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• basic setup: AdS/CFT with cosmological singularities

• gauge theories with time-dep coupling sources

• Spacelike cosmological singularities, BKL etc
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Cosmology, time dependence, . . .

Tempting to think very early Universe has deep repercussions on

various aspects of physics.

• Big Bang singularities, time, in string theory models?

Understandspacelike, null singularities — events in time.

General Relativity breaks down at singularities: curvatures, tidal forces

divergent. Want “stringy” description, eventually towards smooth

quantum (stringy) completion of classical spacetime geometry.

Previous examples: “stringy phases” ine.g. 2-dim worldsheet (linear

sigma model) descriptions (including time-dep versions, e.g. tachyon

dynamics in (meta/)unstable vacua), dual gauge/Matrix theories, . . .

In what follows, we’ll use theAdS/CFTframework.
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AdS/CFT and deformations

Nice stringy playground:AdS/CFT. Bulk string theory onAdS5 × S5

with dilaton (scalar)Φ = const, and metric

ds2 = 1
z2 (ηµνdx

µdxν + dz2) + ds2S5 ,

(Poincare coords) with 5-form field strength, dual to boundary d = 4

N=4 (largeN ) SU(N) Super Yang-Mills theory.

Want: time-dependent deformations of AdS/CFT.

Bulk subject to time-dependent sources classically evolves in time (thro

Einstein eqns), eventually giving rise to a cosmological singularity, and

breaks down. Avoid any bulk investigation near singularity.

Boundary: Gauge theory dual is a sensible Hamiltonian quantum

system in principle, subject to time-dependent sources. Response ?
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AdS cosmologies

Start withAdS5 × S5 and turn on non-normalizable deformations for

the metric and dilaton (also nontrivial 5-form):

ds2 = 1
z2 (g̃µνdx

µdxν + dz2) + ds2S5 , Φ = Φ(xµ) .

This is a solution in string theory if

R̃µν = 1
2∂µΦ∂νΦ , 1√−g̃

∂µ(
√−g̃ g̃µν∂νΦ) = 0 ,

i.e. if it is a solution to a4-dim Einstein-dilatonsystem.

Time dep:Φ = Φ(t) or Φ = Φ(x+) .

More later on cosmological solutions.

General family of solutions: (Z(xm) harmonic function)

ds2 = Z−1/2g̃µνdx
µdxν + Z1/2gmndx

mdxn , Φ = Φ(xµ),

gmn(xm) is Ricci flat, and̃gµν = g̃µν(xµ). [µ = 0123,m = 4 . . . 9.]
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AdS cosmologies cont’d

In many cases, possible to find new coordinates such that boundary

metricds24 = limz→0 z
2ds25 is flat, at least as an expansion about the

boundary (z = 0) if not exactly.

These arePenrose-Brown-Henneaux (PBH)transformations: subset of

bulk diffeomorphisms leaving metric invariant (in Fefferman-Graham

form), acting as Weyl transformation on boundary.

E.g. null cosmologiesds2 = 1
z2 (ef(x+)ηµνdx

µdxν + dz2) , Φ(x+).

The coord. transf.w = ze−f/2, y− = x− − w2f ′

4 , gives

ds2 = 1
w2 [−2dx+dy− + dx2

i + 1
4w

2(Φ′)2(dx+)2] + dw2

w2 ,

usingR++ = 1
2(f ′)2 − f ′′ = 1

2(Φ′)2 , the constraint on these solutions.

Now boundary atw = 0 manifestly flat 4D Minkowski spacetime.
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Gauge theories with time-dep
couplings

Thus dual gauge theory lives on flat space. So sharp sub-question:

Gauge theory with time-dependent couplingg2
Y M = eΦ. Response?

We would like to study sources that are trivial in the far past(bulk is

AdS5 × S5) and smoothly turn on: this means the gauge theory begins

in vacuum state and is subject to Hamiltonian time evolutionthrough

this external time-dependent source. Basic expectation: time-dep

source excites vacuum to higher energy state.

Want to consider sources that approacheΦ → 0 at some finite point in

time: e.g. g2
Y M = eΦ → (−t)p , p > 0 [t < 0].

