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1) Introduction

Claim :
Hadrons can be described by string theory
without using quarks !

I
D dual ! String theory
Q (in a certain curved background)
“ Holographic QCD ”
i @ L - D-brane
AN o
@ @% -"\
meson baryon string D—brane with N¢ strings



meson baryon
o L/D—brane

Fundamental Soliton

Prototype: SKyrme model
@ In 1961, Skyrme proposed

Baryons are solitons (Skyrmion) in the pion effective theory.
@ In 1983, Adkins-Nappi-Witten (ANW)

succeeded to calculate the static properties
(charge radii, magnetic moments, axial coupling, etc.)
by quantizing the collective modes of the Skyrmion.

= Roughly agree with the experimental data!
Q. Can we apply the idea of ANW to holographic QCD ?



[Sakai-S.S. 2004, 2005]
@ Recently, based on gauge/string duality + probe approximation,
we proposed that meson effective theory is given by
a 5 dim U(Ng YM-CS theory in a curved space-time.

Ssdim =~ Sym + Scs CS5-form
) Ne ¥

S =/d4dT(—th%, k.ze) = ‘/w

Y M ﬁ. raz Ir 5 (2) m + k(2) 1z SCS 2472 Js 5(*4)

@ This system is equivalent to 4 dim effective theory with
(infinitely) many mesons. =, p,aq1,p’,a%, -

@ Masses and couplings calculated in this system
roughly agree with the experimental data! (21,22, 23, 2)

4

@ Baryons are realized as instantons localized on the 4 dim space.

Goal: extract properties of baryons using this description
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@ Brief summary of the model (sakai-ss. 2004]

Type llA string theory Wl A GED
im Wi

in Witten’s D4 background )

? Nf massless quarks

at low energy

+ Nf Probe D8-branes
(assuming N¢> Ny )

Ne ,_.fﬂoairs QCD with N massless quarks
D4-D8-D8 system / (at low energy)
on SUSY §? \ ) dual
String theory
u in the D4 background DS
H + N probe D8-branes
—_— 59 (assuming Nc> Ny) @

— 2.

T



@ The effective theory on the D8-branes
NfD8-branes extended along (z#, z) x s* c RS ><>< 4

‘<— Low energy

9 dim U(Ny) gauge theory

l <- Reducing 54 (Here we only consider SO(5) invariant states)

Aiu(myaz)&Az(my:z) pv =0n~3

5 dim gauge field

5 dim U(Nf) YM-CS theory

() — 2
AOIS a2 CS5-form

\’ N ¥

1
Svym = ﬁ/d4:1?dz Tr (Eh(z)ﬂfy -+ ﬁi‘-(E)FEZ) Scg = a2 /;w5(A)

Ssdim =~ Sym + Scs

o AN¢ . th(;):(l+32)—lj3
21673 St (ijK — | unit)




(3 Baryons as instantons

@ Baryon is described as D4 wrapped on S#  Wwiten, Gross-Ooguri 1998]

D4-brane D8-brane Topology of the background

Rxs4 RIBxRxS* c RIBxRZ2x 54
xH z

% Bahaves as a point-like particle = baryon

> <
A

DS 1 D8
—> @ — \\\\é‘\ #/TrF/\F;tO

D4 —

[Douglas 1995]

> x1N3 > $1N3

D4 within D8 Instanton in +M = (z, ) € R*

1
Baryon number = number of D4 = —— trB' N F
872 Jadim
N (21, 22,23, 2)



@ Classical solution (We consentrate onthe Ny =2 case.)

@ The instanton solution for the Yang-Mills action
_ 4 1 2 2
Sy = K,/d zdz T (Eh(z)FW + k(z)Fuz)
shrinks to zero size !

@ The Chern-Simons term makes it Iarger/ U(1) part

_ N¢ N 4 U(1) ijk
5Cs = oan2 [5,%(‘4) ~ 1672 fd vz Ao e Mgkal; L
== source of the U(1) charge NoL-zero for instanton
E A\ total
SU(2) part N 6
(Nr=2 == | Stabilized at »Z=_5\/;
| U(1) part
If > [Hong-Rho-Yee-Yi 2007]

Pcl p (size) [Hata-Sakai-S.S.-Yamato 2007]



@ Note that pc ~ O(\"1/2) A\ :’t Hooft coupling
(assumed to be large)

If A islarge enough, the 5 dim space-time can be approximated

by the flat space-time. [ The effect of the non-trivial z-dependence
is taken into account perturbatively.

