us imagine increasing the energy of the in-
falling quantum still further, so that a classical analysis
would indicate the formation of a horizon at some point
in the throat, much before the cap is reached. This is
of course the case that we are really interested in under-
standing. The basic scheme will remain the same as in
the above two cases, but now we have to find all energy
eigenstates of the system with an energy Etotal where
the contribution Equantum is not small. According to
our postulate, these energy eigenstates are horizon sized
fuzzballs, pictured in fig.7(c). Thus the initial infalling
quantum has to be written in the form (48) as a set of
very quantum fuzzball states; these states are very nu-
merous and have a nontrivial structure all the way upto
the horizon.

Now suppose we did not know that there were all these
fuzzball states, and we wrote the sum (48) with only the
states that we see in the traditional picture of the black
hole. Then we would be using a much smaller number
of states. For example if we took the infalling quantum
to have spherical symmetry, then we might (erroneously)
assume that the black hole background should be a classi-
cal spherically symmetric state. But from what we have
seen of fuzzball states, they are in general not spheri-
cally symmetric. Spherical symmetry of the overall state
is obtained by superposing with equal coefficient a non-
spherical geometry with all of its rotates. Thus if we write
the initial shell as a superposition of spherically symmet-
ric fuzzball states, then these states will have large fluc-
tuations δg

g
.

In short, the fuzzball picture would give a much larger
sum of states in (48) as compared to a traditional pic-
ture which does not explicitly recognize the degrees of
freedom corresponding to the Bekenstein entropy. As
the phases of the coefficients ck evolve, the initial state
with the quantum will change to a general linear super-
position of fuzzball states, something we cannot see in
the traditional classical infall.

It is interesting to note the phase evolution of the ck

becomes important in a time that is shorter than the
Hawking evaporation time. Suppose we have a shell of
mass M that collapses to form a black hole. Let the
Schwarzschild radius of the hole be denoted by R. To
make the shell collapse we must localize the matter in
the shell so that it fits in a radius " R. This needs a
momentum spread for the shell

∆P # 1

R
(50)

For a nonrelativistic shell, the energy of the shell is E ∼
P 2

2M , and the uncertainity in E will; be

∆E ∼ P∆P

M
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energy E. We choose E to be small, so the backreaction
of the quantum on the geometry can be ignored. The
quantum will fall down the throat, reach the cap, and
eventually reflect back up the throat. How do we describe
this evolution in terms of the energy eigenstates of the
system?

We can find the energy eigenstates of the quantum by
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ometries of fig.10 the wavefunctions have been explicitly
computed60.) We get a set of energy eigenfunctions. The
lowest energy state is localized in the cap (as shown in
fig.10), the next one extends a little further out, the next
one still further, etc. The infalling quantum starts high
up the throat, so we must superpose these energy eigen-
functions with suitable coefficients to obtain this initial
wavepacket

|ψ〉 =
∑

k

ck|Ek〉 (48)

where |Ek〉 is the eigenfunction with energy Ek.
This is all just standard quantum mechanics, and we

would do a similar computation for describing a localized
quantum moving in the potential of a harmonic oscillator.
The evolution of the wavepacket down the throat is ob-
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eigenfunctions have slightly different energies, the rela-
tive phases between their coefficients change with time
and cause the wavepacket to move downwards towards
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states ψk[g, φ] which are functionals of both the metric g
and the scalar field φ. Note in particular that the energy
Ek of this state will reflect the energy of the background
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the horizon.

Now suppose we did not know that there were all these
fuzzball states, and we wrote the sum (48) with only the
states that we see in the traditional picture of the black
hole. Then we would be using a much smaller number
of states. For example if we took the infalling quantum
to have spherical symmetry, then we might (erroneously)
assume that the black hole background should be a classi-
cal spherically symmetric state. But from what we have
seen of fuzzball states, they are in general not spheri-
cally symmetric. Spherical symmetry of the overall state
is obtained by superposing with equal coefficient a non-
spherical geometry with all of its rotates. Thus if we write
the initial shell as a superposition of spherically symmet-
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In short, the fuzzball picture would give a much larger
sum of states in (48) as compared to a traditional pic-
ture which does not explicitly recognize the degrees of
freedom corresponding to the Bekenstein entropy. As
the phases of the coefficients ck evolve, the initial state
with the quantum will change to a general linear super-
position of fuzzball states, something we cannot see in
the traditional classical infall.