We’d specially like to understand gauge theory response near t = 0.

This point in time corresponds to a singularity in the bulk:

Rtt = 1
2 Φ̇2 ∼ 1

t2
. Curvatures, tidal forces diverge neart = 0.
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Gauge theories, time-dep couplings

Gauge theory kinetic terms
∫

e−ΦF 2 not canonical.

In usual perturbation theory, we absorb the couplingg2
Y M into the

definition of the gauge fieldAµ so thatgY M appears only in the

interaction terms. Let’s do something similar here.

First, consider a simpler toy scalar theory

L = −e−Φ
(

1
2(∂X̃)2 + X̃4

)

. RedefiningX̃ = eΦ/2X gives

L = −(∂X)2 −m2(Φ)X2 − eΦX4 ,

dropping a boundary term. The mass term is

m2(Φ) = 1
4∂µΦ∂µΦ − 1

2∂µ∂
µΦ .
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Null time-dependence

Null cosmologies:Φ = Φ(x+) . No nonzero contraction so the mass

term vanishes i.e.m2(Φ) = 0.

Similar story for gauge theory using lightcone gauge for convenience.

Suppressing many details, but briefly, cubic/quartic interaction terms:

multiplied by powers ofgY M = eΦ/2, unimportant neareΦ → 0.

Thus we obtain weakly coupled Yang-Mills theory at the location in

null time (x+ = 0) corresponding to the bulk singularity [e.g.

eΦ = gs(−x+)p].

This suggests that lightcone Hamiltonian time evolution ofthe gauge

theory is sensible.

In other words, null cosmological singularities seem to be an artifact of

using bad (classical bulk sugra) variables.
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Null time-dependence

Is energy pumped in by null-time-dependent source ? No.

Sincex−-translations are symmetries, there is in fact no particle

production. This suggests that continuing past singularity atx+ = 0 is

OK, and late-time state is vacuum.

Thus late-time bulk isAdS5 × S5 (dual to vacuum state ofN=4 gauge

theory, withΦ → const for largex+).

Bulk: sinceeΦ → 0 near singularity, no largegs effects. Preliminary

calculations suggest stringy (α′) effects (beyond GR) are becoming

important.

In some still simpler toy models with no RR-flux, dilaton, the

singularity is purely gravitational so possibly more tractable.

I am studying these to understand worldsheet effects near null

singularities.
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Time-dependent couplings

The story is very different with time-dependent couplings.

Toy scalar theoryL = −e−Φ
(

1
2(∂X̃)2 + X̃4

)

. The redefinition

X̃ = eΦ/2X gives L = −(∂X)2 −m2(Φ)X2 − eΦX4 ,

dropping a boundary term, the mass term being

m2(Φ) = −1
4(Φ̇)2 + 1

2 Φ̈ .

For g2
Y M = eΦ → (−t)p , p > 0 [t < 0] , we havem2 = −p(p+2)

4 t2
.

Tachyonic mass term, divergent ast→ 0.

* X variables canonical: analysing them shows that the mass term

forcesX ∼ 1
tp/2 , so that extra information asX → ∞ is required:

X description not good.

* X̃ variables finite neart = 0: interaction termse−ΦX̃4|t∼0 large

(unlike the null case).
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Time-dep quantum mechanics

In more detail: first ignore interactions, quantizequadratic theory.

For a single momentum-k mode, this is time-dep quantum mechanics:

Sk =
∫

dt (1
2Ẋ

2 − ω2(t)X2) , ω2(t) = k2 +m2(t) −→t→−∞ ω2
0 .

Generic classical solutions:X =
√−t [AJν(−t) +BNν(−t)] ,

ν = p+1
2 . Diverge ast→ 0 : i.e. generic trajectory driven to largeX.

Takef(t) =
√

πω0
2

√−tH1
ν (−ω0t) as the solution off̈ + ω2f = 0 ,

with f → e−iω0t, t→ −∞ . ExpandX = 1√
2ω0

[af(t) + a†f∗(t)] .

