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Plan of Talk 

  (Introduction: The information paradox and motivation)

  Toy Model and its SD equation

  Results at zero temperature and non-zero temperature

  Conclusion I and discussion

  Further progress: another models with 1/N2 corrections

  Conclusion II 

       (how much we can cover each depends on time we have)



The main point I want to discuss today is;�
In large N theory, �

‘1/N expansion around N=∞’�
vs   ‘ finite N ’?�

i.e.�

‘ perturbative quantum gravity ’ �
vs   ‘ full quantum gravity ’ �



Introduction:  
Black hole information paradox 



Black hole evaporation &  
information paradox 

  Before and after the formation of 
black hole horizon, the notion of 
`particles’ & `vacuum’ changes 

  Original `vacuum’ is no more 
vacuum after horizon formation 

  It is perfectly thermal state 
actually black hole radiates as 
thermal black body radiation 



Black hole evaporation &  
information paradox 
 Hawking’s argument is quite robust; it works as far as black 

hole horizon is formed by gravitational collapse 
  Since after horizon is formed, the vacuum looks completely 

thermal, so black hole radiates thermally 
  This thermal radiation is parameterized only by the 

temperature of black hole (surface gravity) 
  Therefore, all the information, how black hole is formed etc, 

are totally lost, it seems that pure states evolves into 
thermal or mixed states!? 

 But this contradicts with principles of quantum mechanics 
(QM): `unitarity’ 

  “Do we have to give up some principle of QM once we 
include gravity?” 



And three decades passed  
without `sharp’ answer  
Hawking: Quantum Gravity requires modification of quantum 
mechanics, time evolution is described by evolution of 
density matrix which allows pure into mixed. 

Difficulty of modifying QM 
Hawking’s theory can be shown to be equivalent to the QM 
system with random source term 

This randomness breaks time-translation invariance: energy-
momentum is not conserved. (Banks, Peskin, Susskind) 



And three decades passed  
without `sharp’ answer  

With only low energy 
available, we cannot 
send the information in 
very short timescale.  

|y> 

|y> 

|y>->|y>|y>?  
Quantum Xerox? 

No observer can 
see physics of both 
inside and outside 
simultaneously 
              (Susskind)  singularity 

horizon 



New development of non-pert. quantum gravity 
 Discovery of gauge/gravity dual (AdS/CFT) 
 AdS/CFT => string theory (as quantum gravity) in 

asymptotic anti de Sitter (AdS) space = gauge theory 
without gravity 

 There are huge number of evidences showing that this 
conjecture is correct, and this number keeps increasing! 

 This duality says that quantum gravity physics in 
asymptotic AdS space is equivalent to the physics of some 
gauge theory with less dimension 

 For example, the S-matrix of black hole formation/
evaporation must be unitary, since we can map this 
process by putting it in asymptotic AdS and consider it 
from dual gauge theory viewpoint, which is always 
unitary 



Now does AdS/CFT solved the problem? 

 =>  In principle yes, but not yet in practice. 



 What is wrong with the original Hawking’s argument? 
  If information is back, how will it be back?  
 How do we see the quasi-local gravity from gauge theory?  
 How do we see the non-local effects for black holes from 

gauge theory? 
 How do we see the black hole complementarity?  
  etc…  

Now does AdS/CFT solved the problem? 

=> In principle yes, but no (yet) in practice. 

AdS/CFT should be better understood, since we don’t understand 



  In this talk, we will concentrate on unitary issues & 
information problem 

 Hawking’s original argument is based on semi-classical 
approximation. And he showed that black hole radiate 
thermally, so information is lost.  

 This contradicts with gauge/gravity duality, since black 
hole radiation is dual to unitary gauge theory evolution. 

 So how things can be consistent? 



