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Introduction

AdS3 Supergravity has been playing an interesting role
in String Theory after the discovery of BTZ black holes,
since these arise as a factor in the near horizon
geometry of certain class of black holes in string theory.
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Introduction

AdS3 Supergravity has been playing an interesting role
in String Theory after the discovery of BTZ black holes,
since these arise as a factor in the near horizon
geometry of certain class of black holes in string theory.

The statistical and gravity analysis of entropy for such
black holes, in the presence of higher derivative terms,
matches with the Cardy formula for the degeneracy of
states in 2 dimensional CFT.
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Introduction

AdS3 Supergravity has been playing an interesting role
in String Theory after the discovery of BTZ black holes,
since these arise as a factor in the near horizon
geometry of certain class of black holes in string theory.

The statistical and gravity analysis of entropy for such
black holes, in the presence of higher derivative terms,
matches with the Cardy formula for the degeneracy of
states in 2 dimensional CFT.

Kraus and Larsen (hep-th/0506176,0508218) argued
using ADS/CFT correspondence that if the three
dimensional theory has extended Supersymmetry, then
the entropy is completely determined in terms of the
coefficients of gauge as well as gravitational Chern
Simons terms and does not receive any higher
derivative corrections.
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Later, David, Sahoo and Sen (arxiv:0705.0735) gave
the bulk interpretation of the above result and looked for
the non-renormalizability of the entropy of a BTZ black
hole in a theory with (0, 4) supersymmetry and higher.
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Later, David, Sahoo and Sen (arxiv:0705.0735) gave
the bulk interpretation of the above result and looked for
the non-renormalizability of the entropy of a BTZ black
hole in a theory with (0, 4) supersymmetry and higher.

They showed that the boundary S-Matrix does not get
renormalized and therefore the bulk action does not get
renormalized except for the terms which can be
removed by field redefinition.
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Later, David, Sahoo and Sen (arxiv:0705.0735) gave
the bulk interpretation of the above result and looked for
the non-renormalizability of the entropy of a BTZ black
hole in a theory with (0, 4) supersymmetry and higher.

They showed that the boundary S-Matrix does not get
renormalized and therefore the bulk action does not get
renormalized except for the terms which can be
removed by field redefinition.

Gupta and Sen (arxiv:0710.4177) came up with a result
that one can obtain a direct field redefinition in the bulk
to absorb the higher derivative pieces to see the
non-renormalizabilty of action.
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This induces the redefinition of currents in the boundary
and hence the S-matrices calculated from two actions
related by field redefinition in the bulk are the same
upto unitary transformation.
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One expects the result of Kraus and Larsen to hold for
theories with lesser extended supersymmetry, for
example theories with (2, 0) superymmetry.
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One expects the result of Kraus and Larsen to hold for
theories with lesser extended supersymmetry, for
example theories with (2, 0) superymmetry.

From above arguments, all (2, 0) actions are related by
field redefinitions,
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One expects the result of Kraus and Larsen to hold for
theories with lesser extended supersymmetry, for
example theories with (2, 0) superymmetry.

From above arguments, all (2, 0) actions are related by
field redefinitions, implies the S-matrix with and without
higher derivative terms are related by unitary
transformation,
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One expects the result of Kraus and Larsen to hold for
theories with lesser extended supersymmetry, for
example theories with (2, 0) superymmetry.

From above arguments, all (2, 0) actions are related by
field redefinitions, implies the S-matrix with and without
higher derivative terms are related by unitary
transformation, in turn implies Kraus and Larsen’s
non-renormalization of black hole entropy, even for (2, 0)
theories.
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One expects the result of Kraus and Larsen to hold for
theories with lesser extended supersymmetry, for
example theories with (2, 0) superymmetry.

From above arguments, all (2, 0) actions are related by
field redefinitions, implies the S-matrix with and without
higher derivative terms are related by unitary
transformation, in turn implies Kraus and Larsen’s
non-renormalization of black hole entropy, even for (2, 0)
theories.

We were, however, interested in distinguishing the set
of higher derivative terms that alter the boundary
S-matrix, computed using the standard supergravity
action, upto trivial/non-trivial unitary transformation.

