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e Dbasic setup: AdS/CFT with cosmological singularities
e gauge theories with time-dep coupling sources

e Spacelike cosmological singularities, BKL etc
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Cosmology, time dependence, ...

Tempting to think very early Universe has deep repercusson
various aspects of physics.

e Big Bang singularities, time, in string theory models?
Understangpacelike, null singularities — events in time

General Relativity breaks down at singularities: curvasutidal forces
divergent. Want “stringy” description, eventually towarsimooth
guantum (stringy) completion of classical spacetime gépme

Previous examples: “stringy phases’dny. 2-dim worldsheet (linear
sigma model) descriptions (including time-dep versiong, &achyon
dynamics in (meta/)unstable vacua), dual gauge/Matriarihs, . ..

In what follows, we’ll use theAdS/CFTframework.
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AdS/CFT and deformations

Nice stringy playgroundAdS/CFT. Bulk string theory or4dSs x S°
with dilaton (scalar}p = const, and metric

ds® = Z%(nw,dx“dacy + dz?) 4 dszs |
(Poincare coords) with 5-form field strength, dual to bougwda= 4
N=4 (largeN) SU(N) Super Yang-Mills theory.

Want: time-dependent deformations of AdS/CFT.

Bulk subject to time-dependent sources classically evolveamm (thro
Einstein egns), eventually giving rise to a cosmologicagislarity, and
breaks down. Avoid any bulk investigation near singularity
Boundary Gauge theory dual is a sensible Hamiltonian quantum
system in principle, subject to time-dependent sourcesp&ese ?
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AdS cosmologies

Start with AdSs x S° and turn on non-normalizable deformations for
the metric and dilaton (also nontrivial 5-form):

d82 = Ziz(gwd:c“d:c” —|— dZQ) —|— dS%g, y (I) = (I)(I'u) .

This is a solution in string theory if
Ry = 30,29,® . —= 9,(V=3§"0,2) =0,
i.e. If Itis a solution to a4-dim Einstein-dilatorsystem.
Time dep:® = ®(¢) or® = d(2™).
More later on cosmological solutions.
General family of solutions: A (z™) harmonic function)
ds? = 2712, detdx” + ZV 2 gppda™da , @ = ®(zH),
gmn(z™) Is Ricci flat, andg,, = g, (z#). [0 =0123,m =4...9.]
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AdS cosmologies cont’d

In many cases, possible to find new coordinates such thataoyn
metricds{ = lim, .o 2%ds? is flat, at least as an expansion about the
boundary £ = 0) if not exactly.

These aré’enrose-Brown-Henneaux (PBtansformations: subset of
bulk diffeomorphisms leaving metric invariant (in FeffexmGraham
form), acting as Weyl transformation on boundary.

E.g. null cosmologiesis? = L (e )y, datde” + dz?) , ®(a).
The coord. transfw = ze /2, y~ =z— — Qf/ , gives

ds* = 5 [-2dztdy™ + da? + Jw?(®)?(da™)?] + d$2 ,

usingR;+ = 3(f)? — f” = 4(®)?, the constraint on these solutions.

Now boundary atv = 0 manifestly flat 4D Minkowski spacetime.
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Gauge theories with time-dep
couplings
Thus dual gauge theory lives on flat space. So sharp subtopurest
Gauge theory with time-dependent couplifig,, = ¢®. Response?

We would like to study sources that are trivial in the far fasitk is

AdSs5 x S°) and smoothly turn on: this means the gauge theory begins
In vacuum state and is subject to Hamiltonian time evolutioough

this external time-dependent source. Basic expectatioe:-tiep

source excites vacuum to higher energy state.

Want to consider sources that approath— 0 at some finite point in
time: e.g. g&y, =e* — (=)’ , p>0 [t <0].
We'd specially like to understand gauge theory responsetned).

This point in time corresponds to a singularity in the bulk:
Ry = %@2 ~ }2 . Curvatures, tidal forces diverge néax 0.
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Gauge theories, time-dep couplings

Gauge theory kinetic termg e~ F2 not canonical.
In usual perturbation theory, we absorb the couplipg, into the
definition of the gauge field,, so thatgy 5, appears only in the
Interaction terms. Let's do something similar here.

