Gravity Duals of Non-Relativistic Quantum Critical Points

Koushik Balasubramanian John McGreevy & Allan Adams

Department of Physics Massachusetts Institute of technology

Based On

K. Balasubramanian, J. McGreevy Phys. Rev. Lett. **101**, 061601 (2008) hep-th:0804.4053

A. Adams, K. Balasubramanian, J. McGreevy (2008) hep-th:0807.1111
D.T. Son Phys. Rev. D 78, 0406003 (2008) hep-th:0804.3972
C.P. Herzog, M. Rangamani, S. F. Ross hep-th:0807.1099
J. Maldacena, D. Martelli, Y. Tachikawa hep-th:0807.1099

Why are Non-Relativistic Quantum Critical Points interesting to String theorists?

There are many CFTs which describe dynamics of Condensed Matter systems near a 'critical point'.

- There are many CFTs which describe dynamics of Condensed Matter systems near a 'critical point'.
- Many of these systems are realizable in a laboratory.

- There are many CFTs which describe dynamics of Condensed Matter systems near a 'critical point'.
- Many of these systems are realizable in a laboratory.
- String theorists can make use of such systems to learn more about holographic principle (theoretically and experimentally).

- There are many CFTs which describe dynamics of Condensed Matter systems near a 'critical point'.
- Many of these systems are realizable in a laboratory.
- String theorists can make use of such systems to learn more about holographic principle (theoretically and experimentally).
- Condensed matter physicists can make use of the holographic principle to learn more about these systems!

- There are many CFTs which describe dynamics of Condensed Matter systems near a 'critical point'.
- Many of these systems are realizable in a laboratory.
- String theorists can make use of such systems to learn more about holographic principle (theoretically and experimentally).
- Condensed matter physicists can make use of the holographic principle to learn more about these systems!
- Most of these systems are described by non-relativistic theories. Hence, we need to generalize the AdS/CFT correspondence to NRCFTs.

What else makes non-relativistic theories interesting?

There are many non-relativistic theories that are scale invariant and they are characterized by a parameter called 'dynamical exponent' z [P.C. Hohenberg and B.I. Halperin Rev. Mod. Phys, 1977; S. Sachdev, 1999]

- There are many non-relativistic theories that are scale invariant and they are characterized by a parameter called 'dynamical exponent' z [P.C. Hohenberg and B.I. Halperin Rev. Mod. Phys, 1977; S. Sachdev, 1999]
- Dynamical exponent is the relative scale dimension of time and space. For e.g Schrödinger case has z = 2.

- There are many non-relativistic theories that are scale invariant and they are characterized by a parameter called 'dynamical exponent' z [P.C. Hohenberg and B.I. Halperin Rev. Mod. Phys, 1977; S. Sachdev, 1999]
- Dynamical exponent is the relative scale dimension of time and space. For e.g Schrödinger case has z = 2.
- NRQCPs many or may not be Galilean Invariant. For e.g Lifshitz (or Lifshitz-like) fixed points are not Galilean invariant. [E. Ardonne, P. Fendley, E. Fradkin, cond-mat/ 0311466; S. Kachru, X. Liu, M. Mulligan, hep-th/ 0808.1725; P. Hořova, hep-th/ 0811.2217]

Non-relativistic Conformal Group

Commutation relations for a general z

$$[M_{ij}, N] = [M_{ij}, D] = 0, [M_{ij}, P_k] = i(\delta_{ik}P_j - \delta_{jk}P_i),$$

 $[P_i, P_j] = [K_i, K_j] = 0, [M_{ij}, K_k] = i(\delta_{ik}K_j - \delta_{jk}K_i)$

$$[M_{ij}, M_{kl}] = i(\delta_{ik}M_{jk} - \delta_{jk}M_{il} + \delta_{il}M_{kj} - \delta_{jl}M_{ki})$$

$$[D, P_i] = iP_i, [D, K_i] = (1 - z)iK_i, [K_i, P_j] = i\delta_{ij}N,$$

$$[H, K_i] = -iP_i, [D, H] = ziH, [D, N] = i(2-z)N,$$

$$[H, N] = [H, P_i] = [H, M_{ij}] = 0.$$

There is an additional conformal generator, C for z = 2. C satisfies the following commutation relations

 $[M_{ij}, C] = 0, \quad [K_i, C] = 0, \quad [D, C] = -2iC, \quad [H, C] = -iD.$

 M_{ij} generate spatial rotations,

 P_i are momenta,

 K_i generate Galilean boosts,

N is a conserved rest mass or particle number,

and D is the dilatation operator.

