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Introduction

Its been a good year for multiple M2-branes.

Common things said in the past:

I No known suitable Lagrangian (no longer true)

I No weak coupling parameter (in fact one can arise)

We now have a complete and convincing proposal for the effective
Lagrangian of n M2-branes in R8/Zk for arbitrary k and n

I Lagrangians are new types of highly supersymmetric
Chern-Simons matter theories in D = 3.

I Constructed from a triple product rather than a Lie-bracket

I Hopefully this will lead to a big increase in our understanding
of M-theory beyond supergravity

I M2-brane CFT’s ‘define’ M-theory in asymptotically AdS4

backgrounds
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Introduction

PLAN:

Here I will aim to review the construction of the various
Lagrangians and discuss some of their properties.

I Proceed in a roughly chronological and pedagogical manner.
I Many interesting and important papers and topics will not be

discussed in great detail
I e.g. Details of Lorentzian N = 8 models
I e.g. Detailed aspects of AdS4 × CP3 CFT duals
I and several crazy and/or cool ideas.
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Motivation

Some thought-provoking papers:

[Basu and Harvey] considered the BPS state of n coincident
M2-branes ending on an M5-brane,

I They propose the BPS equation

dX I

d(x2)
=

M3

64π
εIJKL[G ,X J ,XK ,X L]

where [A,B,C ,D] = 1
4!(ABCD ± cyclic combinations)

I Analogous to Nahm’s equation
I But did not arise as a 1/2 susy solution of any Lagrangian

[Schwarz] looked for 3D superconformal Chern-Simons gauge
theories in with no dynamical vectors

I only found N = 2, i.e. 4 susys



N = 8

What is our wish list for a theory of multiple M2-branes?

I 3D field theory with 16 susys (N = 8)

I 8 dynamical scalars with an SO(8) R-symmetry

I no dynamical gauge field

I Parity invariant

I Conformal invariance

So just start from scratch:

A stack of M2-branes has 8 scalars X I and their fermionic
superpartners Ψ, Γ012Ψ = −Ψ.

I We assume that these take values in some vector space
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N = 8

A natural guess for the susy algebra is, ignoring gauge symmetries,
[Bagger, NL]

δX I = i ε̄ΓIΨ

δΨ = ∂µX IΓµΓI ε+ [X I ,X J ,XK ]ΓIJK ε,

where [A,B,C ] is totally anti-symmetric triple product.

I So our vector space needs a triple product: 3-algebra

This immediately gives a BPS Basu-Harvey equation for an M2
ending on an M5-brane:

dX I

d(x2)
= εIJKL[X J ,XK ,X L]



N = 8

Closure of the algebra implies a gauge symmetry:

[δ1, δ2]X
I = 2i ε̄1Γ

µε2∂µX I + 2i ε̄1Γ
JK ε2[X

I ,X J ,XK ]

This must be dealt with to realize the full superalgebra
We will proceed by introducing a basis T a for A.

[T a,T b,T c ] = f abc
dT d , f abc

d = f [abc]
d

so
δX I

d = Λabf
cab

dX I
c

and introduce the covariant derivative:

DµX I
c = ∂µX I

c − Ãµ
c
dX I

c
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N = 8

Full superalgebra takes the form [Bagger, NL]

δX I
d = i ε̄ΓIΨd

δΨd = DµX I
dΓµΓI ε− 1

6
X I

aX J
b XK

c f abc
dΓIJK ε

δÃµ
c
d = i ε̄ΓµΓIX

I
aΨbf

abc
d ,

Indeed this closes (on-shell) if f abcd satisfies the fundamental
identity:

f efg
bf

cba
d + f fea

bf
cbg

d + f gaf
bf

ceb
d + f age

bf
cfb

d = 0.

This ensures that the gauge symmetries δΛX I
d = Λabf

cab
dX I

c

generated by the triple product are those of a Lie-algebra with
matrix representatives Λ̃c

d = Λabf
cab

d acting on X I
d .

