Properties of Baryons in Holographic QCD

Shigeki Sugimoto (IPMU, Univ of Tokyo)

Based on

→ arXiv:0806.3122 K.Hashimoto, T.Sakai and S.S.

hep-th/0701280 H.Hata, T.Sakai, S.S. and S.Yamato

Closely related works:

arXiv:0807.0033 K.Y.Kim and I.Zahed

arXiv:0803.0180 H.Hata, M.Murata and S.Yamato

hep-th/0701276, arXiv:0705.2632, arXiv:0710.4615, ...

D.K.Hong, M.Rho, H.U.Yee and P.Yi

1 Introduction

Claim:

Hadrons can be described by **string theory** without using quarks!

Prototype: **Skyrme model**

- In 1961, Skyrme proposed
 Baryons are solitons (Skyrmion) in the pion effective theory.
- In 1983, Adkins-Nappi-Witten (ANW)
 - succeeded to calculate the static properties (charge radii, magnetic moments, axial coupling, etc.) by quantizing the collective modes of the Skyrmion.
 - Roughly agree with the experimental data!
- Q. Can we apply the idea of ANW to holographic QCD?

Recently, based on gauge/string duality + probe approximation, we proposed that meson effective theory is given by a 5 dim U(N_f) YM-CS theory in a curved space-time.

$$S_{\text{5dim}} \simeq S_{\text{YM}} + S_{\text{CS}}$$
 CS5-form
$$S_{\text{YM}} = \kappa \int d^4x dz \operatorname{Tr}\left(\frac{1}{2}h(z)F_{\mu\nu}^2 + k(z)F_{\mu z}^2\right) \qquad S_{\text{CS}} = \frac{N_c}{24\pi^2} \int_5 \omega_5(A)$$

- This system is equivalent to 4 dim effective theory with (infinitely) many mesons. $\pi, \rho, a_1, \rho', a_1', \cdots$
- Masses and couplings calculated in this system roughly agree with the experimental data! (x^1, x^2, x^3, z^4)
- Baryons are realized as instantons localized on the 4 dim space.
 - Goal: extract properties of baryons using this description

Plan

- ✓ 1 Introduction
 - 2 Brief summary of the model
 - 3 Baryons as instantons
 - Quantization
 - Currents
 - 6 Exploration
 - Conclusion

Brief summary of the model [Sakai-S.S. 2004]

Type IIA string theory in Witten's D4 background

+ N_f Probe D8-branes (assuming $N_c \gg N_f$)

dual 4 dim QCD with N_f massless quarks at low energy

 N_c N_f pairs D4-D8-D8 system on SUSY S1

QCD with N_f massless quarks (at low energy)

 M_{KK}^{-1} 1 **D8** String theory in the D4 background + N_f probe D8-branes (assuming $N_c \gg N_f$)

dual

The effective theory on the D8-branes

 N_f D8-branes extended along $(x^{\mu}, z) \times S^4 \subset \mathbf{R}^{1,3} \times \mathbf{R}^2 \times S^4$ Low energy

9 dim $U(N_f)$ gauge theory

Reducing S^4 (Here we only consider SO(5) invariant states)

5 dim *U(N_f)* YM-CS theory

$$A_{\mu}(x^{
u},z), A_{z}(x^{
u},z)$$
 $\mu,
u=0\sim 3$ 5 dim gauge field

$$S_{\text{5dim}} \simeq S_{\text{YM}} + S_{\text{CS}} \qquad k(z) = 1 + z^2$$

$$S_{\text{YM}} = \kappa \int d^4x dz \operatorname{Tr} \left(\frac{1}{2} h(z) F_{\mu\nu}^2 + k(z) F_{\mu z}^2 \right) \qquad S_{\text{CS}} = \frac{N_c}{24\pi^2} \int_5 \omega_5(A)$$

$$\kappa = \frac{\lambda N_c}{216\pi^3} \equiv a\lambda N_c \qquad h(z) = (1 + z^2)^{-1/3} \qquad (M_{\text{KK}} = 1 \text{ unit})$$

3

Baryons as instantons

Baryon is described as D4 wrapped on S⁴ [Witten, Gross-Ooguri 1998]

D4-brane D8-brane Topology of the background
$$\mathbf{R} \times S^4 \subset \mathbf{R}^{1,3} \times \mathbf{R} \times S^4 \subset \mathbf{R}^{1,3} \times \mathbf{R}^2 \times S^4$$

Bahaves as a point-like particle baryon

Baryon number = number of D4 =
$$\frac{1}{8\pi^2} \int_{4\text{dim}} \text{tr} F \wedge F$$

