
Outline and References
Introduction

Spacetimes dual to boundary fluid flows
Global Structure and Entropy Current

A Generalization
Discussion

Nonlinear Fluid Dynamics from Gravity-1

Shiraz Minwalla

Department of Theoretical Physics
Tata Institute of Fundamental Research, Mumbai.

ISM 2008, Pondicherry

Shiraz Minwalla



Outline and References
Introduction

Spacetimes dual to boundary fluid flows
Global Structure and Entropy Current

A Generalization
Discussion

Outline

Introduction

Spacetimes dual to boundary fluid flows

Global structure and entropy current

A generalization

Discussion

Shiraz Minwalla



Outline and References
Introduction

Spacetimes dual to boundary fluid flows
Global Structure and Entropy Current

A Generalization
Discussion

References

Talk based on

arXiv: 0712.2456, S. Bhattacharyya, V. Hubeny, S.M. , M.
Rangamani

0803.2526, above + R.Loganayagam, G. Mandal, T. Morita
and H. Reall

0806.0006, S. Bhattacharyya, R. Loganayagam, S.M. , S.
Nampuri, S. Trivedi and S. Wadia

Immediate precursors: important work by Son, Starinets,
Kovtun, Policastro, Janik and collaborators. Also 0708.1770 (S.
Bhattacharyya, S. Lahiri, R. Loganayagam, S.M.)
Some follow ups and other subsequent work will be reviewed
by R. Loganayagam in the next talk.

Shiraz Minwalla



Outline and References
Introduction

Spacetimes dual to boundary fluid flows
Global Structure and Entropy Current

A Generalization
Discussion

Large N Dynamics
Fluid Dynamics
Universal Stress Tensor dynamics at Strong Coupling
Chief Result of this talk

Trace dynamics at Large N

Consider any large N gauge theory. Let ρm(x) = Tr Om(x)
N

denote set of all single trace gauge invariant operators of
the theory.

According to general lore, in the large N limit the gauge
theory path integral may be rewritten as

∫

∏

m

Dρm(x) exp
[

−N2S(ρm)
]

Consequently large N gauge theories are effectively
classical when rewritten in terms of trace variables.
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Trace Dynamics from Supergravity

Maldacena 1997: The classical large N evolution
equations for N = 4 Yang Mills are IIB SUGRA on
AdS5 × S5. ρm(x , t) to be read off from the boundary
values of bulk fields.
Evolution equations of 10d bulk fields elegant and local.
Map to unfamiliar, nonlocal and complicated looking
evolution equations for ρm(x , t).
Would be nice to better understand the implied four
dimensional dynamics for ρn. This talk: study ρn dynamics
in a universal sector in a long distance limit. Will show that
the bulk equations imply local and familiar boundary
dynamics of ρm(x) in this limit. Familiar dynamics= fluid
dynamics
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Thermodynamics, velocity and temperature

Consider a d dimensional large N conformal field theory.
The thermodynamic energy density of this theory is given
by ρ = α(d − 1)N2T d for some constant α.
Let T µν(x) denote the expectation value of the stress
tensor in any quantum state of this theory.
Let uµ(x) denote the unique time or light like eigenvector
field of the stress tensor i.e.

Tµν(x)uν(x) = αN2T (x)duµ(x)

We will refer to uµ(x) as the velocity field and T (x) as the
temperature field associated with the state. Coincides with
thermodynamic notions in equilibrium.
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Local Equilibriation

Fluctuations about finite temperature states of any CFT are
characterized by a length scale, lmfp ∼ η

ρ
. This is the length

and time scale associated with equilibriation. In the
theories we study lmfp ∼ 1/T .