I N.B. Closure was obtained first by [Gustavsson] using, but
equivalent algebraic approach that gives closure



N = 8

The invariant Lagrangian is a Chern-Simons theory [Bagger, NL]:

L = −1

2
(DµX aI )(DµX I

a ) +
i

2
Ψ̄aΓµDµΨa +

i

4
Ψ̄bΓIJX

I
cX J

d Ψaf
abcd

+
1

2
εµνλ(f abcdAµab∂νAλcd +

2

3
f cda

g f efgbAµabAνcdAλef )

− 1

12
Tr([X I ,X J ,XK ])2

I Tr is an invariant trace (inner-product) on A
I gauge invariance implies f abcd = f [abcd ]

I Ãµ
c
d = f abc

dAµab

I Chern-Simons term implies f abc
d is quantized

Has all the expected symmetries of multiple M2-branes: 16 susys,
SO(8) R-symmetry, Parity (f abcd is parity odd).

No continuous free parameter but weakly coupled as f abc
d → 0



N = 8

The invariant Lagrangian is a Chern-Simons theory [Bagger, NL]:

L = −1

2
(DµX aI )(DµX I

a ) +
i

2
Ψ̄aΓµDµΨa +

i

4
Ψ̄bΓIJX

I
cX J

d Ψaf
abcd

+
1

2
εµνλ(f abcdAµab∂νAλcd +

2

3
f cda

g f efgbAµabAνcdAλef )

− 1

12
Tr([X I ,X J ,XK ])2

I Tr is an invariant trace (inner-product) on A
I gauge invariance implies f abcd = f [abcd ]

I Ãµ
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N = 8

If Tr is positive definite then there is only one finite-dimensional
possibility [Nagy],[Gauntlett, Gutowski],[Papadopoulos]:

f abcd =
2π

k
εabcd

Although examples with an infinite dimensional 3-algebra arise
from the Nambu bracket.

In this case the Lagrangian is that of an SU(2)× SU(2)
Chern-Simons theory coupled to matter in the bi-fundamental.

LCS =
k

4π
tr(Ã+ ∧ dÃ+ +

2

3
Ã+ ∧ Ã+ ∧ Ã+)

− k

4π
tr(Ã− ∧ dÃ− +

2

3
Ã− ∧ Ã− ∧ Ã−)

I quantization condition implies k ∈ Z

I f abcd ↔ −f abcd corresponds to switching the two SU(2)’s
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N = 8

What, if any, is the multiple M2-brane interpretation?

Look at the Vacuum moduli space [NL, Tong], [Distler, Mukhi,
Papageorgakis, van Raamsdonk]

Mk = R16/D2k

I D2k - dihedral group

I M1 = R8/Z2 × R8/Z2

- vacuum moduli space of an SO(4) gauge theory

I M2 =
(
R8/Z2 × R8/Z2

)
/Z2

- vacuum moduli space of an SO(5) gauge theory

Two 2-branes on R8/Z2

No clear picture for k > 2 (although for k = 3 one finds the
vacuum moduli space of a G2 gauge theory).



N = 8

What does one expect for two M2-branes on orbifold R8/Z2?

I N = 8, SO(8) R-symmetry and parity
I two possible orbifolds depending on the value of discrete

torsion [Sethi],[Berkooz,Kapustin]:
I O(4) gauge group
I SO(5) gauge group

I The SO(5) agrees with what we find for k = 2

I The k = 1 SO(4) case should be O(4).

So the bottom line is that it’s not clear what the interpretation is

I for k = 2 there is agreement with M-theory.
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N = 8

What is the relation to D2-branes and SYM
[Mukhi,Papageorgakis]?

I Give a vev to a field, e.g. v = 〈X 8
4 〉 and expand

L = kL0(X
I
4) +

k

v2
LSU(2) SYM(X I 6=8

a 6=4 ,Aµ) +O(kv−3)

I scalars X 8
a 6=4 become a dynamical SU(2) connection Aµ.

I identify v2 = kg2
YM

So far out on the Coulomb branch we recover SYM theory and a
perturbative limit as k →∞, v →∞.



N = 8

Clearly one needs to generalize these models:

There are infinitely many models with a Lorentzian signature
metric [Gomis, Milanesi, Russo], [Benvenuti, Rodriguez-Gomez,
Tonni, Verlinde], [Ho, Imamura, Matuso]:

I The resulting Lagrangian (same as above) has a B ∧ F form
and no free parameters

Can gauge away the negative mode [Bandres, Lipstein, Schwarz],
[Gomis, Rodriguez-Gomez, van Raamsdonk, Verlinde]

I Classically equivalent to N = 8 SYM but with manifest
SO(8) R-symmetry and conformal invariance which are
spontaneously broken: g2

YM = 〈X I
+〉 (see also

[Ezhuthachan,Mukhi,Papageorgakis])

Won’t discuss anymore here: See Sunil’s talk.