- Oclassical solution (We consentrate on the $N_f = 2$ case.)
 - The instanton solution for the Yang-Mills action

$$S_{\text{YM}} = \kappa \int d^4x dz \operatorname{Tr}\left(\frac{1}{2}h(z)F_{\mu\nu}^2 + k(z)F_{\mu z}^2\right)$$

shrinks to zero size!

ullet The Chern-Simons term makes it larger \bullet U(1) part

$$S_{CS} = \frac{N_c}{24\pi^2} \int_5 \omega_5(A) = \frac{N_c}{16\pi^2} \int d^4x dz \, A_0^{U(1)} \, \underbrace{\epsilon^{ijk} \text{Tr} F_{ij} F_{kz}}_{\bullet} + \cdots$$

→ source of the U(1) charge

 $E \text{ total} SU(2) \text{ part} \\ (N_f = 2) \text{ Stabilized at } \rho_{\text{cl}}^2 = \frac{N_c}{8\pi^2\kappa}\sqrt{\frac{6}{5}}$ [Hong-Rho-Yee-Yi 2007] [Hata-Sakai-S.S.-Yamato 2007]

Non-zero for instanton

O Note that $ho_{
m cl} \sim \mathcal{O}(\lambda^{-1/2})$ $extstyle \lambda$: 't Hooft coupling'

(assumed to be large)

If λ is large enough, the 5 dim space-time can be approximated

by the flat space-time. (The effect of the non-trivial z-dependence) is taken into account perturbatively.

The leading order classical solution is the BPST instanton with $\rho = \rho_{\rm Cl}$ and $Z = Z_{\rm Cl} = 0$

$$A_{M}^{\text{cl}} = -i \frac{\xi^{2}}{\xi^{2} + \rho^{2}} g \partial_{M} g^{-1} \qquad g = \frac{(z - Z) - i(\vec{x} - \vec{X}) \cdot \vec{\tau}}{\xi}$$

$$\xi = \sqrt{(\vec{x} - \vec{X})^{2} + (z - Z)^{2}}$$

$$\xi = \sqrt{(\vec{x} - \vec{X})^{2} + (z - Z)^{2}}$$

ho: size (\vec{X}, Z) : position of the instanton

4

Quantization

Consider a slowly moving (rotating) baryon configuration. moduli space approximation method:

Instanton moduli
$$\mathcal{M}\ni (X^{\alpha}) \longrightarrow (X^{\alpha}(t))$$
 $(\alpha=1,2,\cdots,\dim\mathcal{M})$ $A_M(t,x)\sim A_M^{\mathrm{cl}}(x;X^{\alpha}(t))$ Quantum Mechanics for $X^{\alpha}(t)$

For SU(2) one instanton,

$$\mathcal{M} \simeq \{(\vec{X}, Z, \rho)\} \times SU(2)/\mathbf{Z_2} \quad \mathbf{z_2: a \rightarrow -a}$$
 position size $\mathbf{a} \leftarrow SU(2)$ orientation

$$L_{QM} = \frac{G_{\alpha\beta}}{2} \dot{X}^{\alpha} \dot{X}^{\beta} - U(X^{\alpha}) \qquad U(X^{\alpha}) = 8\pi^{2}\kappa \left(1 + \left(\frac{\rho^{2}}{6} + \frac{3^{6}\pi^{2}}{5\lambda^{2}\rho^{2}} + \frac{Z^{2}}{3} \right) + \cdots \right)$$

Note (\vec{X}, \mathbf{a}) : genuine moduli (the same as in the Skyrme model)

(
ho,Z): new degrees of freedom, added since they are light compared with the other massive modes.

- Solving the Schrodinger equation for this Quantum mechanics, we obtain the baryon states
 - Generalization of Adkins-Nappi-Witten including vector mesons and p, Z modes

We can construct baryon states for

$$n, p, \Delta(1232), N(1440), N(1530), \cdots$$

Example Nucleon wave function:

$$\psi(\vec{X}, \mathbf{a}, \rho, Z) \propto e^{i\vec{p}\cdot\vec{X}} R(\rho)\psi_Z(Z)T(\mathbf{a})$$

$$\begin{cases} R(\rho) = \rho^{\tilde{l}}e^{-A\rho^2} & \tilde{l} = -1 + 2\sqrt{1 + N_c^2/5} \\ \psi_Z(\rho) = e^{-AZ^2} & A = \frac{8\pi^2\kappa}{\sqrt{6}} \\ T(\mathbf{a}) = a_1 + ia_2 & \text{for } |p\uparrow\rangle & \text{etc.} \end{cases}$$