Key physical assumption: all Fourier components of the
stress tensor with klmfp > 1 decay away exponentially over
time scales of order lmfp. After this time the system is
approximately locally equilibriated. Its dynamical variables
are simply uµ(x) and T (x). These fields subsequently vary
on length and time scales long compared to lmfp
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Fluid Dynamics

After local equilibrium is attained, the system begins to
relax towards global equilibrium. Described by fluid
dynamics. Variables uµ(x) and T (x). Universal dynamical
equations: ∂µT µν = 0. Need a constituitive relationship to
express T µν(x) in terms of uµ(x) and T (x)

As fluid dynamics only works when length and time scales
of variation are long compared to lmfp. Consequently it only
makes sense to specify the constituitive relations in a
expansion in derivatives. Form of this expansion greatly
constrained by symmetries: e.g. leading order

T µν = αN2T d (duµuν + ηµν)

Shiraz Minwalla



Outline and References
Introduction

Spacetimes dual to boundary fluid flows
Global Structure and Entropy Current

A Generalization
Discussion

Large N Dynamics
Fluid Dynamics
Universal Stress Tensor dynamics at Strong Coupling
Chief Result of this talk

Higher order constituitive relations

At first order in the derivative expansion, the only additional
term allowed by symmetries is a piece proportional to the
shear tensor σµν .

At next order there are four linearly independent (onshell
inequivalent) possible additions to the stress tensor in flat
space.

Consequently, the constituitive relations of an arbitrary
conformal fluid are completely specified by one and four
dimensionless numbers at first and second order
respectively. In this talk: see how gravity reduces to fluid
dynamics. Results will prove ‘universal’ in a sense I now
explain.
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Universal dynamics of the stress tensor

Consider any 2 derivative theory of gravity interacting with
other fields, that admits AdSd+1 space as a solution.

Every such theory admits a consistent truncation to
Einstein gravity with a negative cosmological constant. All
fields other than the Einstein frame graviton are simply set
to their background AdSd+1 values under this truncation.

Dual implication: Simple universal dual dynamics for the
stress tensor of all the (infinitely many) large N field
theories with a 2 derivative bulk dual. Most of the rest of
this talk: study this simple universal sector subsector at
long wavelengths.
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Einstein’s Equations reduce to fluid dynamics

In this talk we conjecture and largely demonstrate that the
set of all regular long wavelength solutions to Einstein’s
equations with a negative cosmological constant in d + 1
dimensions is identical to the set of solutions of the
boundary Navier Stokes equations (with holographically
determined values of transport coefficients) in d
dimensions.

Thus Einstein Equations (1915) → Navier Stokes
equations (1822), adding to the list of connections
uncovered by string theory between classic but apparently
unrelated equations of physics.
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Boosted Black Branes

RMN −
R
2

gMN =
d(d − 1)

2
gMN : : M, N = 1 . . . d + 1

Simplest soln : AdSd+1 space

ds2 =
dr2

r2 + r2gµνdxµdxν ; : µ, ν = 1 . . . d

( gµν = constant boundary metric). Another solution: black
brane at temperature T and velocity uµ

ds2 =
dr2

r2f (r)
+ r2Pµνdxµdxν − r2f (r)uµuνdxµdxν

f (r) = 1 −

(

4πT
d r

)d

; Pµν = gµν + uµuν
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uµ(x) and T (x)

The boundary stress tensor for the boosted black brane is

Tµν = K T d (gµν + duµuν) ; K =
1

16πGd+1

(

4π

d

)d

Note that

Tµν(x)uν(x) = K ′T (x)duµ(x), K ′ = (1 − d)K

(uµ is the unique timelike eigenvector).
As explained above we use this equation to define the
velocity and temperature field of any locally asymptotically
AdS solution of Einsteins equations. Simple physical
interpretation.
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Our Question

Consider an arbitrary evolution Tµν(x) on a boundary with
metric gµν(x). Let ∆(x) denote the minimum length scale
of variation of Tµν(x) and gµν(x). Let ǫ(x) = 1

T (x)∆(x) .

If ǫ(x) ≪ 1 then Tµν(x), gµν(x) ‘slowly varying’ (vary on
length scales large comp to the equilibriation length, 1

T ).

Question: Given arbitrary slowly varying boundary stress
tensor Tµν(x). What are its boundary ‘equations of motion’,
i.e. under what conditions can Tµν(x) be obtained from a
regular solutions to Einstein’s equations? What is the bulk
metric dual to any Tµν(x) that satisfies these conditions?