Gauge/gravity correspondence 
 AdS/CFT correspondence;  
  Semiclassical approx. is                                           with 

leading GN correction only for matter, but not for geometry 
  This means, Hawking’s argument is at                theory in the 

dual gauge theory (with infinite ‘t Hooft) 
 But note that in N =∞, information “can” be lost  
  This is because in this limit, we have infinite number of 

states for the system. System can absorb arbitrary amount of 
information as heat bath 

 Also note that the number of states are infinity, Poincare 
recurrence time also becomes infinity as 

               (recurrence time scale) ~ exp(S) ~ exp(N2)  
 On the contrary, if N is finite, then the field theory spectrum 

is discrete (on finite volume), and it evolves as QM system, 
so information is never lost  



 So the question we would like to understand; 
    Can we see the non-unitary black hole physics from 

unitary (at finite N) gauge theory, by taking N =∞?  
 Black hole is characterized by its horizon, where 

classically all information is incoming, and lost 
 BH horizon makes all information (ie, correlation 

functions) decay exponentially at later time since 
information is absorbed inside the horizon 

 Can we see this exponential damping/decay of 
correlation functions from unitary gauge theory  

    at N =∞ ? 



 Our goal is to show this property; the exponential 
damping/decay of correlation function in N = ∞ limit, 
which never occurs at finite N            (Maldacena ’01)            

 Note that exponential decay is not guaranteed, since 
power law decay is also consistent with information loss.  

 The late time decay implies that system is thermalized. 
 This late time decay can never been seen by perturbation 

theory (it is the properties of quantum chaos) 
                                                             (Liu-Festuccia ’06) 
 We simplify the gauge theory system as much as possible, 

so that we can capture non-pertubative for ∞  



 We would like to find simple enough toy model where 
resumming Feynman diagrams is systematic enough so that 
we can see the full planner physics non-perturbatively 

  If we can resum all diagrams, unitarity is guaranteed at 
finite N  

 Our toy model is kind of reduction of D0-brane black hole 
with a probe D0-brane. We have one U(N) adjoint and one 
U(N) fundamental representation 

 Here, [adjoint field] = black hole degrees of freedom and   
     [fundamental field] = open strings or W-bosons between 

the black hole and a probe 
 Adjoint plays the role of thermal heat bath, whose correlator 

are thermal one with some mass m, and since probe is away 
from black hole, W-bosons masses M are heavy enough 

  They couple by Yukawa interaction so that U(N) indices are 
contracted 



   (Itzhaki-Maldacena-Sonnenschein-Yankielowicz) 





 Fundamental mass M are heavy  
       =>   they evolves Quantum Mech way,  
 Adjoint mass m are light 
       =>   they have thermal correlation function  
 Assign the free thermal correlation function for adjoint by 

hand  
          (later we discuss more on this issues) 
 We would like to see how the fundamental fields evolve, 

through the coupling to adjoint field 
    and how it can decay exponentially (quasi-normal mode) 

in planer limit which never happen in finite N 



A Toy Matrix Quantum Mech. Model 

 We focus on the following obsearvable 

 Note that due to time ordering, if t < t’ above quantities 
are zero, so this is retarded Green fn. 

 Therefore  
                   has no pole in upper half plane 



 In perturbation expansion,  

 Where thermal sum is defined as; 

free (bare) propagator 

interaction 

# op. for matrix X 



  Schwinger-Dyson (SD) equation for the fundamental field; 

 Mathematically 

 With                           and  

(We have only planar graphs) 



 K      is adjoint correlation function which we chose  

  In zero temperature case, this reduces to free scalar 
propagator 

 Bellow we consider zero temperature/finite temperature 
case of above SD eq (you will see that structure of the SD 
eq are totally different between zero and finite 
temperature) 



 Since               has no pole in upper half plane, we can 
close the contour for          by going to the upper half 
plane  

 As a result, we pick up only the pole from  

for SD equation 



 So the SD equation reduces to following recurrence eqs 
 At zero temperature 

 At nonzero temperature 

 Even though these two equations are similar, the structure 
of solutions are totally different as we will see 



Zero temperature case 

At m = 0 case, SD be algebraic equation and solvable as 

The pole at                 has been broaden into a branch cut. 
This is because the mass for a is given by g X and the 
distribution of X is given by Wigner semi-circle with width 



Zero temperature case 

•  The Wigner semi-circle for m=0 case splits up into poles at 
nonzero m. 
•  To see this, note that if there is branch cut at some ω = ω0, 
then the recurrence eq. forces another branch cut at ω0 + m, 
ω0 - m, so we have series of branch cut by step of m. 
•  But this contradicts with the fact that at zero T  in ω = ∞, 
where theory reduces to free, so should approach i/ω.                            
and no branch cut there, unless its amplitudes approaches 
zero  
•  We conclude that at zero T, spectrum is bunches of poles, 
no branch cut. 