5 Currents

Chiral symmetry

$$U(N_f)_L \times U(N_f)_R \implies (A_{L\mu}(x), A_{R\mu}(x))$$

Interpreted as

$$A_{L\mu}(x) = \lim_{z \to +\infty} A_{\mu}(x, z)$$
 $A_{R\mu}(x) = \lim_{z \to -\infty} A_{\mu}(x, z)$

$$A_{L\mu}(x) = \lim_{z \to +\infty} A_{\mu}(x, z) \qquad A_{R\mu}(x) = \lim_{z \to -\infty} A_{\mu}(x, z)$$

$$\longrightarrow S_{5 \dim} \Big|_{\mathcal{O}(A_L, A_R)} = -\int d^4x \left(A_{L\mu}^a J_L^{a\mu} + A_{R\mu}^a J_R^{a\mu} \right)$$

with
$$J_{L\mu} = -\kappa \left(k(z)F_{\mu z}\right)\Big|_{z=+\infty} \quad J_{R\mu} = +\kappa \left(k(z)F_{\mu z}\right)\Big|_{z=-\infty}$$

vector and axial vector currents

$$J_{V}^{\mu} \equiv J_{L}^{\mu} + J_{R}^{\mu} = -\kappa \left[k(z) F^{\mu z} \right]_{z=-\infty}^{z=+\infty}$$

$$J_{A}^{\mu} \equiv J_{L}^{\mu} - J_{R}^{\mu} = -\kappa \left[\psi_{0}(z) k(z) F^{\mu z} \right]_{z=-\infty}^{z=+\infty} \quad (\psi_{0}(\pm \infty) = \pm 1)$$

How to calculate

- We need to know how $F_{\mu z}(x,z)$ behaves at $z \to \pm \infty$ • We cannot use the solution in the flat space.
- The EOM are complicated non-linear equations.
 - → difficult to solve exactly.
- We use the following trick to calculate the currents.

6 Exploration

Now we are ready to calculate various physical quantities

But, don't trust too much!

- \bullet λ may not be large enough.
- Higher derivative terms may contribute.
- $N_c = 3$ is not large enough.
- ullet The model deviates from real QCD at high energy $\sim M_{
 m KK}$
- We use $M_{KK} \simeq 949~{
 m MeV}$ (value consistent with ho meson mass) But we know this is too large to fit the baryon mass differences.

Baryon number current

$$J_B^\mu = -\frac{2}{N_c} \kappa \left[k(z) F_{U(1)}^{\mu z}\right]_{z=-\infty}^{z=+\infty}$$
 U(1) part of the U(2) gauge field

$$J_B^0 \simeq \left[k(z)\partial_z G\right]_{z=-\infty}^{z=+\infty}$$
 $J_B^i \simeq -\frac{J^j}{16\pi^2\kappa}\epsilon^{ijk}\partial_k J_B^0 + \cdots$

$$\left(\begin{array}{ll} G : \text{ Green's function } & (h(z)\partial_i^2 + \partial_z k(z)\partial_z)G = \delta^3(\vec{x} - \vec{X})\delta(z - Z) \\ J^j : \text{ Spin operator } & J^j = -i4\pi^2\kappa\rho^2\operatorname{tr}(\tau^j\mathrm{a}^{-1}\dot{\mathrm{a}}) \end{array} \right)$$

Note:
$$k(z) \sim z^2$$
, $\partial_z G \sim 1/z^2$ at $z \to \pm \infty$

 \longrightarrow J_B^{μ} is non-zero, finite.

Isoscalar mean square radius

$$\langle r^2 \rangle_{I=0} = \int d^3x \, r^2 \, J_B^0 \simeq (0.742 \text{ fm})^2$$

Numerical estimate using $M_{\rm KK} \simeq 949~{
m MeV}$ (fixed by ho -meson mass)

$$\left(\text{cf. } \langle r^2 \rangle_{I=0}^{1/2} \Big|_{\text{exp}} = \frac{0.806}{1000} \text{ fm}, \ \left\langle r^2 \rangle_{I=0}^{1/2} \Big|_{\text{ANW}} = 0.59 \text{ fm} \right)$$

Isoscalar magnetic moment

$$\mu_{I=0}^{i} = \frac{1}{2} \epsilon^{ijk} \int d^3x \, x^j J_B^k \simeq \frac{J^i}{16\pi^2 \kappa} \int_{-16\pi^2 \kappa}^{-16\pi^2 \kappa} e^{ijk} \partial_k J_B^0 + \cdots$$