N = 6

The existence of an orbifold, whatever it may be, gives the weak
coupling expansion that leads to a Lagrangian formulation

I Hence to proceed we need to look for a suitable orbifold:

There is an R8/Zk orbifold that preserves 12 susys (N = 6)
Z 1

Z 2

Z 3

Z 4

 ∼


ω

ω
ω−1

ω−1




Z 1

Z 2

Z 3

Z 4

 ω = e2πi/k

I SO(8) → SU(4)× U(1)



N = 6

The key construction is by [Aharony, Bergman, Jafferis and
Maldacena]

I Only impose N = 6 and an SU(4)× U(1) R-symmetry in the
Lagrangian.

I Constructed U(n)× U(n) Chern-Simons Matter theories at
level (k,−k)

I Vacuum moduli space is Symn(R8/Zk)

I Describes n M2-branes in this R8/Zk orbifold.



N = 6

IIB
D3 : 1 2 3
NS5 : 1 2 4 5 6

(1, k)5 : 1 2 7 8 9

⇓ T− duality along x3

IIA
D2 : 1 2

KK : 3̂ 7 8 9

KK/D6 : 3̂ 4θ 5θ 6θ 7θ 8θ 9θ

⇓ lift to M− theory

M− theory
M2 : 1 2

KK : 3̂ 7 8 9 1̂0

KK : 3̂ 4θ 5θ 6θ 7θ 8θ 9θ 1̂0



N = 6

The final configuration is just n M2s in a non-trivial curved
background preserving 3/16 susys.

I Metric can be written explicitly [Gauntlett,
Gibbons,Papadopoulos, Townsend]

I smooth except where the centre’s (U(1) fixed points) intersect

I Taking the near horizon limit gives n M2’s in R8/Zk .

I Fraction of preserved susy’s is enhanced to 12/16.



N = 6

In terms of the D3-brane SYM worldvolume theory:

I Integrating out D5− D3-strings and flowing to IR gives a
U(n)× U(n) CS theory with level (k,−k) coupled to
bi-fundamental matter.

I N = 3 is enhanced to N = 6



N = 6

This construction can be further generalized to include discrete
torsion H4(R8/Zk) = Zk [Aharony, Bergman, Jafferis]:

I U(m)× U(n) CS theory with level (k,−k) coupled to
bi-fundamental matter

I conjectured that |m − n| ≤ k
-e.g. n = m, n = m + 1,...,n = m + k − 1
-n = m + k is equivalent to n = m
-always strongly coupled



N = 6

N.B. In these models spacetime states that carry non-trivial U(1)
charges are represented by non-local operators made of of Wilson
lines.

e.g . O = tr(ZAZ †
B ....) has U(1) charge 0

O = tr(ZAZB ....) is not gauge invariant

I For k = 1, 2 there should be enhanced N = 8 supersymmetry
that is not manifest

I For k = 1 there is a free translational mode that is not
manifest.

For the AdS4 dual one can write S7 as a Hopf fibration over CP3

I Zk acts only on the S1 fibres

I Can reduce to AdS4 × CP3 vacua of type IIA

I λ′t Hooft = n/k
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N = 6

The [MP] relation to SYM can be viewed as moving all M2’s far
away from the fixed point so that

R8/Zk −→︸︷︷︸ R7 × S1/Zk −→︸︷︷︸ R7

v →∞ k →∞

i.e. compactification to type IIA in the large v , k limit



N = 6

Following the logic of the N = 8 construction let us obtain the
most general Lagrangian with N = 6 susy, conformal invariance
and an SU(4)× U(1) R-symmetry.

I scalars ZA
a ∈ 41 of SU(4)× U(1)

-complex conjugates Z̄Aā ∈ 4̄−1

I fermions ψAa ∈ 4̄1 of SU(4)× U(1)
I susys εAB ∈ 60 of SU(4)× U(1)

I (εAB)∗ = εAB = 1
2ε

ABCDεCD

I complex conjugation raises/lowers and A-index and flips the
U(1) charge

I Trace form hāb = Tr(T ā,T b)



N = 6

Starting from the most general form for the susy’s one finds
[Bagger, NL]

δZA
d = i ε̄ABψBd

δψBd = γµDµZA
d εAB + f abc̄

dZC
a ZA

b Z̄Cc̄εAB + f abc̄
dZC

a ZD
b Z̄Bc̄εCD

δÃµ
c
d = −i ε̄ABγµZA

a ψ
B
b̄
f cab̄

d + i ε̄ABγµZ̄Ab̄ψBaf
cab̄

d

Provided that

f abc̄
e f

ef ḡ
d = f af ḡ

e f
ebc̄

d + f bf ḡ
e f

aec̄
d − fē

f ḡ c̄ f abē
d

and
f abc̄d̄ = −f bac̄d̄ , f ∗c̄ d̄ab = f abc̄d̄ .