Address this question: perturbatively construct families of
(we conjecture all) ‘slowly varying’ bulk spacetimes.

Shiraz Minwalla



Outline and References
Introduction

Spacetimes dual to boundary fluid flows
Global Structure and Entropy Current

A Generalization
Discussion

Boosted Black Branes
Our Question
Tubes of slow variation
Perturbation Theory

The tubewise approximation

We expect slowly varying boundary configurations to be
locally thermalized. Suggests bulk solution tubewise
approximated by black branes. But along which tubes?
Naive guess: lines of constant xµ in Schwarschild (Graham
Fefferman) coordinates, i.e. metric approximately

ds2 =
dr2

r2f (r)
+ r2Pµν(x)dxµ(x)dxν(x) − r2f (r)uµuνdxµdxν

f (r) = 1 −

(

4πT (x)

d r

)d

; Pµν = gµν(x) + uµ(x)uν(x)

Wrong. Metrics not regular. Bad starting point for
perturbation theory. Also intuitively problem with causality.
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Zero order metric

Causality suggests the use of tubes centered around
ingoing null geodesics. In particular we try

ds2 = g(0)
MNdxMdxN = −2uµ(x)dxµdr + r2Pµν(x)dxµdxν

− r2f (r , T (x))uµ(x)uν(x)dxµdxν

Metric generally regular but not solution to Einstein’s
equations. However solves equations for constant
uµ, T , gµν . Consequntly appropriate starting point for a
perturbative soln of equations in the parameter ǫ(x).
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Perturbation Theory: Redn to ODEs

That is we set

gMN = g(0)
MN(ǫx) + ǫg(1)

MN(ǫx) + ǫ2g(2)
MN(ǫx) . . .

and attempt to solve for g(n)
MN order by order in ǫ.

Perturbation expansion surprisingly simple to implement.
Nonlinear partial differential equation → 15 ordinary
differential equations, in the variable r at each order and
each boundary point.
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Perturbation Theory: Constraint Equations

Gauge choice: grµ(x) = −uµ(x), grr = 0. Ten

undetermined metric components g(n)
µν at each order.

Naively 15 but actually 14 independent Einstein equations.
Split up into 4 constraint equations and 10 dynamical
equations.

The constraint equations at nth order are independent of
g(n)

µν : they are ∇µT (n−1)
µν = 0, where T (n−1)

µν = 0 is the
boundary stress tensor dual to the solution upto (n − 1)th

order.
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Perturbation Theory: Dynamical Equations

The dynamical equations take the form M g(n) = s(n). Here
M is a ‘homogeneous’ differential operator in r that is the
same at every order. s(n) is a source function that is
independent of g(n) and is determined by the solution to
(n − 1)th order.

It turns out to be possible to exactly solve the equation
M g(n) = s(n) for an arbitrary source function s(n). For any
given source function sn there is a family of solutions to the
equation (which differ by solutions of the homogeneous
equation M g = 0)
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Perturbation Theory: Uniqueness of Solns

However provided that the source function is regular at the
‘horizon’ and dies off sufficiently fast at infinity (conditions that
are true for s(n) generated in perturbation theory), the solution
to this equation is unique subject to the following requirements:

1 That the solution is dual to the specified boundary metric
gµν(x), velocity field uµ(x) and the temperature T (x).
(condition on the large r behaviour of the solution).

2 That the solution is regular at the zeroth order horizon
(condition at r = 4πT

d )

Shiraz Minwalla
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Perturbation Theory: Navier Stokes Equations

We may now construct the stress tensor T (n)
µν dual to our

perturbative solution. T (n)
µν is uniquely determined as a

function of nth order in derivatives of gµν , uµ and T .

Recall that the constraint equations are ∇µTµν = 0. But
this equation, together with the specification of Tµν as a
function of derivatives of gµν , uµ and T has a name: the
equations of fluid dynamics.
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Perturbation Theory: Summary

Summary: Explicit map from the space of solutions of a
distinguished set of fluid dynamical equations in d
dimensions to long wavelenth solutions of Einstein’s
equations.
Requirement of regularity of the horizon ensures this map
is locally one to one in solution space.