For a spin up proton state $|p\uparrow\rangle$

Isoscalar g-factor
$$\langle p\uparrow | \mu_{I=0}^{i} | p\uparrow \rangle = \frac{\delta^{i3}}{32\pi^{2}\kappa} \equiv \frac{g_{I=0}}{4M_{N}} \delta^{i3}$$
 Nucleon mass
$$(M_{N} \simeq 940 \text{ MeV})$$

$$g_{I=0} = \frac{M_N}{8\pi^2\kappa M_{\rm KK}} \simeq 1.68$$

$$M_{\rm KK} \simeq 949 \ {\rm MeV}, \ \kappa \simeq 0.00745$$
(fixed by m_ρ) (fixed by f_π)

$$\left(\text{cf. } g_{I=0} \Big|_{\text{exp}} \simeq 1.76, \ g_{I=0} \Big|_{\text{ANW}} = 1.11 \right)$$

Summary of the results

	our result	exp.	ANW
$\left \langle r^2 \rangle_{I=0}^{1/2} \right $	0.742 fm	0.806 fm	0.59 fm
$\left \langle r^2 \rangle_{I=1}^{1/2} \right $	0.742 fm	0.939 fm	∞ \times
$\left \langle r^2 \rangle_A^{1/2} \right $	0.537 fm	0.674 fm	_
$g_{I=0}$	1.68	1.76	1.11
$g_{I=1}$	7.03	9.41	6.38
g_A	0.734	1.27	0.61

- in the chiral limit. Our calculation corresponds to the tree level in ChPT.
- We can also evaluate these for excited baryons such as $\Delta(1232), N(1440), N(1535), \cdots$

Form factors

Dirac form factor Pauli form factor

$$\langle N, \vec{p}'|J_{\text{em}}^{\mu}(0)|N, \vec{p}\rangle = \overline{u}(p', s') \left[\gamma^{\mu} F_{1}(q^{2}) + \frac{i}{2m_{N}} \sigma^{\mu\nu} q_{\nu} F_{2}(q^{2}) \right] u(p, s)$$

Breit frame: $\vec{p}' = -\vec{p} = \vec{q}/2$

$$\langle N, \vec{q}/2|J_{\text{em}}^{0}(0)|N, -\vec{q}/2\rangle = G_{E}(\vec{q}^{2}) \chi_{s'}^{\dagger} \chi_{s}$$

$$\langle N, \vec{q}/2|J_{\mathrm{em}}^{i}(0)|N, -\vec{q}/2\rangle = \frac{i}{2m_{N}}G_{M}(\vec{q}^{2})\chi_{s'}^{\dagger}(\vec{q}\times\vec{\sigma})\chi_{s}$$

Sachs form factor

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_N^2} F_2(q^2)$$
$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$

Electric form factor

Magnetic form factor

Dipole behavior

Experimental data suggest

dipole (
$$\Lambda \simeq 0.71 \text{ GeV}^2$$
)

$$G_E^p(Q^2) \simeq \frac{1}{\mu_p} G_M^p(Q^2) \simeq \frac{1}{\mu_n} G_M^n(Q^2) \simeq \frac{1}{(1 + \frac{Q^2}{\Lambda^2})^2} \qquad G_E^n(Q^2) \simeq 0$$

Our result

$$G_E^p(Q^2) = \frac{1}{\mu_p} G_M^p(Q^2) = \frac{1}{\mu_n} G_M^n(Q^2) = \sum_{n \ge 1} \frac{g_{v^n} g_{v^n NN}}{Q^2 + m_n^2}$$
 $G_E^n(Q^2) = 0$

with
$$g_{v^n} = -2\kappa(k(z)\partial_z\psi_{2n-1})\Big|_{z=+\infty}$$
 $g_{v^nNN} = \langle \psi_{2n-1}(Z) \rangle$

Vector meson dominance

Can this be compatible with dipole?

Taylor expansion

$$\begin{cases} & \text{ here we use the approximation} \\ & g_{v^nNN} = \langle \psi_{2n-1}(Z) \rangle \simeq \psi_{2n-1}(0) \end{cases}$$

$$G_E^p(Q^2) \simeq 1 - 2.38Q^2 + 4.02(Q^2)^2 - 6.20(Q^2)^3 + 9.35(Q^2)^4 - 14.0(Q^2)^5 + \cdots$$

$$\frac{1}{(1+Q^2/\Lambda^2)^2} \simeq 1 - 2.38Q^2 + 4.24(Q^2)^2 - 6.71(Q^2)^3 + 9.97(Q^2)^4 - 14.2(Q^2)^5 + \cdots$$
 with $\Lambda^2 = 0.758 \text{ GeV}^2$
$$(M_{\text{KK}} = 1 \text{ unit})$$

Conclusion

- We proposed a new method to analyze static properties of baryons.
- Our model automatically includes the contributions from various massive vector and axial-vector mesons.
- Compared with the similar analysis in the Skyrme model (ANW), the agreement with the experimental values are improved in most of the cases.
- But, we should keep in mind that our analysis is very crude and there are a lot of ambiguities remain unsolved.