This NR conformal group with Galilean symmetry and z=2

is the Schrödinger group.

An example of a field theory that has these symmetries

Unitarity Limit

a) V₀ < 1/mr₀²
 There is no bound state b) V₀ = 1/mr₀²
 Bound state with zero energy. c) V₀ > 1/mr₀²
 Atleast one bound state with non-zero energy.

- a) V₀ < 1/mr₀²
 There is no bound state b) V₀ = 1/mr₀²
 Bound state with zero energy. c) V₀ > 1/mr₀²
 Atleast one bound state with non-zero energy.
- Solution When $r_0 \rightarrow 0$, there is no scale dependence. This limit corresponds to infinite scattering length.

- a) V₀ < 1/mr₀²
 There is no bound state b) V₀ = 1/mr₀²
 Bound state with zero energy. c) V₀ > 1/mr₀²
 Atleast one bound state with non-zero energy.
- When $r_0 \rightarrow 0$, there is no scale dependence. This limit corresponds to infinite scattering length.
- It doesn't matter what potential we start with before taking the infinite scattering limit.

- a) V₀ < 1/mr₀²
 There is no bound state b) V₀ = 1/mr₀²
 Bound state with zero energy. c) V₀ > 1/mr₀²
 Atleast one bound state with non-zero energy.
- When $r_0 \rightarrow 0$, there is no scale dependence. This limit corresponds to infinite scattering length.
- It doesn't matter what potential we start with before taking the infinite scattering limit.
- The interactions can be tuned to make the scattering length infinite. Scattering length is controlled using Magnetic field..

Y. Nishida and D. T. Son [hep-th/0706.3746] constructed representations of Schrödinger algebra in terms of operators in a NRCFT. In a NR theory described by a second quantized field ψ , the number density and momentum density can be defined as follows

$$n(\vec{x}) = \psi^{\dagger}(\vec{x})\psi(\vec{x})$$

$$j_i(\vec{x}) = -\frac{i}{2}(\psi^{\dagger}(\vec{x})\partial_i\psi(\vec{x}) - \partial_i\psi^{\dagger}(\vec{x})\psi(\vec{x}))$$

From this definition we can construct the rest mass or particle number operator, momentum, rotation, boost, dilatation and special conformal generators as follows.

$$N = \int d\vec{x} n(\vec{x}), P_i = \int d\vec{x} j_i(\vec{x}), M_{ij} = \int d\vec{x} \left(x_i j_j(\vec{x}) - x_j j_i(\vec{x}) \right)$$

$$K_i = \int d\vec{x} x_i n(\vec{x}), D = \int d\vec{x} x_i j_i(\vec{x}), C = \int d\vec{x} \frac{x^2 n(\vec{x})}{2}$$

The above operators satisfy all the commutation relations not involving the Hamiltonian. The computation of [H, D] requires scale invariance. Let us consider the following Hamiltonian.

$$H = \int d\vec{x} \frac{1}{2} \nabla_i \psi^{\dagger} \nabla_i \psi + \frac{1}{2} \int d\vec{x} d\vec{y} \psi^{\dagger}(\vec{x}) \psi^{\dagger}(\vec{y}) V(|\vec{x} - \vec{y}|) \psi(\vec{y}) \psi(\vec{x})$$

where ψ is a fermionic field.

Under the action of dilatation operator,

$$V(r) \to V'(r) = e^{-2\lambda} V\left(e^{-\lambda}r\right)$$

If V corresponds to infinite scattering length, then V' also corresponds to infinite scattering length. Hence,

$$e^{-i\lambda D}He^{i\lambda D} = e^{-2\lambda}H \implies [H, D] = 2iH$$

Note: Infinite scattering length corresponds to saturation of the s- wave unitarity bound and in this limit there is no intrinsic scale associated with the potential.