Real part of G(ω) 
for ν = 1,  

m = 0.05 at  
a)  0.01 unit  
b) 0.1 unit above 

the real ω axis.  
The poles merge  
into an  
approximate 
semicircle  
distribution 



Non-zero temperature case 

Again at m = 0 case, with νT
2 = 2λ/m (1 – e-m/T ) fixed, it gives  

Physically eigenvalue distribution is thermally broaden, but still it 
is power law decay, not exponential. 



Non-zero temperature case 

Spectrum representation shows negative residues are not 
allowed along real omega axis  

If there is pole, pole must be sandwiched by zero both on the left 
and right, but this gives contradiction. Therefore the poles which 
we see at zero temperature are not allowed! 



Non-zero temperature case 
This immediately implies that the spectrum is continuous, 
rather than discrete poles, so there is a chance this shows 
quasi-normal modes  

  Infinite arrays of branch cut or 
  Spectrum continuously spreads all the way from - ∞ to + ∞; ie, 

branch cut spreads over all the real ω, and pole we found at 
zero temperature goes into the second Riemann sheet, complex 
omega Im ω < 0. 

There are two possibilities 



Non-zero temperature case 
Although this is the model we want, it is still challenging problem 
to solve this eq. Because this eq. is unstable both along increasing 
omega and decreasing omega! 

Even numerically this eq. are very hard to solve! 

We solved this by fixing λ/m, and taking the derivative 
w.r.t. T, we allow system evolves from zero temperature 
into finite temperature by solving differential eq w.r.t. T  



The real part of G(ω) as 
spectrum density with 
various temperature 
y = exp(-βm). The 
vertical axis is rescaled. 
The plot is ω axis for 
slightly above the real ω  



The logarithm of 
infinite temperature 
correlator log|G(ω)| as a 
function of t, with fixed 
νT= 1, m =0.8. Late 
time exponential decay 
of the correlator is clear.  



Non-zero temperature case 
Asymptotic behavior of solution 

In the large omega, the coupling be weaker, the propagator 
approaches more to free one, this means magnitude of  
πF(ω)= Re[G(ω)] approachs 0 at large ω.  

Consistent solution with above boundary condition is;  

Spectral density behaves asymptotically as  



Conditions for quasinormal mode�

 Finite mass of adjoint field;  
 Black hole microscopic degrees of freedom have 

finite mass, their wave function is localized at finite 
scale in space.  

 ‘t Hooft coupling is nonzero; 
 To escape information into infinite phase space, 

mixing of states by interaction is crucial.  
 Finite temperature correlator for adjoint field; 
 Black hole should be at deconfinement phase. 
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 Finite mass of adjoint field;  
 Black hole microscopic degrees of freedom have 

finite mass, their wave function is localized at finite 
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 ‘t Hooft coupling is nonzero; 
 To escape information into infinite phase space, 

mixing of states by interaction is crucial.  
 Finite temperature correlator for adjoint field; 
 Black hole should be at deconfinement phase. 



Hawking-Page transition and  
Confinement/Deconfinement transition 

 Confinement/deconfinement transition is expected to 
be connected with Hawking-Page transition (thermal 
AdS/AdS black hole) in gauge/gravity duality 

 In N = ∞ at confinement phase, degrees of freedom 
are glueball (gauge singlet, closed strings). Their 
propagate freely at N = ∞ whatever ‘t Hooft coupling 
we take. So at this case, theory is in practice free, 
even though ‘t Hooft is nonzero. 

 At deconfinement phase, degrees of freedom are 
gluons (gauge non-singlet, open strings, or `string 
bits’). They still interact at N = ∞, if ‘t Hooft 
coupling are nonzero. 