Using the Schrodinger equation: the ground state wave-function is

ψ(t, x) = A√
f∗(t)

e
i( ḟ∗

f∗ ) x2

2 .
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Time-dep quantum mechanics

X: wave-fn ψ(t, x) = A√
f∗(t)

e
i( ḟ∗

f∗ ) x2

2 ,

Wave-fn phase∼ 1
t , “wildly” oscillating neart = 0.

t→ 0−: f ∼ (−t)−p .

Probability density:|ψ(t, x)|2 = |A|2
|f | e

−ω0x2

|f |2 .

Gaussian, width|f |2 → ∞ ast→ 0.

Wave packet infinitely spread out ast→ 0.

X variables spread out infinitely: need extra information atX ∼ ∞.

X description not good.

Gauge theories with time-dependent couplings and cosmological singularities, K. Narayan, CMI– p.13/25



Time-dep quantum mechanics

Original X̃ = eΦ/2X variables better defined: finite neart = 0.

X̃ = eΦ/2
√−t[AJν(−t) +BNν(−t)] ∼t→0 tp/2t1/2t−ν/2 .

Wave-fn, probability:

ψ(t, x̃) = A√
f∗(t)eΦ/2

e
i( ḟ∗

f∗ + Φ̇
2

) x̃2

2eΦ , |ψ(t, x̃)|2 = |A|2
|f |eΦ/2 e

− ω0x̃2

|f |2eΦ .

t→ 0−: f ∼ (−t)−p , |f |2eΦ ∼ const .

X̃: wave-fn phase∼ 1
(−t)p−1 , prob. widthconst .

p > 1: wave-fn ill-defined neart ∼ 0. “Wildly” oscillating phase.

p < 1: X̃ wave fn phase regular neart ∼ 0 , |ψ(t, x̃)|2 finite.

Quadratic approximation shows interactions are importantneart = 0.

Perturbation theory insufficient.
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Time-dep field theory wave-fn

More general Schrodinger picture analysis in full field theory is

possible neart = 0.

Lagrangian L =
∫

d3x e−Φ(1
2(∂tX̃)2 − 1

2(∂iX̃)2 − X̃4) .

Field theory Hamiltonian:H = e−ΦV [X̃] + eΦ
∫

d3x(−1
2

δ2

δX̃2
) ,

where V [X̃] =
∫

d3x (1
2(∂iX̃)2 + X̃4) [replacingΠ(x) → 1

i
δ

δX̃
] .

Schrodinger eqn: i∂tψ[X̃(x), t] = Hψ[X̃(x), t] .

Neart = 0, the potential terme−ΦV dominates in the Hamiltonian⇒
i∂tψ = e−Φ(t)V [X̃(x)]ψ . This gives the wave-fn (generic state)

ψ[X̃(x), t] = e−i(
R

dt e−Φ(t))V [X̃(x)] ψ0[X̃(x)] .

Phase as before∼ (−t)1−p

1−p V [X̃(x)] . If p > 1, “wildly” oscillating

(t→ 0).
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Energy divergence

Analyzing KE terms shows they are indeed subleading neart = 0.

This means energy pumped in by time-dep source diverges as

〈H〉 ≃ e−Φ〈V 〉 = 1
(−t)p

∫

DX̃ V [X̃] |ψ0[X̃(x)]|2 ,

since no time-dep in〈V 〉. Oscillating phase cancels in|ψ0|2.

This holds for generic states. For special states with〈V 〉 = 0 , energy

may be finite (subleading KE terms do not diverge unlessp > 2).

Even for these special states,〈H2〉 will diverge (if 〈V 〉 = 0,

generically〈V 2〉 does not vanish).

Thus fluctuations non-negligible about states with〈V 〉 = 0 .

Note: this is not perturbation theory. Interactions important.

Diverging energy since coupling strictly vanishes neart = 0.
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The gauge theory

Scalars, fermions: no dilaton coupling in KE terms. FermionYukawa

and scalar quartic terms come with powers ofgY M = eΦ/2 , vanish

neart = 0.

Gauge fields: KE terms have dilaton coupling
∫

e−Φ TrF 2 .

SinceeΦ = (−t)p neart = 0, the gauge field terms determine the

behaviour of the system neart ∼ 0. Focus on this.

Consider non-interacting theory first.