Geometric Realization

We shall find a metric whose isometry group is Sch(d). Let us start from AdS metric.

$$ds^{2} = \frac{-d\tau^{2} + dy^{2} + \vec{dx}^{2} + dr^{2}}{r^{2}}$$

$$ds^2 = \frac{2d\xi dt + \vec{dx}^2 + dr^2}{r^2}$$

$$ds^{2} = \frac{2d\xi dt + \vec{dx}^{2} + dr^{2}}{r^{2}}$$

But this is just AdS in light-cone coordinates. Note that t is a null direction and the isometry group is not Sch(d).

$$ds^{2} = \frac{2d\xi dt + d\vec{x}^{2} + dr^{2}}{r^{2}}$$

But this is just AdS in light-cone coordinates. Note that t is a null direction and the isometry group is not Sch(d).

$$ds^{2} = \frac{2d\xi dt + \vec{dx}^{2} + dr^{2}}{r^{2}} - \frac{dt^{2}}{r^{4}}$$

$$ds^{2} = \frac{2d\xi dt + \vec{dx}^{2} + dr^{2}}{r^{2}}$$

But this is just AdS in light-cone coordinates. Note that t is a null direction and the isometry group is not Sch(d).

$$ds^{2} = \frac{2d\xi dt + \vec{dx}^{2} + dr^{2}}{r^{2}} - \frac{dt^{2}}{r^{4}}$$

 $N = -i\partial_{\xi}$, corresponds to number operator (rest mass). For N to have a discrete spectrum, $\xi \sim \xi + L_{\xi}$. Metric is invariant under $t \rightarrow -t, \xi \rightarrow -\xi$, which can be interpreted as the composition of charge conjugation and time-reversal.

Translation in space:

$$x^i \to x^i + a^i, t \to t, \xi \to \xi, r \to r$$

Time Translation:

$$x^i \to x^i, t \to t+b, \xi \to \xi, r \to r$$

Galilean boosts:

$$x^i \to x^i - v^i t, t \to t, \xi \to \xi + \frac{1}{2}(2\vec{v}\cdot\vec{x} - v^2 t), r \to r$$

Special Conformal Transformation:

$$x^{i} \to \frac{x^{i}}{1+ct}, \ t \to \frac{t}{1+ct}, \ \xi \to \xi + \frac{c}{2} \frac{(\vec{x}.\vec{x}+r^{2})}{(1+ct)}, \ r \to \frac{r}{1+ct}.$$

Einstein's Equations

The Einstein tensor for this metric is,

$$G_{ab} = -\Lambda g_{ab} - \mathcal{E}\delta^0_a \delta^0_b g_{00}$$

where $\Lambda = -\frac{(d+1)(d+2)}{2L^2}$. metric is sourced by the ground state of an Abelian Higgs model in its broken phase. The model

$$S = \int d^{d+3}x \sqrt{g} \left(-\frac{1}{4}F^2 + \frac{1}{2}|D\Phi|^2 - V\left(|\Phi|^2\right) \right)$$

with $D_a \Phi \equiv (\partial_a + ieA_a)\Phi$, with a Mexican-hat potential

$$V\left(|\Phi|^2\right) = g\left(|\Phi|^2 - \frac{z(z+d)}{e^2}\right)^2 + \Lambda$$

produces the 'dust' stress tensor sourcing this metric.

Correlators

Correlators of field theor operators are calculated by solving the wave equation in this background. Wake equation in this background is given by,

$$\left(-r^{d+3}\partial_r \left(\frac{1}{r^{d+1}}\partial_r\right) + r^2(2l\omega + \vec{k}^2) + r^{4-2z}l^2 + m^2\right)f_{\omega,\vec{k},l}(r) = 0.$$

The behavior of the solution near the boundary is given by,

 $f \propto r^{\Delta}$ where, $\Delta_{\pm} = 1 + \frac{d}{2} \pm \sqrt{\left(1 + \frac{d}{2}\right)^2 + m^2 + \delta_{z,2}l^2}.$

For
$$d = 3$$
, $z = 2$
 $f_{\omega,\vec{k},l}(r) = Ar^{5/2}K_{\nu}(\kappa r), \nu = \sqrt{\left(\frac{5}{2}\right)^2 + l^2 + m^2}, \ \kappa^2 = 2l\omega + \vec{k}^2$

On-Shell action:

$$S[\phi_0] = \frac{1}{2} \left[\int d^{d+2} X \sqrt{g} g^{rr} \phi(X) \partial_r \phi(X) \right]_{r=\epsilon}$$