  The system which has dynamical adjoint gauge fields shows 
Hagedorn transition, which is confinement/deconfinement 
transition. 

  For example, in d=4, N =4 SYM shows this transition 
(Sundborg, Aharony et al)  

  This transition is characterized by how the VEV of 
Polyakov loop operator along time direction changes S 

Zero mode, can be diagonalized 



 At confinement phase, U is uniformly distributed,  
     So the adjoint thermal propagator reduces to the  
     zero temperature one, thermal effect cancel out  
 At deconefinement phase, especially at very high 

temperature, U is localized, delta-functionally peaked, then 
the adjoint thermal propagator reduces to the nonzero 
temperature propagator we used because 

•  The finite temperature 
adjoint correlator is 
given by summing over 
infinite mirror image 
separated by -ib  
•  In SD eq for 
fundamental field       , 
X correlator contributes 
after summing over j 



i 

i i 

j 



  So the zero temperature case we studied in our model 
corresponds to the confinement phase in the real gauge/
gravity duality, and the nonzero temperature case, especially 
very high temperature case, corresponds to precisely the 
very high temperature deconfinement phase in the real 
gauge/gravity duality. 

  The fact that we don’t see quasinormal mode when adjoint 
X has zero temperature propagator means that we cannot 
find quasinormal mode when adjoint X is at the 
confinement phase (=thermal AdS phase). 



Conclusions. Part I 



Conditions for quasinormal mode�

 Finite mass of adjoint field;  
 Black hole microscopic degrees of freedom have 

finite mass, their wave function is localized at finite 
scale in space.  

 ‘t Hooft coupling is nonzero; 
 To escape information into infinite phase space, 

mixing of states by interaction is crucial.  
 Finite temperature correlator for adjoint field; 
 Black hole should be at deconfinement phase. 



Conclusion 



Discussion 

  To restore the information, finiteness of N is crucial. 
 As far as we use the semi-classical approximation, we never 

restore the information. 
  The information loss occurs only at (semi-)classical gravity. 

In full quantum gravity, we expect ‘horizon-like’ boundary  
where information flows only along one side never occur. 

 At infinite N, spectrum is continuous, but at finite N it is 
collections of delta functional peak. 

  The continuous spectrum at nonzero m, T, g2N and infinite 
N should split into poles at finite N  

    with spacing dE ~ exp(-O(N2))  



finite N vs. N  = ∞ 



finite N vs. N  = ∞ 



finite N vs. N  = ∞ 



To understand furthermore… 
 As we see, thermalization occurs due to the nonperturbative 

effect by interaction 
 On the other hand, our Schwinger-Dyson equation is too 

complicated to solve analytically even at planar limit 
  So non-planar corrections are even more difficult 
 We also want to understand N2 point correlation, but 

difficult 
  To understand better, we would like to have system which 

shows more analytical control: but still complicated enough 
to show information loss physics, i.e., continuous spectrum 
from Schwinger-Dyson equation 

  So are there any way to build better model? for that, let’s 
look at our models more closely 
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 On the other hand, our Schwinger-Dyson equation is too 

complicated to solve analytically even at planar limit 
  So non-planar corrections are even more difficult 
 We also want to understand N2 point correlation, but 

difficult 
  To understand better, we would like to have system which 

shows more analytical control: but still complicated enough 
to show information loss physics, i.e., continuous spectrum 
from Schwinger-Dyson equation 

  So are there any way to build better model? for that, let’s 
look at our models more closely 

Part II talk 





  We pick up only the pole from  

for SD equation 



Another Toy Matrix Q.M. Model 

  The interaction can be written as  

    (where A and  A   is annihi. and creation op. for adjoint field) 
 Our interaction does not preserve the # of adjoint field. As we 

saw in part I talk, each adjoint propagator induces pole shift 
for fundamental propagator as     

  Thus, each Feynman graph gives only the pole shift on real w, 
but if re-sum over all planar graphs, then spectrum changes, 
this is because pert. l expansion is singular at l -> 0.  