N.B Recover the N = 8 theory when f abcd is real and totally
anti-symmetric



N = 6

The Lagrangian has a similar form to the N = 8 case [Bagger, NL]:

L = −DµZ̄ a
ADµZA

a − iψ̄AaγµDµψAa −ΥCD
Bd ῩBd

CD + LCS

−if abc̄d̄ ψ̄A
d̄
ψAaZ

B
b Z̄Bc̄ + 2if abc̄d̄ ψ̄A

d̄
ψBaZ

B
b Z̄Ac̄

+
i

2
εABCD f abc̄d̄ ψ̄A

d̄
ψB

c̄ ZC
a ZD

b −
i

2
εABCD f cdāb̄ψ̄AcψBd Z̄CāZ̄Db̄

where

ΥCD
Bd = f abc̄

dZC
a ZD

b Z̄Bc̄−
1

2
δCB f abc̄

dZE
a ZD

b Z̄Ec̄+
1

2
δDB f abc̄

dZE
a ZC

b Z̄Ec̄ .

and

LCS =
1

2
εµνλ

(
f abc̄d̄Aµc̄b∂νAλd̄a +

2

3
f acd̄

g f gef̄ b̄Aµb̄aAνd̄cAλf̄ e

)
.



N = 6

As before f abc̄
d also defines a triple product:

[X ,Y ; Z̄ ]d = f abc̄
dXaYbZ̄c̄

I gauge symmetry δΛZA
d = Λc̄bf

abc̄
dZA

a acts as a derivation

One natural class of solutions: Let X ,Y ,Z be complex n ×m
matrices

[X ,Y ; Z̄ ] =
2π

k
(XZ †Y − YZ †X )

I Gauge symmetry is δX = MX − XN with M ∈ u(m) and
N ∈ u(n)

I SU(m)× SU(n) Chern-Simons with matter in bi-fundamental

I gives the [ABJM] and [ABJ] models by gauging the U(1)
global symmetry



N = 6

L = −tr(DµZ †
ADµZA)− itr(ψ̄A†γµDµψA)− V + LCS

−iλtr(ψ̄A†ψAZ †
BZB − ψ̄A†ZBZ †

BψA)

+2iλtr(ψ̄A†ψBZ †
AZB − ψ̄A†ZBZ †

AψB)

+iλεABCDtr(ψ̄A†ZCψB†ZD)− iλεABCDtr(Z †
D ψ̄AZ †

CψB) .

with LCS = kLCS(u(n))− kLCS(u(m)) and

V = tr
∣∣∣∣[ZA,ZB ; Z̄C ]− 1

2
δAC [ZB ,ZE , Z̄E ] +

1

2
δBC [ZA,ZE , Z̄E ]

∣∣∣∣2
see also [Benna,Klebanov,Klose,Smedback],
[Hosomichi,Lee,Lee,Lee,Park], [Bandres,Lipstein,Schwarz]

N.B. there are other possibilities: U(1)× Sp(2n) [HLLLP]
- classified by [Schnabl, Tachikawa].



Mass Deformations

Turning on a background 4-form flux should lead to a ’Myers’
effect and induce mass terms preserving all supersymmetry.

I Vacua correspond to M2’s ‘blown-up’ into M5’s on fuzzy S3

[Benna],[ Bagger,NL]

There is a deformation of the N = 8 theory that breaks
SO(8) → SO(4)× SO(4) [Gomis, Salim, Passerini],
[Hosomichi,Lee and Lee]

Let us look for mass deformations of N = 6

I one mass breaks SU(4)× U(1) → SU(2)× SU(2)× U(1)
[HLLLP], [Gomis,Rodriguez-Gomez,van Raamsdonk, Verlinde]



Mass Deformations

Start by considering the most general U(1)-preserving deformation
of the fermion variation:

δmψAa = δψAa + mA
BεBDZD

a + εABm′B
CZC

a

δZA
a and δÃµ

c
d unchanged.