In momentum space, the on-shell action can be written as,

$$S[\phi_0] = \frac{1}{2} \int dp \phi_0(-p) \mathcal{F}(\kappa, \epsilon) \phi_0(p)$$
where, the 'flux factor' is defined as,

$$\mathcal{F}(\kappa,\epsilon) = \lim_{r \to \epsilon} \sqrt{g} g^{rr} f_{\kappa}(r) \partial_r f_{\kappa}(r) = \sqrt{g} g^{rr} \partial_r r^{1+\frac{d}{2}} \ln K_{\nu}(\kappa r)|_{r=\epsilon}$$

Hence, boundary Green's function is given by,

$$\langle \mathcal{O}_1(x,t)\mathcal{O}_2(0,0)\rangle \propto \frac{\Gamma(1-\nu)}{\Gamma(\nu)}\delta_{\Delta_1,\Delta_2}\theta(t)\frac{1}{|\epsilon^2 t|^{\Delta}}e^{-ilx^2/2|t|}$$

The expression for 2-point function is consistent with NR conformal Ward identities.

Is it possible to embed this geometry into String theory?

Used to generate new Type II Supergravity solutions from existing solutions. It involves the following steps

Boost along a translationally invariant direction (say y) with boost parameter γ

- Boost along a translationally invariant direction (say y) with boost parameter γ
- **•** T-dualize along y.

- Boost along a translationally invariant direction (say y) with boost parameter γ
- **•** T-dualize along y.
- Twist a one-form (say χ): $\chi \rightarrow \chi + \alpha dy$

- Boost along a translationally invariant direction (say y) with boost parameter γ
- T-dualize along y.
- Twist a one-form (say χ): $\chi \rightarrow \chi + \alpha dy$
- **•** T-dualize back along y

- Boost along a translationally invariant direction (say y) with boost parameter γ
- **•** T-dualize along y.
- Twist a one-form (say χ): $\chi \rightarrow \chi + \alpha dy$
- **J** T-dualize back along y
- Boost back by $-\gamma$ along y

- Boost along a translationally invariant direction (say y) with boost parameter γ
- **•** T-dualize along y.
- Twist a one-form (say χ): $\chi \rightarrow \chi + \alpha dy$
- **9** T-dualize back along y
- Boost back by $-\gamma$ along y
- Scaling limit: $\gamma \to \infty$, $\alpha \to 0$ keeping $\beta = \frac{1}{2}\alpha e^{\gamma}$ fixed.

Schrödinger spacetime from AdS

● $AdS_5 \times S_5$ is a solution of type II supergravity.

$$ds^{2} = \frac{-d\tau^{2} + dy^{2} + dx_{1}^{2} + dx_{2}^{2} + dr^{2}}{r^{2}} + ds_{S_{5}}^{2}$$

Schrödinger spacetime from AdS

■ $AdS_5 \times S_5$ is a solution of type II supergravity.

$$ds^{2} = \frac{-d\tau^{2} + dy^{2} + dx_{1}^{2} + dx_{2}^{2} + dr^{2}}{r^{2}} + ds_{S_{5}}^{2}$$

■ $ds_{S_5}^2 = ds_{\mathbb{P}^2}^2 + (d\chi + A)^2$ can be written as

Schrödinger spacetime from AdS

■ $AdS_5 \times S_5$ is a solution of type II supergravity.

$$ds^{2} = \frac{-d\tau^{2} + dy^{2} + dx_{1}^{2} + dx_{2}^{2} + dr^{2}}{r^{2}} + ds_{S_{5}}^{2}$$

• $ds_{S_5}^2 = ds_{\mathbb{P}^2}^2 + (d\chi + \mathcal{A})^2$ can be written as

Melvin twist produces the following metric

$$ds^{2} = \frac{1}{r^{2}} \left(-\left(1 + \frac{\beta^{2}}{r^{2}}\right) d\tau^{2} + \left(1 - \frac{\beta^{2}}{r^{2}}\right) dy^{2} + 2\frac{\beta^{2}}{r^{2}} d\tau dy \right)$$

$$+dx_1^2 + dx_2^2 + dr^2 + ds_{S_5}^2$$

Defining $\xi = \frac{1}{2\beta}(y - \tau)$, $t = \beta(\tau + y)$, and reducing on the 5-sphere we get, small

$$ds^{2} = \frac{2d\xi dt + \vec{dx}^{2} + dr^{2}}{r^{2}} - \frac{dt^{2}}{r^{4}}$$