Convenient (Coulomb) gaugeA0 = 0 , ∂jAj = 0 (longitudinal part of

gauge field time-indep from Gauss law:∂0(∂jAj) = 0 ).

Residual action for two physical transverse componentsAi becomes
∫

e−Φ(∂Ai)2 , (i.e. two copies of the scalar theory earlier).
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The gauge theory

Cubic/quartic interactions: no time derivatives.

Contribute only to potential energy terms (from magnetic field), not to

KE terms (from electric field). PEV [Ai(x)] = 1
4

∫

d3x TrF 2
ij .

Lg = 1
4

∫

d3x e−Φ Tr
(

(∂tA
i)2 − F 2

ij

)

.

Schrodinger quantization:Ei → 1
i

δ
δAi . Then wave-fn neart = 0:

ψ[Ai(x), t] = e−i(
R

dt e−Φ)V [Ai(x)] ψ0[A
i(x)] .

Wave-fn phase as before: “wildly” oscillating ast→ 0 (for p > 1).

Energy diverges〈H〉 ≃ e−Φ
∫

DAi V [Ai(x)] |ψ0[A
i]|2 (if 〈V 〉 6= 0) .

Thus ifeΦ → 0 strictly, gauge theory response singular.

For cutoffeΦ, large energy production due to time-dep source.
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AdS cosmologies with spacelike
singularities

Recall: ds2 = 1
z2 (g̃µνdx

µdxν + dz2) + ds2S5 , Φ = Φ(xµ) .

Solution if: R̃µν = 1
2∂µΦ∂νΦ , 1√−g̃

∂µ(
√−g̃ g̃µν∂νΦ) = 0 .

Solutions with spacelike Big-Bang (Crunch) singularities:

* ds2 = 1
z2

[

dz2 − dt2 +
∑3

i=1 t
2pi(dxi)2

]

,

eΦ = |t|
√

2(1−
P

i p2
i ),

∑

i pi = 1 . [Kasner cosmologies]

* ds2 = 1
z2

[

dz2 + | sinh(2t)|(−dt2 + dr2

1+r2 + r2(dθ2 + sin2θdφ2))
]

,

eΦ = gs | tanh t|
√

3 . [k = −1 (hyperbolic) FRW boundary]

Dilaton bounded, approaching constant at early/late times: asymptotic

spacetime isAdS5 × S5 (using a coord transformation).

Thek = 0 (flat) FRW is the same as symmetric Kasner (pi = 1
3 ).

(There is also ak = +1 (spherical) FRW solution.)
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AdS BKL-cosmologies

In fact, larger family of cosmological solutions where spatial metric is

one of the homogenous spaces in the Bianchi classification:

ds2 = 1
z2

[

dz2 − dt2 + ηab(t)(e
a
αdx

α)(ebβdx
β)

]

, eΦ = eΦ(t) .

eaαdx
α are a triad of 1-forms defining symmetry directions. Spatially

homogenous dilaton means spatialRa
(a) vanish, andR0

0 = 1
2(∂0Φ)2.

Bianchi-IX: ds2 = 1
z2

[

dz2 − dt2 + η2
i (t)e

i
αe

i
βdx

αdxβ
]

, eΦ = |t|α .

Approximate Kasner-like solutionηi(t) ≃ tpi with
∑

i pi = 1 ,
∑

i p
2
i = 1 − α2

2 .

If all pi > 0, cosmology “stable”. Else, spatial curvatures force BKL

bounces between distinct Kasner regimes. With each bounce,α

increases — dilaton-driven attractor-like behaviour.

Attractor basin: generic Kasner-like solution with allpi > 0.
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More on AdS BKL-cosmologies

Bianchi IX: symmetry algebra ofXa = eαa∂α is SU(2).

Spatial Ricci, decomposing along triadRa
(a) = Ra

αe
α
a :

R1
(1) = ∂t(η2η3∂tη1)

η1η2η3
− 1

2(η1η2η3)2
[(η2

2 − η2
3)

2 − η4
1] = 0 , . . . .