It is interesting to note the phase evolution of the ck

becomes important in a time that is shorter than the
Hawking evaporation time. Suppose we have a shell of
mass M that collapses to form a black hole. Let the
Schwarzschild radius of the hole be denoted by R. To
make the shell collapse we must localize the matter in
the shell so that it fits in a radius " R. This needs a
momentum spread for the shell
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The different fuzzball states |Ek〉 making up the shell
wavefunction |ψ〉 will go ‘out of phase’ over a time
tdephase so that the state will look like a linear combina-
tion of generic fuzzball states rather than a well defined
shell. We have

tdephase ∼ 1

∆E
# MR2 (52)

But the Hawking evaporation time for a Schwarzschild
hole (in all dimensions) is

tevap ∼ MR2 (53)

Thus we find that the time over which the the wavefunc-
tion ‘dephases to fuzzballs’ is shorter than the Hawking
evaporation time

tdephase # tevap (54)

This is important, since this ‘dephasing’ would not be of
interest if it took longer than the Hawking evaporation
time.

(Note that if we take a relativistic shell with E ∼ M

instead of E ∼ P 2

2M then we get an even shorter time
tdephase. Now we would have

∆E ∼ ∆P $ 1

R
(55)

This gives

tdephase # R # MR2 (56)

where we recall that we are measuring all quantities in
planck units, and M $ mpl, R $ lpl.)

3. The effect of phase space volume

Having obtained a rough picture of how black hole in-
fall may be studied using fuzzball states, let us consider
a toy model which illustrates in more detail how wave-
functions ‘spread’ during evolution.

In fig.13 we sketch a system where a quantum can move
along the r direction, from r = ∞ to r = 0. If we have
only this direction r to move in, the motion of a quantum
would be straightforward. But now let us assume that
there is another direction y in our space. Let there be a
potential

V =
1

2
k(r)y2 (57)

Let k(r) vanish at large and small r and be high in-
between, with the peak at r = r0.

Now let us see what this toy model represents. If k(r)
vanishes near r = 0, then the wavefunction can easily
spread over a large range of values of y once the quan-
tum gets close to r = 0. This represents the fact that
there is a large phase space of fuzzball states (given by

FIG. 13: The wavepacket travels in from r = ∞ towards
r = 0. The lines of constant potential are sketched; they
allow the wavepacket to spread as it reaches r → 0.

the Bekenstein entropy) which can be accessed once an
infalling shell comes close enough to the origin. For larger
r there are much fewer states for the given energy, while
at infinity there are again many states possible because
of the large volume of space available.

First consider a classical particle moving in this r − y
space. We can assume y = 0, py = 0 consistently, and
the particle just reaches the point r = 0, y = 0 at the end
of its motion.

Now consider the quantum problem, and start with a
wavepacket e−αy2

at large r. If α is large enough, the
wavepacket will manage to pass through the location of
steep potential at r = r0, and emerge into the region at
small r. But in this region there is no potential limiting
the wavefunction in the y direction, so it can spread over
the region −∞ < y < ∞.

Thus while the classical solution suggested that the
endpoint of the motion is at r = 0, y = 0, the actual wave-
function can spread over all y on reaching r = 0. This
effect becomes more pronounced if we have a large num-
ber of transverse directions like y. In our actual problem
the wavefunction of a collapsing shell can spread over
the very large of eSbek fuzzball states after the shell be-
comes smaller than a certain size. It is possible that the
consequent spreading of the wavefunction invalidates a
classical analysis of the motion of the shell.

4. Summary

Let us summarize the above discussion on the possible
dynamics of fuzzballs. A principal feature characteriz-
ing black holes is their large entropy. The traditional
picture of the hole does not exhibit the microstates re-
quired to explain this entropy. If we take the presence
of the large number of microstates into account, then
the wavefunction of a collapsing shell might spread to a
nontrivial extent over this vast phase space of allowed
solutions. The resulting dynamics would not correspond
to a given quantum moving on a given black hole geom-
etry, but rather lead to a wavefunctional ψ[g, φ] that is

Note that

So

So the state becomes a linear combination of fuzzballs much before the hole 
evaporates



All microstates of black holes made so far are found to be ‘fuzzballs’

2-charge 
extremal

2-charge 
extremal
+
excitation

3-charge extremal: Large classes also known with CFT 
state not yet identified

Nonextremal: Some
families known, 
radiation agrees

General CFT state for nonextremal D1D5
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Lesson: Quantum gravity effects extend distances much longer than planck length 
if many quanta are involved

Many pieces of evidence: 2-charge extremal, 3-charge extremal,
Energy gaps, Radiation from non-extremal states

Can use this fuzzball structure to analyze ‘Dynamics’ ....

Large non-locality is providing interesting possibilities for 
early Universe dynamics ....

http://www.physics.ohio-state .edu/~mathur




