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theorists?



There are many CFTs which describe dynamics of
Condensed Matter systems near a ’critical point’ .



There are many CFTs which describe dynamics of
Condensed Matter systems near a ’critical point’ .

Many of these systems are realizable in a laboratory.



There are many CFTs which describe dynamics of
Condensed Matter systems near a ’critical point’ .

Many of these systems are realizable in a laboratory.

String theorists can make use of such systems to learn
more about holographic principle (theoretically and
experimentally).



There are many CFTs which describe dynamics of
Condensed Matter systems near a ’critical point’ .

Many of these systems are realizable in a laboratory.

String theorists can make use of such systems to learn
more about holographic principle (theoretically and
experimentally).

Condensed matter physicists can make use of the
holographic principle to learn more about these systems!



There are many CFTs which describe dynamics of
Condensed Matter systems near a ’critical point’ .

Many of these systems are realizable in a laboratory.

String theorists can make use of such systems to learn
more about holographic principle (theoretically and
experimentally).

Condensed matter physicists can make use of the
holographic principle to learn more about these systems!

Most of these systems are described by non-relativistic
theories. Hence, we need to generalize the AdS/CFT
correspondence to NRCFTs.
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There are many non-relativistic theories that are scale
invariant and they are characterized by a parameter
called ’dynamical exponent’ z [P.C. Hohenberg and B.I. Halperin

Rev. Mod. Phys, 1977; S. Sachdev, 1999 ]

Dynamical exponent is the relative scale dimension of
time and space. For e.g Schrödinger case has z = 2.

NRQCPs many or may not be Galilean Invariant. For e.g
Lifshitz ( or Lifshitz-like ) fixed points are not Galilean
invariant. [E. Ardonne, P. Fendley, E. Fradkin, cond-mat/ 0311466;
S. Kachru, X. Liu, M. Mulligan, hep-th/ 0808.1725; P. Hořova, hep-th/
0811.2217]



Non-relativistic Conformal Group



Commutation relations for a general z

[Mij , N ] = [Mij , D] = 0, [Mij , Pk] = i(δikPj − δjkPi),

[Pi, Pj ] = [Ki, Kj ] = 0, [Mij , Kk] = i(δikKj − δjkKi)

[Mij , Mkl] = i(δikMjk − δjkMil + δilMkj − δjlMki)

[D, Pi] = iPi, [D, Ki] = (1 − z)iKi, [Ki, Pj ] = iδijN,

[H, Ki] = −iPi, [D, H] = ziH, [D, N ] = i(2 − z)N,

[H, N ] = [H, Pi] = [H, Mij ] = 0.



Schrödinger group

There is an additional conformal generator,C for z = 2. C

satisfies the following commutation relations

[Mij , C] = 0, [Ki, C] = 0, [D, C] = −2iC, [H, C] = −iD.
Mij generate spatial rotations,

Pi are momenta,

Ki generate Galilean boosts,

N is a conserved rest mass or particle number,

and D is the dilatation operator.

This NR conformal group with Galilean symmetry and z = 2

is the Schrödinger group.



An example of a field theory that

has these symmetries



Unitarity Limit
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a) V0 < 1/mr2
0

There is no bound state b) V0 = 1/mr2
0

Bound state with zero energy. c) V0 > 1/mr2
0

Atleast one bound state with non-zero energy.

When r0 → 0, there is no scale dependence. This limit
corresponds to infinite scattering length.

It doesn’t matter what potential we start with before taking
the infinite scattering limit.

The interactions can be tuned to make the scattering
length infinite. Scattering length is controlled using
Magnetic field..



Y. Nishida and D. T. Son [ hep-th/0706.3746 ] constructed
representations of Schrödinger algebra in terms of operators
in a NRCFT. In a NR theory described by a second quantized
field ψ, the number density and momentum density can be
defined as follows

n(�x) = ψ†(�x)ψ(�x)

ji(�x) = − i

2
(ψ†(�x)∂iψ(�x) − ∂iψ

†(�x)ψ(�x))

From this definition we can construct the rest mass or particle
number operator , momentum, rotation, boost, dilatation and
special conformal generators as follows.



N =

∫
d�xn(�x), Pi =

∫
d�xji(�x),Mij =

∫
d�x (xijj(�x) − xjji(�x))

Ki =

∫
d�xxin(�x), D =

∫
d�xxiji(�x), C =

∫
d�x
x2n(�x)

2

The above operators satisfy all the commutation relations not
involving the Hamiltonian. The computation of [H, D] requires
scale invariance. Let us consider the following Hamiltonian.

H =

∫
d�x

1

2
∇iψ

†∇iψ +
1

2

∫
d�xd�yψ†(�x)ψ†(�y)V (|�x− �y|)ψ(�y)ψ(�x)

where ψ is a fermionic field.



Under the action of dilatation operator,

V (r) → V ′(r) = e−2λV
(
e−λr

)
If V corresponds to infinite scattering length, then V ′ also
corresponds to infinite scattering length. Hence,

e−iλDHeiλD = e−2λH =⇒ [H, D] = 2iH

Note: Infinite scattering length corresponds to saturation of
the s− wave unitarity bound and in this limit there is no
intrinsic scale associated with the potential.