First, consider a simpler toy scalar theory
L=—e"? (%(8)2)2 + X4). RedefiningX = ¢®/2X gives

L=—(0X)?—-m?®)X? - e®X*,
dropping a boundary term. The mass term is

m?(®) = 10, P01® — 10,0'P .
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Null time-dependence

Null cosmologies® = ®(z™) . No nonzero contraction so the mass
term vanishes i.en?(®) = 0.

Similar story for gauge theory using lightcone gauge forvemmence.
Suppressing many details, but briefly, cubic/quartic extgon terms:
multiplied by powers ofjy-y; = ¢®/2, unimportant nea¢® — 0.

Thus we obtain weakly coupled Yang-Mills theory at the lomain
null time (x* = 0) corresponding to the bulk singularity [e.g.

e®? = gs(—x)P).

This suggests that lightcone Hamiltonian time evolutiothef gauge
theory is sensible.

In other words, null cosmological singularities seem to awifact of
using bad (classical bulk sugra) variables.
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Null time-dependence

Is energy pumped in by null-time-dependent source ? No.
Sincez ™ -translations are symmetries, there is in fact no particle
production. This suggests that continuing past singylatit:™ = 0 is
OK, and late-time state is vacuum.

Thus late-time bulk is4d.S5 x S° (dual to vacuum state gf'=4 gauge
theory, with® — const for largex™).

Bulk: sincee® — 0 near singularity, no large, effects. Preliminary
calculations suggest stringy() effects (beyond GR) are becoming
Important.

In some still simpler toy models with no RR-flux, dilaton, the
singularity is purely gravitational so possibly more tedile.

| am studying these to understand worldsheet effects ndlar nu
singularities.
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Time-dependent couplings

The story is very different with time-dependent couplings.
Toy scalar theoryL = —e~® (%(6’5()2 + X4). The redefinition
X =e®2X gives L=—(0X)2—-m?(®)X?%—-e®X*,
dropping a boundary term, the mass term being

m?(®) = — () + 3¢

p(p+2)

For g5, =e¢® — (—t)P, p>0 [t < 0], we havern® = -2

Tachyonic mass term, divergentias- 0.

* X variables canonical: analysing them shows that the mass ter
forcesX ~ tp% , SO that extra information a8 — oc IS required:
X description not good.

* X variables finite near = 0: interaction terms—% X*|, large
(unlike the null case).
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Time-dep quantum mechanics

In more detail: first ignore interactions, quantizexdratic theory.

For a single momenturh-mode, this is time-dep quantum mechanics:
Sp = [dt (X2 - () X?), W2(t) = k2 +m2(t) —177%° W2,
Generic classical solutionsl = \/—t [AJ,(—t) + BN, (-1)],

V= ]%1 . Diverge ag — 0 : i.e. generic trajectory driven to large.

Takef(t) = /™22 /—tH}(—wot) as the solution off +w?f =0,
with f — e 0ol ¢ — —oo. ExpandX = ﬂlTO[af(t) +al f*(t)] .

Using the Schrodinger equation: the ground state wavetitmcs
ta) = A )T
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Time-dep quantum mechanics

N 22
X: wave-fn ot z) = AT

Wave-fn phase- % ,“wildly” oscillating neart = 0.

t—07: f~ (—t)7P.
e VA
Probability density:|(t, z)|? = K-e” 17 .
Gaussian, widthf|* — oo ast — 0.
Wave packet infinitely spread out &is- 0.

X variables spread out infinitely: need extra informatiotXat- oc.
X description not good.
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Time-dep quantum mechanics

Original X = ¢®/2X variables better defined: finite neas 0.
X = e®/2\/=[AJ,(—t) + BN, (—t)] ~t70 P/2¢1/24=v/2

Wave-fn, probability:
&b ~2 woﬁiz

- A (L) 2 - AR —9T
U(t ) = e TTRE (D) = e T

t—0": f~ (=t)7P, |f]?e® ~ const.

~

X: wave-fn phase- (_t)% ., prob. widthconst .

p > 1. wave-fn ill-defined neat ~ 0. “Wildly” oscillating phase.
p < 1: X wave fn phase regular neair 0, |1(t, %)|? finite.

Quadratic approximation shows interactions are importaatt = 0.
Perturbation theory insufficient.
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Time-dep field theory wave-fn

More general Schrodinger picture analysis in full field ttyais
possible neat = 0.
Lagrangian L = [d3z e ?(3(0:X)? — 3(9:X)? — X?) .