Boundary S-Matrix – p. 13/92



Two sets of higher derivative terms for (2, 0) theories:
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Two sets of higher derivative terms for (2, 0) theories:

Terms constructed out of the field strengths covariant
with respect to supersymmetry transformations under
which the standard action remains invariant,
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Two sets of higher derivative terms for (2, 0) theories:

Terms constructed out of the field strengths covariant
with respect to supersymmetry transformations under
which the standard action remains invariant,do not alter
the boundary S-matrix and thus the unitary
transformation will be exactly identity.
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Two sets of higher derivative terms for (2, 0) theories:

Terms constructed out of the field strengths covariant
with respect to supersymmetry transformations under
which the standard action remains invariant,do not alter
the boundary S-matrix and thus the unitary
transformation will be exactly identity.

Terms which can render the full action to be invariant
under a set of supersymmetry transformation laws
different from the original ones.
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Two sets of higher derivative terms for (2, 0) theories:

Terms constructed out of the field strengths covariant
with respect to supersymmetry transformations under
which the standard action remains invariant,do not alter
the boundary S-matrix and thus the unitary
transformation will be exactly identity.

Terms which can render the full action to be invariant
under a set of supersymmetry transformation laws
different from the original ones. Such terms can be
removed by field redefinition and hence the change in
S-Matrix will be a non-trivial unitary transformation.
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Plan of the Talk

Standard N = (2, 0) supergravity action
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Plan of the Talk

Standard N = (2, 0) supergravity action
First Order and Second Order formulation
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Plan of the Talk

Standard N = (2, 0) supergravity action
First Order and Second Order formulation
Equations of motion
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Plan of the Talk

Standard N = (2, 0) supergravity action
First Order and Second Order formulation
Equations of motion

Effect of Higher derivative terms on the boundary
S-matrix
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Plan of the Talk

Standard N = (2, 0) supergravity action
First Order and Second Order formulation
Equations of motion

Effect of Higher derivative terms on the boundary
S-matrix

Boundary S-matrix involving correlators of U(1) current
and supersymmetry current
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N = (2, 0) Supergravity action

The N = (2, 0) sugra action including gravitational
Chern Simons term is written as:

S0 =

∫
d3x[eR + 2m2e−

aL
2
εMNPAM∂NAP

+
i

4
aLε

MNP (ψ̄M (DNψP ) − (DN ψ̄M )ψP )]

−K

∫
d3x εMNP [(

1

2
ωMcd∂Nω

dc
P +

1

3
ωMbcω

cd
N ω b

Pd)

−
im

8
e a
M ψ̄NγaψP ],

with aL = K +
1

m
,

and DMψN = ∂MψN −
1

2
B a
M γaψN +

i

2
AMψN ,
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First and Second order Formulation

In first order formulation of a theory, one treats ωabM as
an independent gauge field.
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First and Second order Formulation

In first order formulation of a theory, one treats ωabM as
an independent gauge field.

In second order, ωabM is treated as a dependent gauge
field.
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First and Second order Formulation

In first order formulation of a theory, one treats ωabM as
an independent gauge field.

In second order, ωabM is treated as a dependent gauge
field.

The (2, 0) supergravity theory, without the gravitational
Chern-Simons terms, is supersymmetric in both the
formulations under the same supersymmetric
transformation laws.
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First and Second order Formulation

In first order formulation of a theory, one treats ωabM as
an independent gauge field.

In second order, ωabM is treated as a dependent gauge
field.

The (2, 0) supergravity theory, without the gravitational
Chern-Simons terms, is supersymmetric in both the
formulations under the same supersymmetric
transformation laws.

Both the formulations also give rise to the same
equations of motion.
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But the story drastically changes, for "Second Order
formulation", after including the gravitational
Chern-Simons term in the action.
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But the story drastically changes, for "Second Order
formulation", after including the gravitational
Chern-Simons term in the action.

In the first order formulation of the theory, the action is
supersymmetric, under the previously defined
supersymmetric transformation laws, even after
including the gravitational Chern Simons term.
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But the story drastically changes, for "Second Order
formulation", after including the gravitational
Chern-Simons term in the action.