ZA

ch — O e \\\\ $pC|

P k(2) =14 2%, h(z) = (14 22)" /73
lk(z) ~ h(z) ~1 (for |z| <K 1)

1~3

=) The leading order classical solution is
the BPST instanton with # = Pcl and Z = Z¢ =

o | 52 . g:(z—Z)—i(f—X)-F
AM — _?’é.Q_I_ anMg 3
P t=\(@-X)2+ (- 2)
M=1.2.3.z

p :size (X,Z) :position of the instanton



4) Qu d ntizatio N [Hata-Sakai-S.S.-Yamato 2007]

@ Consider a slowly moving (rotating) baryon configuration.
moduli space approximation method :

Instanton moduli M 2 (X%) (X%(t)) (a=1,2,---,dimM)

Ayt x) ~ AG (2 X (1)) time

S5dim y Quantum Mechanics for X “(¢)
@ For SU(2) one instanton,
Ml’{(f,Z,p)}XSU(Q)/ZQ Z>: a— —a
P—

Ny
position k size g <€— SU(2) orientation

GaB oo .3 o 2 02 36:2 g2
LQI\/I—TX X —U(X ) U(X%) = 8n m<1+<€—|—5>\2p2+ 3>_|_...>

Note (X:, a) . genuine moduli (the same as in the Skyrme model)

(p, Z) : new degrees of freedom, added since they are
light compared with the other massive modes.



@ Solving the Schrodinger equation for
this Quantum mechanics, we obtain the baryon states

Generalization of Adkins-Nappi-Witten
including vector mesons and 0, Z modes

We can construct barVOn states for

Example Nucleon wave function:

w(X,a,0,2) o« ePX R(p)y(2)T(a)

R(p) = ple= 4’ I=-1+2/1+NZ/5
. 2 . 81k
Yz(p) = e 7 =

T(a) = a1 + iar for |p T) etc.



@ Currents

@ Chiral symmetry

@ |nterpreted as

ALM("B) —

with

z—+o0

lim  Au(x, z)

gauge

UNpLxUNp)p = (Ar,(z),Ag,(x))

Apu(z) = I'IrIl Az, z)

/d4 @ T AL

Tit)

Jru = —k (k(2)Fuz) \

z=-4o

= +r(k(2)Fuz) | __

@ vector and axial vector currents

J = I + Jf = —k|k(z) F*|

K — TH [

z=-+co

Z2=—00

ko (2)k(z) FH|"_ "

z=-40o0

. (Wo(Fo0) = =£1)




@ How to calculate
@ We need to know how Fi:(z, 2) behaves at z — +oo
We cannot use the solution in the flat space.

® The EOM are complicated non-linear equations.
difficult to solve exactly.

@ We use the following trick to calculate the currents.

= § Approximated by

728 ~ ~C / linearized EOM
Instanton solution  Non-linear terms
in the flat space are small

Now we can solve!



6) Exploration

Now we are ready to calculate various physical quantities

But, don’t trust too much !

@ )\ may not be large enough.
@ Higher derivative terms may contribute.

@ N = 3 isnotlarge enough.

@ The model deviates from real QCD at high energy ~ Mkk

® We use Mkk ~ 949 MeV (value consistent with # meson mass)
But we know this is too large to fit the baryon mass differences.



@ Baryon number current

Jh = —Nicn[k(z)F“z }

U(l)i—_m/_ U(1) part of the U(2) gauge field
B k06" she

Z=—00 B~ " 16n2k

z==00

Eﬂ'jkakJB —L

( G Green’s function (n(2)82 + 0.k(2)8.)G = §3(& — X)8(= — z))

J7 - Spin operator  JJ = —ian2kp2 tr(ria=1a)

Note: k(z)~ 22, 8.G~1/z2 al z— Foo

m=) J%5 is non-zero, finite.