: . . _ 2
Field theory Hamiltonian: H = e~ *V[X] + ¢® [ d*z(—5:%) ,
where V[X] = [ &’z ( >+ X1) [replacingll(z) — %] .
Schrodinger eqn: i@tw[f{'(az),t] = Hy[X (z),1] .
Neart = 0, the potential terma~®V dominates in the Hamiltonias
i0pp = e~ ®*OVIX ()] . This gives the wave-fn (generic state)

Y[X (2),1] = e~ dt T OWVIX@] o[ X ()]

Phase as before (_f)_lp_pV[X(a;)] . 1f p > 1, “wildly” oscillating
(t — 0).
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Energy divergence

Analyzing KE terms shows they are indeed subleading hea.

This means energy pumped in by time-dep source diverges as
(H) ~ e=(V) = =5 [ DX VIX] [go[X (2)]]?

since no time-dep ihV). Oscillating phase cancels fif|2.
This holds for generic states. For special states With= 0, energy
may be finite (subleading KE terms do not diverge unjess?2).

Even for these special staté#/2) will diverge (if (V) = 0,
generically(V?) does not vanish).
Thus fluctuations non-negligible about states wWih) = 0 .

Note: this is not perturbation theory. Interactions impatt
Diverging energy since coupling strictly vanishes near 0.
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The gauge theory

Scalars, fermions: no dilaton coupling in KE terms. FernYokawa
and scalar quartic terms come with powergpf, = ¢®/2 , vanish
neart = 0.

Gauge fields: KE terms have dilaton couplifig=® TrF= .

Sincee® = (—t)? neart = 0, the gauge field terms determine the
behaviour of the system near 0. Focus on this.

Consider non-interacting theory first.

Convenient (Coulomb) gaugé, = 0, 9;A4,; = 0 (longitudinal part of
gauge field time-indep from Gauss lawy(0;4,;) = 0).

Residual action for two physical transverse componentisecomes

[e *(0AY)*, (i.e. two copies of the scalar theory earlier).
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The gauge theory

Cubic/quartic interactions: no time derivatives.

Contribute only to potential energy terms (from magnetildjienot to

KE terms (from electric field). PB/[A'(z)] = § [ d®z Ty E} .
Ly=1%[dPze ®Tr ((6’tAi)2 — Ffj) .

Schrodinger quantizationt’ — 1% . Then wave-fn near = 0:

w[Ai(a:),t] _ i/ at e~ PYV[A (z)] ¢O[AZ(CU)] _
Wave-fn phase as before: “wildly” oscillating as— 0 (for p > 1).
Energy divergesH) ~ e~ ® [ DA V[A'(z)] |vo[AY]|? (if (V) #£0).

Thus ife® — 0 strictly, gauge theory response singular.
For cutoffe®, large energy production due to time-dep source.
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AdS cosmologies with spacelike
singularities
Recall: ds? = 5 (gudatda” + dz?) + dsis , ® = P(aH) .
Solution if: Ry = 50,29,®, = u(v/~5§"0,®) = 0.

Solutions with spacelike Big-Bang (Crunch) singularities
© d?=4 [d% — A2+ 372, t2pi(dxi)2] |

e? = |t|V20-2iP)) S =1, [Kasner cosmologies]

*ds? = 5 [sz + | sinh(2t)|(—dt* + f_i:; + 72(df* + sin?0dg?)) |,

e® = g, | tanht|V3 . [k = —1 (hyperbolic) FRW boundary]
Dilaton bounded, approaching constant at early/late timggmptotic
spacetime isAdSs x S° (using a coord transformation).

Thek = 0 (flat) FRW is the same as symmetric Kasngr= %).
(There is also & = +1 (spherical) FRW solution.)
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AdS BKL-cosmologies

In fact, larger family of cosmological solutions where sglametric is
one of the homogenous spaces in the Bianchi classification:

ds® = z% {dz2 — dt? + nep(t) (egda:a)(e%d:cﬁ)} . e =20
e2 dx® are a triad of 1-forms defining symmetry directions. Sphtial
homogenous dilaton means spaﬂ#la) vanish, and?®y = $(9y®)?.

Bianchi-IX: ds? = Z% [dz2 — dt? + n?(t)eée%dm“dwﬁ} ,e® = |t~ .
Approximate Kasner-like solutiom; (¢) ~ ¥ with
2
> ipi=1, Zipgzl_%'

If all p; > 0, cosmology “stable”. Else, spatial curvatures force BKL
bounces between distinct Kasner regimes. With each bounce,
Increases — dilaton-driven attractor-like behaviour.