In the first order formulation of the theory, the action is
supersymmetric, under the previously defined
supersymmetric transformation laws, even after
including the gravitational Chern Simons term.

Also, one gets the same equations of motion as derived
for the theory without the gravitational Chern Simons
term.
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In the Second Order formulation, however, the action
with gravitational Chern Simons term is not invariant
under the previously defined supersymmetry
transformations,
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In the Second Order formulation, however, the action
with gravitational Chern Simons term is not invariant
under the previously defined supersymmetry
transformations, but one can add terms made out of
field strengths, in the action to make it supersymmetric.
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In the Second Order formulation, however, the action
with gravitational Chern Simons term is not invariant
under the previously defined supersymmetry
transformations, but one can add terms made out of
field strengths, in the action to make it supersymmetric.

The equations of motion also gets modified, and the first
order spectrum belongs to a subset of the second order.

Boundary S-Matrix – p. 34/92



In the Second order formulation, however, the action
with gravitational Chern Simons term is not invariant
under the previously defined supersymmetry
transformations, but one can add terms made out of
field strengths, in the action to make it supersymmetric.

The equations of motion also gets modified, and the first
order spectrum belongs to a subset of the second order.

We are interested in the correlation functions of CFT
operators dual to this common sector,
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In the Second order formulation, however, the action
with gravitational Chern Simons term is not invariant
under the previously defined supersymmetry
transformations, but one can add terms made out of
field strengths, in the action to make it supersymmetric.

The equations of motion also gets modified, and the first
order spectrum belongs to a subset of the second order.

We are interested in the correlation functions of CFT
operators dual to this common sector, and hence will
use the corresponding equations of motion in our
analysis of boundary S-matrix.
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Super-Covariant field strengths

Definition- Those field strengths which, under standard
susy transformations DO NOT give rise to the terms
proportonal to the partial derivatives of the susy
transformation paramater.

Boundary S-Matrix – p. 37/92



Super-Covariant field strengths

Definition- Those field strengths which, under standard
susy transformations DO NOT give rise to the terms
proportonal to the partial derivatives of the susy
transformation paramater.

Example-
Riemann tensor R ab

MN (which is the field strength
associated with ω ab

M ) is not covariant with respect to the
supersymmetry transformations and we need to
covariantize it,
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Super-Covariant field strengths

Definition- Those field strengths which, under standard
susy transformations DO NOT give rise to the terms
proportonal to the partial derivatives of the susy
transformation paramater.

Example-
Riemann tensor R ab

MN (which is the field strength
associated with ω ab

M ) is not covariant with respect to the
supersymmetry transformations and we need to
covariantize it, as

R̃ ab
MN = R ab

MN − 2δ
(Q)
1
2
ψ[M

ω ab
N ] ,
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Equations of motion

The equations of motion derived from the action :

R M
a −

1

2
Re M

a −m2e M
a = 0,

F̂MN ≡ 2∂[MAN ] −
1

2
ψ̄[MψN ] = 0,

GMN ≡ 2D[MψN ] = 0 ḠMN ≡ 2D[M ψ̄N ] = 0,

where

R ab
MN = R ab

MN +
i

4
εabcψ̄[MγcψP ],

R a
M = e N

b R ab
MN ,

R = e M
a R a

M ,
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F̂MN and GMN are supersymmetric covariant field
strengths for the gauge field AM and Rarita-Scwhinger
field ψM respectively and R ab

MN is the supersymmetric
covariant Riemann tensor modulo some terms
proportional to GMN .
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F̂MN and GMN are supersymmetric covariant field
strengths for the gauge field AM and Rarita-Scwhinger
field ψM respectively and R ab

MN is the supersymmetric
covariant Riemann tensor modulo some terms
proportional to GMN .

Also,
DMRNP = 0,

Where DM is the usual covariant derivative defined
using the torsion free connections.
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F̂MN and GMN are supersymmetric covariant field
strengths for the gauge field AM and Rarita-Scwhinger
field ψM respectively and R ab

MN is the supersymmetric
covariant Riemann tensor modulo some terms
proportional to GMN .

Also,
DMRNP = 0,

Where DM is the usual covariant derivative defined
using the torsion free connections.