Geometric Realization



We shall find a metric whose isometry group is Sch(d).



We shall find a metric whose isometry group is Sch(d). Let
us start from AdS metric.



We shall find a metric whose isometry group is Sch(d).

ds2 =
−dτ 2 + dy2 + �dx

2
+ dr2

r2



We shall find a metric whose isometry group is Sch(d).

ds2 =
2dξdt+ �dx

2
+ dr2

r2



We shall find a metric whose isometry group is Sch(d).

ds2 =
2dξdt+ �dx

2
+ dr2

r2

But this is just AdS in light-cone coordinates. Note that t is a
null direction and the isometry group is not Sch(d).



We shall find a metric whose isometry group is Sch(d).

ds2 =
2dξdt+ �dx

2
+ dr2

r2

But this is just AdS in light-cone coordinates. Note that t is a
null direction and the isometry group is not Sch(d).

ds2 =
2dξdt+ �dx

2
+ dr2

r2
− dt2

r4



We shall find a metric whose isometry group is Sch(d).

ds2 =
2dξdt+ �dx

2
+ dr2

r2

But this is just AdS in light-cone coordinates. Note that t is a
null direction and the isometry group is not Sch(d).

ds2 =
2dξdt+ �dx

2
+ dr2

r2
− dt2

r4

N = −i∂ξ, corresponds to number operator (rest mass). For
N to have a discrete spectrum, ξ ∼ ξ + Lξ. Metric is invariant
under t→ −t, ξ → −ξ, which can be interpreted as the comp-
osition of charge conjugation and time-reversal.



Isometries

Translation in space:

xi → xi + ai, t→ t, ξ → ξ, r → r

Time Translation:

xi → xi, t→ t+ b, ξ → ξ, r → r

Galilean boosts:

xi → xi − vit, t→ t, ξ → ξ +
1

2
(2�v · �x− v2t), r → r

Special Conformal Transformation:

xi → xi

1 + ct
, t→ t

1 + ct
, ξ → ξ +

c

2

(�x.�x+ r2)

(1 + ct)
, r → r

1 + ct
.



Einstein’s Equations

The Einstein tensor for this metric is,

Gab = −Λgab − Eδ0
aδ

0
bg00

where Λ = − (d+1)(d+2)
2L2 . metric is sourced by the ground state

of an Abelian Higgs model in its broken phase. The model

S =

∫
dd+3x

√
g

(
−1

4
F 2 +

1

2
|DΦ|2 − V

(|Φ|2))

with DaΦ ≡ (∂a + ieAa)Φ, with a Mexican-hat potential

V
(|Φ|2) = g

(
|Φ|2 − z(z + d)

e2

)2

+ Λ

produces the ’dust’ stress tensor sourcing this metric.



Correlators

Correlators of field theor operators are calculated by solving
the wave equation in this background. Wake equation in this
background is given by,(
−rd+3∂r

(
1

rd+1
∂r

)
+ r2(2lω + �k2) +r4−2zl2 +m2

)
fω,�k,l(r) = 0.

The behavior of the solution near the boundary is given by,

f ∝ r∆

where, ∆± = 1 + d
2
±
√(

1 + d
2

)2
+m2 + δz,2l2.



For d = 3, z = 2

fω,�k,l(r) = Ar5/2Kν(κr), ν =

√(
5

2

)2

+ l2 +m2, κ2 = 2lω + �k2

On-Shell action:

S[φ0] =
1

2

[∫
dd+2X

√
ggrrφ(X)∂rφ(X)

]
r=ε

In momentum space, the on-shell action can be written as,

S[φ0] =
1

2

∫
dpφ0(−p)F(κ, ε)φ0(p)



where, the ‘flux factor’ is defined as,

F(κ, ε) = lim
r→ε

√
ggrrfκ(r)∂rfκ(r) =

√
ggrr∂rr

1+ d
2 lnKν(κr)|r=ε

Hence, boundary Green’s function is given by,

〈O1(x, t)O2(0, 0)〉 ∝ Γ(1 − ν)

Γ(ν)
δ∆1,∆2

θ(t)
1

|ε2t|∆ e
−ilx2/2|t|

The expression for 2-point function is consistent with NR
conformal Ward identities.



Is it possible to embed this geometry into String

theory?
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Null Melvin Twist

Used to generate new Type II Supergravity solutions from
existing solutions. It involves the following steps

Boost along a translationally invariant direction (say y)
with boost parameter γ

T-dualize along y.