Attractor basin: generic Kasner-like solution with all> 0.
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More on AdS BKL-cosmologies

Bianchi IX: symmetry algebra ok, = ¢29,, is SU (2).

Spatial Ricci, decomposing along tnaﬂ? — R% :
1 _ Ot(n2n3dm) 1 B
R( 1) nining 1 ~ 2(minans)2 (n5 —m3)° =il =0,

Sayp; < 0: thenn} ~ t~4P1l non-negligible at some time. This forces

metric to transit from one Kasner regime to another. As lahganme

p; < 0, these bounces continue as:
(nt1) _ —p™ (n+1)  p{+2p™

— : — _ On
’L' 2 T 1+2p<_") 1+2p")
for the bounce from thén)-th to the(n + 1)-th Kasner regime.

9 a(n—l—l) —

If p_ <0, thena, 11 > a,. Alsoa,+11 — o, = ozn(1;22€)__) ,
l.e., o Increases slowly for smadi: attractor-like behaviour. Finite
number of bounces. If a)}; > 0, no bounce: cosmology “stable”.

For no dilaton & = 0), BKL bounces purely oscillatory.
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More on AdS BKL-cosmologies

. . o A2 _ 2
Parametrizationp; = x, py3 = 5% + Vi-a t2r—dr-

Lower boundp; > 1_@ . Solution existence forces® < % .
Under bouncesy increases, window of alloweg shrinks. Lower
bound hitsp; > 0 = a? > 1. Bounces stop, cosmology “stabilizes”.
Attractor-like behaviour: e.g{p) = 29 = 0.3, ag = 0.001}, flows
(initially slowly) to {p; > 0} after 15 oscillations ¢15 = 1.0896).

. 1 9 33 5 7 19 3 5 9
E9:(=5:35:35) = (—apapar) — (Cip i) —
(—%,2,2) — (3,3, %) . [multiple flows with same endpoint]
Chaotic behaviour: 7% change to smallest exponegngives

13 9 65 2 13 39 3 2 23 1 3 17
(=% 3570) = Coan) = Cxhn) — (e el
drastically different endpoint.

Note also that dilatonico{ # 0) [attractor-like] and non-dilatonic

(o = 0) [oscillatory] flows drastically different.
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Universal behaviour near
singularities
Consider symmetric Kasner-like AdS BKL-cosmologies. Near
singularity, spatial curvatures unimportant. Leadingyaiar behaviour

IS essentially dilaton-driven, symmetric Kasner spacetiriolographic
stress tensor has similar leading behavioflf, (~ ];7—42).

Consider families of such AdS cosmologies which are of thmfof

the symmetric Kasner-like solution i.@, = %: (ds3 spatial metric)

ds? = L [d2? + |2t|(=dt? + ds3)] , e =[t|V3.
Ignoring subleading curvature effects, spatial metriccapimately flat
i.e. ds3 ~ flat. Then boundary metric is conformally flat, to leading
order. [we’ve used a different time coordinate here.]

Can use PBH transformations to recast boundary metric tabe fl
spacetime.
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The gauge theory

Now g3, = e® = (—t)\/§ (t < 0). Thatis,p=+v3>1.

From earlier: wave-fn phase “wildly” oscillating, ill-defed.

Energy production divergent if coupling vanishes strictbart = 0.

* In gauge theory, deform gauge coupling so #iat, = e is small
but nonzero near= 0. Now finite but large phase oscillation, finite
but large energy production.

Eventual gauge theory endpoint ? Depends on details of gnerg
production at coupling’(1).

On long timescales, expect gauge theory thermalizes: gssonable
to imagine that late-time bulk is AdS-Schwarzschild blaokeh
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Conclusions, open questions

*If g%,,(t) — 0 strictly, then gauge theory response singular: energy
diverges. Defornys-, , to be small but nonzero nea= 0. Now finite

but large phase oscillation and energy production.

D ~ gi—ﬁ finite now, so bulk also nonsingular.

Sugra may still not be valid of course.

* Gauge theory o$” : We're investigating this and other issues
currently (in part withArchisman Ghosh, Jae Qh

* Explore AdS BKL-cosmologies/duals further
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