Thus, from the equations of motion, we see that the
terms containing supersymmetric covariant field
strengths and/ or their covariant derivatives vanish
onshell.
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Effect of Higher derivative terms

We shall look at the higher derivative terms in the action
on the boundary S-Matrix computed from the standard
supergravity action.

Boundary S-Matrix – p. 44/92



Effect of Higher derivative terms

We shall look at the higher derivative terms in the action
on the boundary S-Matrix computed from the standard
supergravity action.

By AdS/CFT correspondence, the evaluated onshell
action, with specified boundary conditions, act as a
partition function, for evaluating correlators in the
boundary,
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Effect of Higher derivative terms

We shall look at the higher derivative terms in the action
on the boundary S-Matrix computed from the standard
supergravity action.

By AdS/CFT correspondence, the evaluated onshell
action, with specified boundary conditions, act as a
partition function, for evaluating correlators in the
boundary, and the boundary values act as sources for
relevant correlators.
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Effect of Higher derivative terms

We shall look at the higher derivative terms in the action
on the boundary S-Matrix computed from the standard
supergravity action.

By AdS/CFT correspondence, the evaluated onshell
action, with specified boundary conditions, act as a
partition function, for evaluating correlators in the
boundary, and the boundary values act as sources for
relevant correlators.

Therefore, if some terms vanish as a result of using
equations of motion, then those terms will not contribute
to the boundary S-Matrix.
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Effect of Higher derivative terms

We shall look at the higher derivative terms in the action
on the boundary S-Matrix computed from the standard
supergravity action.

By AdS/CFT correspondence, the evaluated onshell
action, with specified boundary conditions, act as a
partition function, for evaluating correlators in the
boundary, and the boundary values act as sources for
relevant correlators.

Therefore, if some terms vanish as a result of using
equations of motion, then those terms will not contribute
to the boundary S-Matrix.

We will now look at the different sort of higher derivative
terms that could affect the onshell action.
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Terms which are needed for the supersymmetrization of
the gravitational Chern Simons term, are constructed
out of the supersymmertic covariant field strengths.
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Terms which are needed for the supersymmetrization of
the gravitational Chern Simons term, are constructed
out of the supersymmertic covariant field strengths.

The contribution of these terms to the equations of
motion will be terms containing supersymmertic
covariant field strengths and /or their super-covariant
derivatives.
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Terms which are needed for the supersymmetrization of
the gravitational Chern Simons term, are constructed
out of the supersymmertic covariant field strengths.

The contribution of these terms to the equations of
motion will be terms containing supersymmertic
covariant field strengths and /or their super-covariant
derivatives.

Such terms will necessarily vanish when the original
equations of motion are satisfied,

Boundary S-Matrix – p. 51/92



Terms which are needed for the supersymmetrization of
the gravitational Chern Simons term, are constructed
out of the supersymmertic covariant field strengths.

The contribution of these terms to the equations of
motion will be terms containing supersymmertic
covariant field strengths and /or their super-covariant
derivatives.

Such terms will necessarily vanish when the original
equations of motion are satisfied, and therefore will not
affect the boundary correlators.
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Next, Terms that can be added to the action that are
supersymmetric on their own under the standard
supersymmetry transformations.
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Next, Terms that can be added to the action that are
supersymmetric on their own under the standard
supersymmetry transformations.

Such terms are constructed out of the supersymmetric
covariant field strengths and/ or their supercovariant
derivatives.
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Next, Terms that can be added to the action that are
supersymmetric on their own under the standard
supersymmetry transformations.

Such terms are constructed out of the supersymmetric
covariant field strengths and/ or their supercovariant
derivatives.
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The equations of motion, that these additional terms will
contribute, will contain terms involving F̂MN , GMN ,
DMRNP and/or their supercovariant derivatives in it.
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The equations of motion, that these additional terms will
contribute, will contain terms involving F̂MN , GMN ,
DMRNP and/or their supercovariant derivatives in it.
And these additional contributions will vanish, when the
original equations of motion are satisfied.
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The equations of motion, that these additional terms will
contribute, will contain terms involving F̂MN , GMN ,
DMRNP and/or their supercovariant derivatives in it.
And these additional contributions will vanish, when the
original equations of motion are satisfied.