Naive Graham Fefferman counting: d(d+1)
2 − 1 parameter

solution. Rougly parameterized by fluctuation fields gn
µν .

However d(d−1)
2 − 1 of these modes - the tensor sector -

fixed by the requirement of regularity.
Remaining solutions parameterized by d velocities and
temperatures. Closed dynamical system.
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Explicit Results at second order

We have explicitly implemented our perturbation theory to
second order.

ds2 = −2uµdxµ (dr + r Aνdxν) + r2gµνdxµdxν

−

[

ωµ
λωλν +

1
d − 2

Dλωλ
(µuν) −

1
d − 2

Dλσλ
(µuν)

+
R

(d − 1)(d − 2)
uµuν

]

dxµdxν

+
1

(br)d (r2 −
1
2
ωαβωαβ)uµuνdxµdxν

+ 2(br)2F (br)
[

1
b

σµν + F (br)σµ
λσλν

]

dxµdxν . . .

Shiraz Minwalla
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Explicit Results at second order

− 2(br)2 σαβσαβ

d − 1
PµνK1(br) −

uµuν

(br)d−2

σαβσαβ

(d − 1)
K2(br)

+
2 L(br)
(br)d−2

[

Pλ
µDασα

λuν + Pλ
ν Dασλ

αuµ

]

dxµdxν

− 2(br)2H1(br)
[

uλDλσµν + σµ
λσλν −

σαβσαβ

d − 1
Pµν

+Cµανβuαuβ
]

dxµdxν

+ 2(br)2H2(br)
[

uλDλσµν + ωµ
λσλν − σµ

λωλν

]

dxµdxν

Shiraz Minwalla
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Explicit results at second order

Where

F (br) ≡
∫

∞

br

yd−1 − 1
y(yd − 1)

dy ; L(br) ≡
∫

∞

br
ξd−1dξ

∫

∞

ξ

dy
y − 1

y3(yd − 1)

H2(br) ≡
∫

∞

br

dξ

ξ(ξd − 1)

∫ ξ

1
yd−3dy

[

1 + (d − 1)yF (y) + 2y2F ′(y)
]

K1(br) ≡
∫

∞

br

dξ

ξ2

∫

∞

ξ

dy y2F ′(y)2 ; H1(br) ≡
∫

∞

br

yd−2 − 1
y(yd − 1)

dy

K2(br) ≡
∫

∞

br

dξ

ξ2

[

1 − ξ(ξ − 1)F ′(ξ) − 2(d − 1)ξd−1

+
(

2(d − 1)ξd − (d − 2)
)

∫

∞

ξ

dy y2F ′(y)2
]

Shiraz Minwalla
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Second order boundary stress tensor

The dual stress tensor corresponding to this metric is given by
(4πT = b−1d)

Tµν = p (gµν + duµuν)

− 2η
[

σµν − τπuλDλσµν − τω

(

σµ
λωλν − ωµ

λσλν

)]

+ ξσ

[

σµ
λσλν −

σαβσαβ

d − 1
Pµν

]

+ ξCCµανβuαuβ

p =
1

16πGd+1bd ; η =
s

4π
=

1
16πGd+1bd−1

τπ = (1 − H1(1))b ; τω = H1(1)b ; ξσ = ξC = 2ηb

Shiraz Minwalla
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Properties of soln: Stress tensor

Schematic form of 2nd order stress tensor:

Tµν = aT d(gµν + duµuν) + bT d−1σµν + T d−2
5

∑

i=1

ciS
i
µν

a is a thermodynamic parameter. b is related to the
viscosity: we find η/s = 1/(4π). ci coefficients of the five
traceless symmetric Weyl covariant two derivative tensors
are second order transport coefficients. Values disagree
with the predictions of the Israel Stewart formalism.
Recall that results universal. Should yield correct order of
magnitude estimate of transport coefficients in any strongly
coupled CFT.