Twist a one-form (say χ): χ→ χ+ αdy

T-dualize back along y

Boost back by −γ along y

Scaling limit: γ → ∞, α→ 0 keeping β = 1
2
αeγ fixed.
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Schrödinger spacetime from AdS

AdS5 × S5 is a solution of type II supergravity.

ds2 =
−dτ 2 + dy2 + dx2

1 + dx2
2 + dr2

r2
+ ds2

S5

ds2
S5

= ds2
P2 + (dχ+ A)2 can be written as

Melvin twist produces the following metric

ds2 =
1

r2

(
−
(

1 +
β2

r2

)
dτ 2 +

(
1 − β2

r2

)
dy2 + 2

β2

r2
dτdy

+dx2
1 + dx2

2 + dr2

)
+ ds2

S5



Defining ξ = 1
2β

(y − τ), t = β(τ + y), and reducing on the
5-sphere we get, small

ds2 =
2dξdt+ �dx
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Defining ξ = 1
2β

(y − τ), t = β(τ + y), and reducing on the
5-sphere we get, small

ds2 =
2dξdt+ �dx

2
+ dr2

r2
− dt2

r4

The ten-dimensional metric is sourced by a five form flux
and NS-NS 2-form field.

B = β/r2(dχ+ A) ∧ (dτ + dy),

F5 = (1 + �)Ω5dθ ∧ dφdψ ∧ dµ ∧ dχ



Field Theory Interpretation

The dual field theory is closely related to DLCQ of N = 4

theory.



Field Theory Interpretation

The dual field theory is closely related to DLCQ of N = 4

theory.

Every field is expanded in modes along light like ξ circle.



Field Theory Interpretation

The dual field theory is closely related to DLCQ of N = 4

theory.

Every field is expanded in modes along light like ξ circle.

The melvin twist causes a shift in the ξ momentum by
βqR, i.e.l = l0 + βqR, where qR denotes R-charge.



Field Theory Interpretation

The dual field theory is closely related to DLCQ of N = 4

theory.

Every field is expanded in modes along light like ξ circle.

The melvin twist causes a shift in the ξ momentum by
βqR, i.e.l = l0 + βqR, where qR denotes R-charge.

This modified DLCQ (DLCQβ) lifts the zero modes and
makes the theory non-relativistic.



Solutions with Finite temperature and Density



10-D Black Hole solution

Melvinization of planar AdS Black Hole yields the
following metric.

ds2 =
1

r2K

(
−f
r2
dt2−2dξdt−g

4

(
dt

2β
− βξ

)2

+Kd�x2+
Kdr2

f

)
+

1

K
(dχ+ A)2 + ds2

P2

where, f = 1 + g = 1 − r4

rH4 and K = 1 + β2 r2

rH4

The ten-dimensional metric is sourced by a five form flux
and NS-NS 2-form field and a Dilaton field.

B = β/r2(dχ+ A) ∧ ((1 + f)/2dt+ 2(1 − f)β2dξ)

F5 = (1 + �)Ω5dθ ∧ dφdψ ∧ dµ ∧ dχ, e−2Φ = K
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5-D reduction

Melvinization of planar AdS Black Hole yields the
following metric.

ds2 =
K−2/3

r2

(
−f
r2
dt2−2dξdt−g

4

(
dt

2β
− βξ

)2

+Kd�x2+
Kdr2

f

)

The 5-dimensional metric is sourced by a massive gauge
field and a scalar field.

A = β/r2((1 + f)/2dt+ 2(1 − f)β2dξ), e−2Φ = K

An Effective action (8πG = 1):

S =
1

2

∫
d5x

√−g
(
R− 4

3
(∂Φ)2 − 1

4
F 2 − 4A2 − V (Φ)

)

where V (Φ) = 4e2Φ/3(e2Φ − 4).
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Black Hole Thermodynamics

Temperature & Chemical Potential:

T =
κ

2π
=

1

πβrH
, µ = − 1

2β2

Entropy:

S =
Lx1Lx2Ly

4r3
HGN

= Lx1Lx2Lξ
π2N 2T 3

16µ2

Free energy (SonshellT ):

Sonshell =
Lx1Lx2Ly

8Tπr3
HG5

=⇒ F = Lx1Lx2Lξ
π2N 2T 4

32µ2

The on-shell action is regularized by adding ’counter-
terms’, which makes the variational principle well defined.
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Boundary stress tensor

Boundary stress tensor is obtained from the regularized
on-shell action as,

T µ
ν = − 2√

γ

δSonshell

γν
µ

Energy:

E = −
∫ √

γT t
t =

1

16πGr4
H

=
π2N 2T 4

64µ2
Lx1Lx2Lξ

Density:

N =

∫ √
γT ξ

t =
β2

16πGr4
H

=
π2N 2T 4

32µ3
Lx1Lx2Lξ
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Pressure:

P =

∫ √
γT x1

x1
=

1

16πGr4
H

=
π2N 2T 4

64µ2
Lx1Lx2Lξ

Consistent with first law

E + P = TS + µN

Consistent with conformal Ward identities

E = P = F
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Viscosity

Kubo Formula:

η = − lim
ω→0

1

ω
Im(〈T12T12〉)

T12 couples to h12 in the bulk and it solves the bulk wave
equation.

Stress tensor is an operator with particle number zero.

It was found that

η =
πLξT

3N 2

32µ2

Hence, η/s is same as that of N = 4 theory and it
saturates the viscosity bound.
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