Defining $\xi = \frac{1}{2\beta}(y - \tau)$, $t = \beta(\tau + y)$, and reducing on the 5-sphere we get, small

$$ds^{2} = \frac{2d\xi dt + \vec{dx}^{2} + dr^{2}}{r^{2}} - \frac{dt^{2}}{r^{4}}$$

The ten-dimensional metric is sourced by a five form flux and NS-NS 2-form field.

$$B = \beta / r^2 (d\chi + \mathcal{A}) \wedge (d\tau + dy),$$
$$F_5 = (1 + \star)\Omega_5 d\theta \wedge d\phi d\psi \wedge d\mu \wedge d\chi$$

The dual field theory is closely related to DLCQ of $\mathcal{N}=4$ theory.

- The dual field theory is closely related to DLCQ of $\mathcal{N}=4$ theory.
- Every field is expanded in modes along light like ξ circle.

- The dual field theory is closely related to DLCQ of $\mathcal{N} = 4$ theory.
- Every field is expanded in modes along light like ξ circle.
- The melvin twist causes a shift in the ξ momentum by βq_R , *i.e.* $l = l_0 + \beta q_R$, where q_R denotes R-charge.

- The dual field theory is closely related to DLCQ of $\mathcal{N} = 4$ theory.
- Every field is expanded in modes along light like ξ circle.
- The melvin twist causes a shift in the ξ momentum by βq_R , *i.e.* $l = l_0 + \beta q_R$, where q_R denotes R-charge.
- This modified DLCQ (DLCQ $_\beta$) lifts the zero modes and makes the theory non-relativistic.

Solutions with Finite temperature and Density

10-D Black Hole solution

Melvinization of planar AdS Black Hole yields the following metric.

$$ds^{2} = \frac{1}{r^{2}K} \left(\frac{-f}{r^{2}} dt^{2} - 2d\xi dt - \frac{g}{4} \left(\frac{dt}{2\beta} - \beta\xi \right)^{2} + K d\vec{x}^{2} + \frac{K dr^{2}}{f} \right) + \frac{1}{K} \left(d\chi + \mathcal{A} \right)^{2} + ds_{\mathbb{P}^{2}}^{2}$$

where, $f = 1 + g = 1 - \frac{r^4}{rH^4}$ and $K = 1 + \beta^2 \frac{r^2}{rH^4}$

The ten-dimensional metric is sourced by a five form flux and NS-NS 2-form field and a Dilaton field.

$$B = \beta/r^2 (d\chi + \mathcal{A}) \wedge ((1+f)/2dt + 2(1-f)\beta^2 d\xi)$$

 $F_5 = (1 + \star)\Omega_5 d\theta \wedge d\phi d\psi \wedge d\mu \wedge d\chi, \ e^{-2\Phi} = K$

5-D reduction

Melvinization of planar AdS Black Hole yields the following metric.

$$ds^{2} = \frac{K^{-2/3}}{r^{2}} \left(\frac{-f}{r^{2}} dt^{2} - 2d\xi dt - \frac{g}{4} \left(\frac{dt}{2\beta} - \beta\xi \right)^{2} + K d\vec{x}^{2} + \frac{K dr^{2}}{f} \right)$$

5-D reduction

Melvinization of planar AdS Black Hole yields the following metric.

$$ds^{2} = \frac{K^{-2/3}}{r^{2}} \left(\frac{-f}{r^{2}} dt^{2} - 2d\xi dt - \frac{g}{4} \left(\frac{dt}{2\beta} - \beta\xi \right)^{2} + K d\vec{x}^{2} + \frac{K dr^{2}}{f} \right)$$

The 5-dimensional metric is sourced by a massive gauge field and a scalar field.

$$A = \beta/r^2((1+f)/2dt + 2(1-f)\beta^2d\xi), \ e^{-2\Phi} = K$$

5-D reduction

Melvinization of planar AdS Black Hole yields the following metric.