Shiraz Minwalla



Outline and References
Introduction

Spacetimes dual to boundary fluid flows
Global Structure and Entropy Current

A Generalization
Discussion

Boosted Black Branes
Our Question
Tubes of slow variation
Perturbation Theory

Properties of soln: Weyl covariance

Weyl covariance: result is written in terms of covariant
derivative built out of the ‘gauge’ field

Aν ≡ uλ∇λuν −
∇λuλ

d − 1
uν

R. Loganayagam . arXiv:0801.3701 [hep-th]

Can use the fact that Aν transforms like a gauge field
under Weyl transformation to define a Weyl covariant
derivative D that acts on a weight w tensor Qµ...

ν... as

Dλ Qµ...
ν... ≡ ∇λ Qµ...

ν... + w AλQµ...
ν...

+
[

gλαA
µ − δµ

λAα − δµ
αAλ

]

Qα...
ν... + . . .

− [gλνA
α − δα

λAν − δα
ν Aλ] Qµ...

α... − . . .
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Event Horizons

Our solutions are singular at r = 0. Quite remarkably it is
possible to demonstrate that under certain conditions
these solutions have event horizons. The event horizon
manifold r = r(x), may explicitly be determined order by
order in the derivative expansion. This horizon shields the
r = 0 singularity from the boundary.

Need some knowledge of the long time behaviour of the
solution. Sufficient, though far from necessary, to assume
fluid flows that reduce to constant temperature and velocity
at late times. Not very strong assumption. Probably true of
all finite fluctuations about uniform motion in d ≥ 2.

Shiraz Minwalla
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Event Horizon in the derivative expansion

The event horizon of the dual bulk goemetry is the unique
null manifold that reduces to the event horizon r = 4πT

d = 1
b

of the dual uniform black brane at late times.

It turns out to be simple to construct this event horizon
manifold in the derivative expansion: explicitly

rH =
1
b

+ b
(

λ1σαβσαβ + λ2ωαβωαβ + λ3R
)

+ . . .

λ1 =
2(d2 + d − 4)

d2(d − 1)(d − 2)
−

K2(1)

d(d − 1)

λ2 = −
d + 2

2d(d − 2)
and λ3 = −

1
d(d − 1)(d − 2)

Shiraz Minwalla
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We can put our control over the event horizon to practical
use. Recall that a d dimensional event horizon is
generated by a d − 1 dimensional family of null geodesics.
Let αi i = 1 . . . (d − 1) label these geodesics. Let λ be any
future directed coordiante along the geodesics.

The line element on the event horizon takes the form

ds2 = geh
ij dαidαj

Define the area d − 1 form as
a =

√

gehdα1 ∧ dα2 . . . dαd−1.

Now da = φdλ ∧ dα1 . . . dαd−1 The classic area increase
theorem of black hole physics implies the assertion that
φ ≥ 0.

Shiraz Minwalla
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Consider the pullback of a to the boundary using the map
generated by the radial ingoing null geodesics described
above. The boundary hodge dual of pullback of this d − 1
form is a current whose divergence may be shown to be
non negative.

Consequently fluid dynamics dual to gravity is equipped
with a local current whose divergence is always non
negative, and which agrees with the thermodynamic
entropy current in equilibrium. This ‘entropy current’ is a
local ‘Boltzman H’ function whose non negative divergence
rigorously estabilishes the locally irreversable nature of the
dual fluid flows.

Shiraz Minwalla
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Entropy Current at second order

Explicitly this entropy current is given to second order by

4 Gd+1 bd − 1 Jµ
S = [ 1 + b2 ( A1 σαβ σαβ + A2 ωαβ ωαβ + A3 R ) ] uµ

+ b2 [ B1 Dλ σµλ + B2 Dλ ωµλ ]

where

A1 =
2
d2 (d + 2) −

K1(1)d + K2(1)

d
, A2 = −

1
2d

, B2 =
1

d − 2

B1 = −2A3 =
2

d(d − 2)

Shiraz Minwalla
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Forcing and Charges

One may attempt to generalize our construction to a bulk
Lagrangian with additional fields. Gain: more solutions,
wider dynamical behaviour. Price: reduced universality

Additional fields of two sorts. Bulk gauge fields that
correspond to conserved boundary charge. Plus all others.