Therefore, the solutions obtained for the original
equations of motion will still solve the equations of
motion in the presence of these higher derivative terms.
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The equations of motion, that these additional terms will
contribute, will contain terms involving F̂MN , GMN ,
DMRNP and/or their supercovariant derivatives in it.
And these additional contributions will vanish, when the
original equations of motion are satisfied.

Therefore, the solutions obtained for the original
equations of motion will still solve the equations of
motion in the presence of these higher derivative terms.

Hence, the correlators in the gauge+fermionic sector
will not be affected by these terms.
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For stress tensor correlators, the same argument works
as given by David, Sahoo, Sen (arxiv:0705.0735),
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For stress tensor correlators, the same argument works
as given by David, Sahoo, Sen (arxiv:0705.0735), which
says that the stress tensor correlators are related to the
current correlators by supersymmetry.
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For stress tensor correlators, the same argument works
as given by David, Sahoo, Sen (arxiv:0705.0735), which
says that the stress tensor correlators are related to the
current correlators by supersymmetry.

And since, by our argument the current correlators do
not get renormalized,
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For stress tensor correlators, the same argument works
as given by David, Sahoo, Sen (arxiv:0705.0735), which
says that the stress tensor correlators are related to the
current correlators by supersymmetry.

And since, by our argument the current correlators do
not get renormalized, this implies that the stress tensor
correlators also do not get renormalized.

Boundary S-Matrix – p. 63/92



There can be a general higher derivative term in the
action that can keep the full action invariant under a
modified set of supersymmetry transformation laws.
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There can be a general higher derivative term in the
action that can keep the full action invariant under a
modified set of supersymmetry transformation laws.

Such terms can modify the equations of motion and will
not vanish onshell, changing the boundary S-matrix.
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There can be a general higher derivative term in the
action that can keep the full action invariant under a
modified set of supersymmetry transformation laws.

Such terms can modify the equations of motion and will
not vanish onshell, changing the boundary S-matrix.

But, since such terms can be removed by field
redefinition,
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There can be a general higher derivative term in the
action that can keep the full action invariant under a
modified set of supersymmetry transformation laws.

Such terms can modify the equations of motion and will
not vanish onshell, changing the boundary S-matrix.

But, since such terms can be removed by field
redefinition, therefore the boundary S-matrix can be
related to the boundary S-matrix calculated from the
standard sugra action, by a unitary transformation.
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Boundary S-Matrix

Now we will look at the boundary S-matrix involving two
and three point correlation function of the operators
dual in the gauge+fermionic sector of the theory.
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Boundary S-Matrix

Now we will look at the boundary S-matrix involving two
and three point correlation function of the operators
dual in the gauge+fermionic sector of the theory.

We begin by writing the Chern Simons form of the
sugra action in Euclidean space

S = iaL

∫
d3x εMNP

[
1

2
B a
M ∂NB

b
P δab +

i

6
εabcB

a
M B b

N B c
P

]

−iaR

∫
d3x εMNP

[
1

2
B′ a
M ∂NB

′ b
P δab +

i

6
εabcB

′ a
M B′ b

N B′ c
P

]
,

+i
aL
2

∫
d3x εMNPAM∂NAP

+
aL
4

∫
d3x εMNP

(
ψ̄M (DNψP ) −

(
DN ψ̄M

)
ψP

)
,
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Where

B a
M =

i

2
εabcωMbc −me a

M ,

B′ a
M =

i

2
εabcωMbc +me a

M ,

DMψN = ∂MψN −
1

2
B a
M γaψN +

i

2
AMψN ,

DM ψ̄N = ∂M ψ̄N +
1

2
B a
M ψ̄Nγa −

i

2
AM ψ̄N ,
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Now the idea behind calculating the correlation function
is to:
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Now the idea behind calculating the correlation function
is to:

To solve the equations of motion arising out of the
theory under a specified set of boundary condition
for the fields
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Now the idea behind calculating the correlation function
is to:

To solve the equations of motion arising out of the
theory under a specified set of boundary condition
for the fields
Put the above solution in the action and express the
on-shell action as a functional of the boundary
values of the fields
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Now the idea behind calculating the correlation function
is to:

To solve the equations of motion arising out of the
theory under a specified set of boundary condition
for the fields
Put the above solution in the action and express the
on-shell action as a functional of the boundary
values of the fields
The above on-shell action then acts like a partition
function for calculating CFT correlation function of
relevant currents for which the boundary values of
the dual fields acts like a source. This prescription is
given by AdS/CFT correspondence.
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Now the idea behind calculating the correlation function
is to:

To solve the equations of motion arising out of the
theory under a specified set of boundary condition
for the fields
Put the above solution in the action and express the
on-shell action as a functional of the boundary
values of the fields
The above on-shell action then acts like a partition
function for calculating CFT correlation function of
relevant currents for which the boundary values of
the dual fields acts like a source. This prescription is
given by AdS/CFT correspondence.
We will quantify all the above as we proceed
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The equations of motion, in the form notation, are
obtained as:

dA =
1

4
ψ̄ ∧ ψ,

dψ −
1

2
Baγa ∧ ψ = −

i

2
A ∧ ψ,

dψ̄ +
1

2
Ba ∧ ψ̄γa =

i

2
A ∧ ψ̄,
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We solve these equations till first order, by imposing the
following gauge conditions on ψ and ψ̄ :

γMψM = 0 ψ̄Mγ
M = 0,
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The full solution till first order iteration is:

A = dρ+
1

4
φ̄dη +

1

4
η̄dφ+

1

4
φ̄φdz,

ψ(1) = (x0)−
1
2

(
1 −

i

2
ρ

)
(dη + φdz),

ψ(2) = (x0)
1
2

(
1 −

i

2
ρ

)
dφ,

ψ̄(1) = (x0)
1
2

(
1 +

i

2
ρ

)
dφ̄,

ψ̄(2) = (x0)−
1
2

(
1 +

i

2
ρ

)
(dη̄ − φ̄dz),
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Where η, φ, η̄ and φ̄ are function of modified Bessel’s
functions as:

η =
1

2π

∫
d2~p(x0p)2K2(x

0p)ei~p.~zAη(~p),

φ =
1

2π

∫
d2~p(x0p)K1(x

0p)ei~p.~z(−2ipz)Aη(~p),

η̄ =
1

2π

∫
d2~p(x0p)2K2(x

0p)ei~p.~zAη̄(~p),

φ̄ =
1

2π

∫
d2~p(x0p)K1(x

0p)ei~p.~z(2ipz)Aη̄(~p),
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Now we shall impose boundary conditions on the z̄
components of fields, since we are working in (2, 0)
theory.
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Now we shall impose boundary conditions on the z̄
components of fields, since we are working in (2, 0)
theory.

The boundary conditions on the gauge field and
Rarita-Schwinger fields are

lim
x0→0

Az̄(x
0, ~z) = A

(0)
z̄ (~z),

lim
x0→0

(x0)
1
2ψ

(1)
z̄ = Θ

(−)
z̄ (~z),

lim
x0→0

(x0)
1
2 ψ̄

(2)
z̄ = Θ

(+)
z̄ (~z),

Boundary S-Matrix – p. 81/92



We need to add the following boundary action for
consistency requirements

Sbndy = Sbndy[ψ, ψ̄] + Sbndy[A]

Sbndy[ψ, ψ̄] =

−
iaL
2

∫
d2~z ψ̄

(1)
z (x0, ~z)ψ

(1)
z̄ (x0, ~z)

∣∣∣
x0=0

−
iaL
2

∫
d2~z ψ̄

(2)
z̄ (x0, ~z)ψ

(2)
z (x0, ~z)

∣∣∣
x0=0

Sbndy[A] = aL

∫
d2~z Az(~z, x

0)Az̄(~z, x
0)|x0=0,

Boundary S-Matrix – p. 82/92



After obtaining the solution to the equations of motion
subject to the boundary conditions upto terms quadratic
in the boundary values, we evaluate the action along
with the boundary action, for these on-shell
configuration of fields. We get

S[A
(0)
z̄ ,Θ

(+)
z̄ ,Θ

(−)
z̄ ]