@ Isoscalar mean square radius

(%) 1=0 = /d“?’a: r J% ~ (0.742 fm)?
t

Numerical estimate using Mkk = 949 MeV
(fixed by ©0-meson mass)

2,1/2 _ 2,1/2
(Cf. (r<) = 0.806 fm, (r >I:0 ANW

=0 exp = 0.59 fm )



@ Isoscalar magnetic moment

. 1 .. .
Pi—g = Eezjk/d‘?’:c 2l J ~

1672k

For a spin up proton state [p 1) soscalar g-factor
K
3272k 4Mpy
~~— Nucleon mass
( My ~ 940 MeV)

51'3

(Pt pf—olp 1) =

ﬂerK ~ 949 MeV, k ~ 0.00745
(fixed by ™mp)  (fixed by fr )

exp 7 gI:O‘ANW =111 )



Summary of the results

our result exp. ANW

(r2)1% | 0.742fm | 0.806 fm | 0.59 fm

(r2)712 | 0.742fm [0.939fm | oo
(r2)1/? | 0.537fm | 0.674fm| -
91—0 1.68 1.76 | 1.11
dgr—=1 7.03 041 6.38
94 0734 | 1.27 | 0.61

> pion loop contribution is log divergent in the chiral limit.
Our calculation corresponds to the tree level in ChPT.

@ We can also evaluate these for excited baryons
suchas A(1232), N(1440), N(1535),---



@ Form factors

Dirac form factor Pauli form factor

\ \

(N, 7| TEn(O) N, ) = (P, 8') |[v*F1(¢2) + —— "y F>(¢%) | u(p, s)

2mpy
—

Breit frame: 7' = —p= q/2 (¢9=p —p) N

* q p

- . g Y
(N, §/2|J8m(0)IN, —=/2) = Gp(d) x|xs »
(N, @/2|Jm(0)IN, =@/2) = 5" —Gar(3°) x}i(@ x &)xs N
my
Sachs form factor
2
Gp(d®) = Fi(q®) + ——F2(¢?) Electric form factor

amy
Gr(g?) = F1(q®) + F2(q?) Magnetic form factor



@ Dipole behavior

' ~ 2
Experimental data suggest dipole (A~0.71 GeVv?)

Hp n

(1+ Q§)2 %(QQ) ~ O

—— :dipole
dots : data

o
H
¢; . E;Ep: L
-
)
*
G, /1
.;('
e
et
(\[/
_-I""’y

! \ )
T | dipole by 10 | dipole
) I L |
dipole 1
107" 107! " i 107" o’ 10 ° T 10/
Q® (GeV?) Q% (Gev?) Q7 (GevT)




@ Ourresult

1 1 Gu" gy NN
Cp(Q") = ~GY(Q*) = ~C1(QM) = ¥ 55

with

n>1 Q? + m%

gyn = —2k(k(2)0:v2,—1)

z==400

gonNN = (Y2p-1(2))

N
* V"
7Y g NN
gyn :
N

Vector meson dominance

Q%) =0



@ Can this be compatible with dipole?

1 .
... @+qz/n2y dipole

n>1

( Gh@) =Y 754> ourresult

¢ here we use the approximation
gnNN = (Y2n-1(2)) =~ ¥2,-1(0)

@ Taylor expansion

G7(Q?%) ~ 1 —2.38Q% + 4.02(Q?)? — 6.20(Q?)> + 9.35(Q?)* — 14.0(Q?)°> + - --

(1+ Qlimz)z ~ 1 -2.38Q° 4 4.24(Q?%)? - 6.71(Q%)> + 9.97(Q)* — 14.2(Q?)° + - --

. My = 1 unit
with A2 = 0.758 GeV? (Mk unit)



5) Conclusion

@ We proposed a new method to analyze static
properties of baryons.

@ Our model automatically includes the contributions
from various massive vector and axial-vector mesons.

@ Compared with the similar analysis in the Skyrme
model (ANW), the agreement with the experimental
values are improved in most of the cases.

@ But, we should keep in mind that our analysis is
very crude and there are a lot of ambiguities
remain unsolved.
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