I Closure on ZA
a must generate an SU(4)× U(1) rotation:

⇒ m′B
C = 0

I Closure on Ãµ
c
d must vanish

⇒ (m∗)A
B = mB

A

I Closure on ψAd must generate an SU(4)× U(1) rotation
on-shell:
⇒ mB

B = 0 and

0 = γµDµψCd + f abc̄
dψCaZ

D
b Z̄Dc̄ − 2f abc̄

dψDaZ
D
b Z̄Cc̄

− εCDEF f abc̄
dψ

D
c ZE

a ZF
b + mC

DψDd



Mass Deformations

So it would seem that we require m to be a traceless Hermitian
matrix.

I However the variation of the Fermion equation of motion only
gives a consistent Bosonic equations of motion if
mA

BmB
C = µ2δCA

I Up to an SU(4) rotation we can take

mA
B = µ

(
12×2 0

0 −12×2

)
I Thus the SU(2)× SU(2) mass is the unique deformation

I This implies that the SO(4)× SO(4) deformation of the
N = 8 theory is also unique



Mass Deformations

The Lagrangian is the same as before with the fermionic mass
Lm = imA

B ψ̄A
a ψB

a and

ΥCD
Bd = f abc̄

dZC
a ZD

b Z̄Bc̄ −
1

2
δCB f abc̄

dZE
a ZD

b Z̄Ec̄ +
1

2
δDB f abc̄

dZE
a ZC

b Z̄Ec̄

+
1

2
mB

DZC
d −

1

2
mA

CZD
d

I Vacuum solutions:

[ZA,ZB ; Z̄C ] = mC
AZB −mC

BZA

constructed by [G,R-G,vR,V]

I Agrees with expectations at large k but more numerous than
expected at finite k



Conclusions, Comments and Problems

Conclusions:
I There are Lagrangians to describe n M2’s in R8/Zk for any n,

k.
I including Lagrangians with N = 8 and SO(8) R-symmetry.

I Weak coupling arises by an orbifold
I Note that the Lagrangian for M2’s in flat R8 is strongly

coupled
I Not all symmetries are manifest when k = 1, 2:

- N = 6 becomes N = 8
- For k = 1 there should be a free centre of mass mode

I Quantum aspects can be very different from Classical
predictions
- e.g. degeneracy of massive vacua are not in agreement
[G,R-G,vR,V]
- Discrete quantities can change as a function of k
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Comment:Is the 3-algebra structure important?
On the one hand:

I The Lagrangian can be expressed as a Chern-Simons gauge
theory with matter fields whose interactions are made from
matrix products.

On the other hand:

I Supersymmetry says that the entire Lagrangian is fixed by
giving a 3-algebra

I Dynamical fields are controlled by a triple-product and not the
Lie-bracket

I Higher derivative corrections of D2-branes are also determined
by a 3-algebra when lifted to Lorentzian M2-brane
Lagrangians [Alishahiha,Mukhi]
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Problems:

I Understand the enhancement to N = 8 in [ABJM],[ABJ] and
translational symmetry when k = 1

I Understand the d .o.f ∼ f (λ)n2

- at weak coupling f ∼ 1 so d .o.f ∼ n2 .

- at strong coupling f ∼ 1/
√
λ =

√
k/n so d .o.f ∼ n

3
2 .

I What is the role of the SU(2)× SU(2), N = 8 Theory?
- note that there are now two proposals for the R8/Z2 orbifold
with discrete torsion

I What is the role of the Lorentzian N = 8 Theories
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More generally: what can this tell us about M-theory? M5-branes?
e.g. Consider the SU(2)× SU(2), N = 8 model:

One finds that the mass formula for states in these vacua is [NL,
Tong]

M =
4π

k
A A =

1

2
|z7

1 z̄8
2 − z8

1 z̄7
2 |

I A is the area of the triangle with vertices on the M2’s and the
fixed point

I higher k orbifolds do preserve this area formula
I Novel M-theory orbifold?
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Note that we get an enhanced gauge symmetry whenever this
triangle degenerates: the M2-branes become collinear.

I A similar effect happens for D2-branes in D = 10:
I at the origin of the scalar moduli space there is an unbroken

gauge symmetry and the branes are strongly coupled.
I however they can be separated in the eleventh dimension (but

are collinear)
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