= −
aL
π

∫
d2 ~z d2 ~w

1

(z − w)2
A

(0)
z̄ (~w) A

(0)
z̄ (~z)

−
2iaL
π

∫
d2~z d2 ~w

1

(z − w)3
Θ

(+)
z̄ (~w) Θ

(−)
z̄ (~z)

−
aL
π2

∫
d2~z d2 ~w d2~v

1

(z − w)(z − v)(w − v)2
H,

Where H = A
(0)
z̄ (~z)Θ

(+)
z̄ (~v) Θ

(−)
z̄ (~w)
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Then according to AdS/CFT conjecture, we have

exp(−S(A,ψ, ψ̄)) =

〈
exp

(
1

2π

∫

∂

A

)〉

Where A = J(~z)A
(0)
z̄ (~z) +G(+)(~z)Θ

(−)
z̄ (~z)

+G(−)(~z)Θ
(+)
z̄ (~z),
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This implies the following two and three point
correlation functions

〈J(~z1)J(~z2)〉

= (2π)2
δ

δA
(0)
z̄ (~z1)

δ

δA
(0)
z̄ (~z2)

e−S

∣∣∣∣∣
(A

(0)
z̄ (~z),Θ

(+)
z̄ (~z),Θ

(−)
z̄ (~z))=0

〈
G(+)(~z1)G

(−)(~z2)
〉

= (2π)2
δ

δΘ
(−)
z̄ (~z1)

δ

δΘ
(+)
z̄ (~z2)

e−S

∣∣∣∣∣
(A

(0)
z̄ (~z),Θ

(+)
z̄ (~z),Θ

(−)
z̄ (~z))=0
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〈
J(~z1)G

(+)(~z2)G
(−)(~z3)

〉

= (2π)3
δ

δA
(0)
z̄ (~z1)

δ

δΘ
(−)
z̄ (~z2)

δ

δΘ
(+)
z̄ (~z3)

e−S

∣∣∣∣∣
(A

(0)
z̄ (~z),Θ

(+)
z̄ (~z),Θ

(−)
z̄ (~z))=0
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Using the evaluated onshell action, we get

〈J(~z1)J(~z2)〉 = 8aLπ
1

(z1 − z2)2

〈
G(+)(~z1)G

(−)(~z2)
〉

= 8iaLπ
1

(z1 − z2)3

〈
J(~z1)G

(+)(~z2)G
(−)(~z3)

〉

= 8aLπ
1

(z1 − z2)(z1 − z3)(z2 − z3)2
,
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Using the evaluated onshell action, we get

〈J(~z1)J(~z2)〉 = 8aLπ
1

(z1 − z2)2

〈
G(+)(~z1)G

(−)(~z2)
〉

= 8iaLπ
1

(z1 − z2)3

〈
J(~z1)G

(+)(~z2)G
(−)(~z3)

〉

= 8aLπ
1

(z1 − z2)(z1 − z3)(z2 − z3)2
,

These are the expected conformal field theory results.
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Conclusions

We looked at the standard N = (2, 0) supergravity
action and outlined the basic differences of its two
avatars i.e first order and second order formulation
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Conclusions

We looked at the standard N = (2, 0) supergravity
action and outlined the basic differences of its two
avatars i.e first order and second order formulation

We also looked at two sets of higher derivative terms
that affects the standard boundary S-matrix by
trivial/non-trivial unitary transformations
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Conclusions

We looked at the standard N = (2, 0) supergravity
action and outlined the basic differences of its two
avatars i.e first order and second order formulation

We also looked at two sets of higher derivative terms
that affects the standard boundary S-matrix by
trivial/non-trivial unitary transformations

We also computed the standard boundary S-matrix
involving two and three point correlators of U(1) and
supersymmetry currents and see that this result
matches with the conformal field theory result.
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Conclusions

We looked at the standard N = (2, 0) supergravity
action and outlined the basic differences of its two
avatars i.e first order and second order formulation

We also looked at two sets of higher derivative terms
that affects the standard boundary S-matrix by
trivial/non-trivial unitary transformations

We also computed the standard boundary S-matrix
involving two and three point correlators of U(1) and
supersymmetry currents and see that this result
matches with the conformal field theory result.

THANK YOU
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