Sayp1 < 0: thenη4
1 ∼ t−4|p1| non-negligible at some time. This forces

metric to transit from one Kasner regime to another. As long as some

pi < 0, these bounces continue as:

p
(n+1)
i =

−p
(n)
−

1+2p
(n)
−

, p
(n+1)
j =

p
(n)
+ +2p

(n)
−

1+2p
(n)
−

, α(n+1) = αn

1+2p
(n)
−

,

for the bounce from the(n)-th to the(n+ 1)-th Kasner regime.

If p− < 0 , thenαn+1 > αn. Alsoαn+1 − αn = αn( −2p−
1+2p−

) ,

i.e.,α increases slowly for smallα: attractor-like behaviour. Finite

number of bounces. If allpi > 0, no bounce: cosmology “stable”.

For no dilaton (α = 0), BKL bounces purely oscillatory.
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More on AdS BKL-cosmologies

Parametrization:p1 = x, p2,3 = 1−x
2 ±

√
1−α2+2x−3x2

2 .

Lower bound:p1 ≥ 1−
√

4−3α2

3 . Solution existence forcesα2 ≤ 4
3 .

Under bounces,α increases, window of allowedpi shrinks. Lower

bound hitsp1 ≥ 0 ⇒ α2 ≥ 1. Bounces stop, cosmology “stabilizes”.

Attractor-like behaviour: e.g.:{p0
1 = x0 = 0.3, α0 = 0.001} , flows

(initially slowly) to {pi > 0} after 15 oscillations (α15 = 1.0896).

E.g.:(−1
5 ,

9
35 ,

33
35) → (− 5

21 ,
7
21 ,

19
21) → (− 3

11 ,
5
11 ,

9
11) →

(−1
5 ,

3
5 ,

3
5) → (1

3 ,
1
3 ,

1
3) . [multiple flows with same endpoint]

Chaotic behaviour: 7% change to smallest exponent−1
5 gives

(−13
70 ,

9
35 ,

65
70) → (− 2

11 ,
13
44 ,

39
44) → (− 3

28 ,
2
7 ,

23
28) → ( 1

11 ,
3
22 ,

17
22) ,

drastically different endpoint.

Note also that dilatonic (α 6= 0) [attractor-like] and non-dilatonic

(α = 0) [oscillatory] flows drastically different.
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Universal behaviour near
singularities

Consider symmetric Kasner-like AdS BKL-cosmologies. Near

singularity, spatial curvatures unimportant. Leading singular behaviour

is essentially dilaton-driven, symmetric Kasner spacetime. Holographic

stress tensor has similar leading behaviour (Tµν ∼ N2

t4
).

Consider families of such AdS cosmologies which are of the form of

the symmetric Kasner-like solution i.e.pi = 1
3 : (ds23 spatial metric)

ds2 = 1
z2

[

dz2 + |2t|(−dt2 + ds23)
]

, eΦ = |t|
√

3 .

Ignoring subleading curvature effects, spatial metric approximately flat

i.e. ds23 ∼ flat. Then boundary metric is conformally flat, to leading

order. [we’ve used a different time coordinate here.]

Can use PBH transformations to recast boundary metric to be flat

spacetime.
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The gauge theory

Now g2
Y M = eΦ = (−t)

√
3 (t < 0). That is, p =

√
3 > 1 .

From earlier: wave-fn phase “wildly” oscillating, ill-defined.

Energy production divergent if coupling vanishes strictlyneart = 0.

* In gauge theory, deform gauge coupling so thatg2
Y M = eΦ is small

but nonzero neart = 0. Now finite but large phase oscillation, finite

but large energy production.

Eventual gauge theory endpoint ? Depends on details of energy

production at couplingO(1).

On long timescales, expect gauge theory thermalizes: then reasonable

to imagine that late-time bulk is AdS-Schwarzschild black hole.
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Conclusions, open questions

* If g2
Y M (t) → 0 strictly, then gauge theory response singular: energy

diverges. Deformg2
Y M to be small but nonzero neart = 0. Now finite

but large phase oscillation and energy production.

Φ̇ ∼ ġY M
gY M

finite now, so bulk also nonsingular.

Sugra may still not be valid of course.

* Gauge theory onS3 : We’re investigating this and other issues

currently (in part withArchisman Ghosh, Jae Oh).

* Explore AdS BKL-cosmologies/duals further

. . .
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