$$ds^{2} = \frac{K^{-2/3}}{r^{2}} \left(\frac{-f}{r^{2}} dt^{2} - 2d\xi dt - \frac{g}{4} \left(\frac{dt}{2\beta} - \beta\xi \right)^{2} + K d\vec{x}^{2} + \frac{K dr^{2}}{f} \right)$$

The 5-dimensional metric is sourced by a massive gauge field and a scalar field.

$$A = \beta/r^2((1+f)/2dt + 2(1-f)\beta^2d\xi), \ e^{-2\Phi} = K$$

• An Effective action ($8\pi G = 1$):

$$S = \frac{1}{2} \int d^5x \sqrt{-g} \left(R - \frac{4}{3} (\partial \Phi)^2 - \frac{1}{4} F^2 - 4A^2 - V(\Phi) \right)$$

where $V(\Phi) = 4e^{2\Phi/3}(e^{2\Phi} - 4)$.

Temperature & Chemical Potential:

$$T = \frac{\kappa}{2\pi} = \frac{1}{\pi\beta r_H}, \mu = -\frac{1}{2\beta^2}$$

Temperature & Chemical Potential:

$$T = \frac{\kappa}{2\pi} = \frac{1}{\pi\beta r_H}, \mu = -\frac{1}{2\beta^2}$$

$$S = \frac{L_{x_1} L_{x_2} L_y}{4r_H^3 G_N} = L_{x_1} L_{x_2} L_{\xi} \frac{\pi^2 N^2 T^3}{16\mu^2}$$

• Temperature & Chemical Potential: $T = \frac{\kappa}{-1} = \frac{1}{-1}, \mu = -\frac{1}{-1}$

$$T = \frac{1}{2\pi} = \frac{1}{\pi\beta r_H}, \mu = -\frac{1}{2\beta^2}$$

$$S = \frac{L_{x_1} L_{x_2} L_y}{4r_H^3 G_N} = L_{x_1} L_{x_2} L_{\xi} \frac{\pi^2 N^2 T^3}{16\mu^2}$$

• Free energy (
$$S_{onshell}T$$
):
 $S_{onshell} = \frac{L_{x_1}L_{x_2}L_y}{8T\pi r_H^3 G_5} \implies F = L_{x_1}L_{x_2}L_{\xi}\frac{\pi^2 N^2 T^4}{32\mu^2}$

• Temperature & Chemical Potential: $T = \frac{\kappa}{1} = \frac{1}{2}, \mu = -\frac{1}{2}$

$$T = \frac{\pi}{2\pi} = \frac{\pi}{\pi\beta r_H}, \mu = -\frac{\pi}{2\beta^2}$$

$$S = \frac{L_{x_1} L_{x_2} L_y}{4r_H^3 G_N} = L_{x_1} L_{x_2} L_{\xi} \frac{\pi^2 N^2 T^3}{16\mu^2}$$

• Free energy (
$$S_{onshell}T$$
):
 $S_{onshell} = \frac{L_{x_1}L_{x_2}L_y}{8T\pi r_H^3 G_5} \implies F = L_{x_1}L_{x_2}L_{\xi}\frac{\pi^2 N^2 T^4}{32\mu^2}$

The on-shell action is regularized by adding 'counterterms', which makes the variational principle well defined.

Boundary stress tensor

Boundary stress tensor is obtained from the regularized on-shell action as,

$$T^{\mu}_{\nu} = -\frac{2}{\sqrt{\gamma}} \frac{\delta S_{onshell}}{\gamma^{\nu}_{\mu}}$$

Boundary stress tensor

 Boundary stress tensor is obtained from the regularized on-shell action as,

$$T^{\mu}_{\nu} = -\frac{2}{\sqrt{\gamma}} \frac{\delta S_{onshell}}{\gamma^{\nu}_{\mu}}$$

$$E = -\int \sqrt{\gamma} T_t^t = \frac{1}{16\pi G r_H^4} = \frac{\pi^2 N^2 T^4}{64\mu^2} L_{x_1} L_{x_2} L_{\xi}$$