Part II: 



Another Toy Matrix Q.M. Model 

  Pert. l expansion is singular because higher order graphs gives 
more higher order poles  

 Higher singular poles occurs when n alternates n= 0, 1, -1. 

  This is the point where λ pert. breaks down by singular graphs 
=> We would like to modify our interaction so that only singular 

graphs survive   
  This turns out that we modify the model such that SD eq is 

polynomial eq. and we gain more analytical control  
  For this, we path integrate out the intermediate fundamental 

field as follows; 

Part II: 





Just for simplicity 



Another Toy Matrix Q.M. Model 

    with  i, j = 1, 2, …, N;   k’ = 1, 2, …, N’ , ai is fundamental 
rep’n of SU(N), and Ak’

i is bi-fundamental rep’n of SU(N’) x 
SU(N) 

 Gain: more symmetry, more analytic control 
  Price: dynamics is more constraint, system may not show 

enough chaotic property for thermalization 
                      interaction preserves the adjoint field number 

Part II: 

 interaction is modified 



  In large N planar limit, SD equation becomes; 

 Again, we calculate the following observable 



1. Schwinger-Dyson approach 

SD equation is written as; 

 S is sum over self energy graphs 
 S is sum over 1PI 
  if not, it is double counting due to manifest G(w) on r.h.s. 
 S is sum over 2PI (=no substructure for fundamental 

propagator)  
  fundamental propagator which contain substructure are 

already taken into account by dressed propagator) 



 In planar case, S is calculated as  

 Here we used, 



  The solution is λ = h N   

 With branch cut its late time behavior is power law decay as  

 Due to higher symmetry, the dynamics is less chaotic, show 
no quasinormal mode, but at least correlator decay in late 
time. 

because we neglect  



 Our goal in this II talk is to understand 1/N2 
expansion, and how bulk pic appears in this more 
solvable model 

We solved this model in 3 different ways; 
 1. Schwinger-Dyson approach 
 2. Loop variable approach 
 3. Summing over Young Tableaux approach 



1. Schwinger-Dyson approach 

SD equation is written as; 





 An example of 1PI, 2PI graph 

It can be shown that generic self-energy graph takes the following 
form:   



 We now need to sum over genus 1 graph S[G(w)] 
 Using the property that we can always embed these on disc 

with one handle, we classify graphs  
  The contributions of ‘trivial propagators’ are geometric sum, 

as seen in planar case, its effects are taken into account by 

It can be shown that generic self-energy graph takes the following 
form:   



 In planar case we obtained; 



Counting genus 1 graphs: 
  1PI, 2PI, and NO trivial 

propagator graphs are 
classified by how many 
non-trivial adjoint 
propagators graph has;  

  Ordering gives;   



 Given each set of integers (n1,n2,n3,n4,n5), it is 
straightforward to evaluate the values b and v as a 
function of these n’s  

 summing over graphs are equivalent to summing over 
these integers  

It can be shown that generic self-energy graph takes the following 
form:   





  Leading 1/N2 correction for the spectrum r = ImG(w + ie)  
      from g=1 graphs does not change the branch point 



Conclusion: Part II 
  In our toy model, 1/N2 corrections does not help to restore the 

information come back 
  This is expected since non-pert. width of e (-N2) << 1/N2 

precision spectrum is crucial 
 One goal is to obtain some solvable model where we can 

obtain full 1/N2 expansion and re-sum that in systematic way: 
so that we can obtain the finite N effect 

  Systematic understanding of 1/N2 expansion is necessary 
 More analysis should be done to understand better 



More comments… 
  In our model, we gave temperature T for the adjoint (black 

hole), therefore, black hole is in thermal state (mixed states) 
  In the large N limit, there is no difference between canonical 

ensemble and microcanonical, but in finite N, they are 
different 

  In order to understand black hole physics in canonical 
ensemble, we should not give temperature to adjoint, but 
rather just give energy to form black hole 

  From (N+2) D0-quantum theory, we can describe two D0-
prove head-on collision to form black hole in AdS (or M-
theory) background, if their kinetic energy is large enough as 
O(N2). It will be interesting to understand this better, for 
example, how fast can matrix be thermalized?  



Thank You 