Gauge fields enlarge the set of fluid dynamical variables to
include charge densities. Other fields yield new solns only
when non normalizable part is turned on. Operator
coupling leads to forcing function for fluid dynamics

Shiraz Minwalla
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Dilaton Forcing

Example of 2nd kind: d = 4 Einstein Dilaton System.

Long wavelength solution of the Einstein dilaton system
with a given specified slowly varying boundary dilaton field
may be obtained by perturbation theory analogeous to
above. Have been explicitly constructed to second order.

Solutions are in one to one correspondence with the forced
Navier Stokes equations

∇µT µν = −
(πT )3

16πG5
∇νφ(u.∂)φ + . . .

Shiraz Minwalla
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Simple Solutions

A simple class of solutions to these equations are given by
the dilaton chosen as a slowly varying function of time. If
the fluid is initially at rest, it stays at rest but slowly heats
up according to

dT
dt

=
(φ̇)2

12π
.

The dual bulk solution has a dilaton pulses falling into the
black hole, and at leading order is the Vaidya solution.
Note that varying - whether increasing or decreasing - the
dilaton heats up the gauge theory. Consistent with entropy.
Speculations about the continuation to weak coupling.
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Kruskal Coordinates?

Eddington Finklestein coordinates proved very useful for
our analysis. One imporant reason: future horizon regular
in EF coordinates. Second equally important feature: ∂µ

were killing directions of the black brane, in these
coordinates. This was crucial for obtaining ODEs - i.e. for
the locality of our solutions.

More generally, our procedure will work once we identify
any foliation of the black brane metric into tubes such that
∂a are killing, for the labels a of the tubes. Note too many
options. While have not thought this through very carefully,
think we have roughly the unique solution
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Kruskal Coordinates cont

For an example of something that does not work, consider
the black brane written in Kruskal coordinates. If we now
try to work along lines of constant U or constant V we dont
get ODEs, so we dont get tube wise locality

If one wanted to carry out the analouge of our programme
in Kruskal coordinates, one would have to solve 2 variable
PDEs, and would find locality on sheets not tubes. This
sounds very interesting - though technically difficult. Would
love to be able to control such solutions and interpret them.
But have had no success so far.
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Cosmic Censorship ↔ singularities in equilibriation

We have studied gravity dual of a locally equilibriated
theory. What is the dual of the process of local
equilibriation? Clearly the collapse to form a horizon.

Longstanding interesting question about this process: are
naked singularities permitted? Generic? Important
implications for observational quantum gravity. Appears to
map to questions of singularities in the process of local
equilibriation in large N theories. Hint of another
interesting connection. Seems like one should study.
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Finite N

Interesting question in both principle and practice: how
does this story generalize to finite N. In the bulk one is
instructed to quantize gravity. While this is a formidable
task, it is natural to ask whether it makes any sense to
simply quantize the solutions dual to fluid dynamics.

Technically, one could compute the Witten-Crnkovic
symplectic form on these solutions. If it is finite, well
defined and non degenerate, it would be natural to use it to
quantize the phase space of fluid dynamics. Such a
quantization would give a ‘wave function’ on the space of
temperatures and velocities (perhaps likely actual story
more complicated). Dual to finite Avagadro no fluctuations?
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Statistical nature of black hole spacetimes

Clearly the spacetimes we study describe the coarse
grained average properties of some more fundamental
degrees of freedom. The relation between these
spacetimes and one set of fundamental dofs is dual the
relationship between fluid dynamics and gluon positions

What is the relationship between the quantization of the
true dofs and the quantization of gravity? Perhaps the fact
that eternal black holes are dual to spacetimes with two
boundaries is important here.
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Other issues

Turbulence in gravity

Generalization to confining theories. Boundary dofs.

Time reversal invariance

...
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