Boundary stress tensor

 Boundary stress tensor is obtained from the regularized on-shell action as,

$$T^{\mu}_{\nu} = -\frac{2}{\sqrt{\gamma}} \frac{\delta S_{onshell}}{\gamma^{\nu}_{\mu}}$$

$$E = -\int \sqrt{\gamma} T_t^t = \frac{1}{16\pi G r_H^4} = \frac{\pi^2 N^2 T^4}{64\mu^2} L_{x_1} L_{x_2} L_{\xi}$$

Density:

$$N = \int \sqrt{\gamma} T_t^{\xi} = \frac{\beta^2}{16\pi G r_H^4} = \frac{\pi^2 N^2 T^4}{32\mu^3} L_{x_1} L_{x_2} L_{\xi}$$

Pressure:

$$P = \int \sqrt{\gamma} T_{x_1}^{x_1} = \frac{1}{16\pi G r_H^4} = \frac{\pi^2 N^2 T^4}{64\mu^2} L_{x_1} L_{x_2} L_{\xi}$$

Pressure:

$$P = \int \sqrt{\gamma} T_{x_1}^{x_1} = \frac{1}{16\pi G r_H^4} = \frac{\pi^2 N^2 T^4}{64\mu^2} L_{x_1} L_{x_2} L_{\xi}$$

$$E + P = TS + \mu N$$

Pressure:

$$P = \int \sqrt{\gamma} T_{x_1}^{x_1} = \frac{1}{16\pi G r_H^4} = \frac{\pi^2 N^2 T^4}{64\mu^2} L_{x_1} L_{x_2} L_{\xi}$$

$$E + P = TS + \mu N$$

Consistent with conformal Ward identities

$$E = P = F$$

Kubo Formula:

$$\eta = -\lim_{\omega \to 0} \frac{1}{\omega} Im(\langle T_{12}T_{12} \rangle)$$

Kubo Formula:

$$\eta = -\lim_{\omega \to 0} \frac{1}{\omega} Im(\langle T_{12}T_{12} \rangle)$$

• T_{12} couples to h_{12} in the bulk and it solves the bulk wave equation.

Kubo Formula:

$$\eta = -\lim_{\omega \to 0} \frac{1}{\omega} Im(\langle T_{12}T_{12} \rangle)$$

- T_{12} couples to h_{12} in the bulk and it solves the bulk wave equation.
- Stress tensor is an operator with particle number zero.

Kubo Formula:

$$\eta = -\lim_{\omega \to 0} \frac{1}{\omega} Im(\langle T_{12}T_{12} \rangle)$$

- If T_{12} couples to h_{12} in the bulk and it solves the bulk wave equation.
- Stress tensor is an operator with particle number zero.
- It was found that

$$\eta = \frac{\pi L_{\xi} T^3 N^2}{32\mu^2}$$
Viscosity

Kubo Formula:

$$\eta = -\lim_{\omega \to 0} \frac{1}{\omega} Im(\langle T_{12}T_{12} \rangle)$$

- T_{12} couples to h_{12} in the bulk and it solves the bulk wave equation.
- Stress tensor is an operator with particle number zero.
- It was found that

$$\eta = \frac{\pi L_{\xi} T^3 N^2}{32\mu^2}$$

Hence, η/s is same as that of $\mathcal{N} = 4$ theory and it saturates the viscosity bound.

• There is a string theory embedding for gravity duals of Galilean invariant CFTS with z = 2.

- There is a string theory embedding for gravity duals of Galilean invariant CFTS with z = 2.
- We have found a black solution which asymptotes to the NR metric for z = 2. It would be nice to find black hole solutions for other values of z.

- There is a string theory embedding for gravity duals of Galilean invariant CFTS with z = 2.
- We have found a black solution which asymptotes to the NR metric for z = 2. It would be nice to find black hole solutions for other values of z.
- Black hole thermodynamics is consistent with conformal Ward Identities. Thermodynamic variables such as pressure, energy, density etc vanish at zero temperature. Can we find other solutions which give non-zero answers for the thermodynamic variables at zero temperature?

- There is a string theory embedding for gravity duals of Galilean invariant CFTS with z = 2.
- We have found a black solution which asymptotes to the NR metric for z = 2. It would be nice to find black hole solutions for other values of z.
- Black hole thermodynamics is consistent with conformal Ward Identities. Thermodynamic variables such as pressure, energy, density etc vanish at zero temperature. Can we find other solutions which give non-zero answers for the thermodynamic variables at zero temperature?

Thank You