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Prelude

Brane systems are described by solutions of supergravity.

Geometries of black branes or black holes are often
associated with some sort of no-hair theorems.

On the other hand, scattering from the brane system
carries information about the quantum state of the system.

There are geometries (Lunin-Mathur, Maldacena-Maoz,
LLM,..) which depend on the “microstate”.

How do geometries with horizon emerge? How does one
define an average geometry and/or a long distance
geometry?

In this talk, we will address some of these in the context of
the D1-D5 system.
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D1-D5 system

t z1 z2 z3 z4 y x1 x2 x3 x4

D5 − · · · · − − − − −
D1 − · · · · − · − − −

za → non-compact. y → circle of radius R. x i → T 4 of
volume V .
The microscopic description of the system at low energies
is a (4, 4) superconformal field theory with world-volume
σα = (t , y) and a target space which is a resolution of the
orbifold (T 4)N/S(N), N = Q1Q5.

Sorbifold =
1
2

∫

d2σ
(

∂αX i
A∂αX i

A + fermions
)

where i = 1, ..., 4, A = 1, ..., N (N copies).
For periodic y , the CFT is in the Ramond sector.
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D1-D5 system
Twist sectors and long strings

An element of S(N) can be described by Nn copies of the
cyclic permutation Zn, n = 1, ...N (up to equivalence).
Zn twist acts on XA(σ) as XA(σ + 2πR) = XA+1(σ),
A = 1, ..., n.
⇒ ‘Long string of length 2πnR’:
{XA(σ)} → X (σ) ≡ X (σ + 2πR).
A twist sector = Nn long strings, each of length n.

∑

n

n Nn = N = Q1Q5

2-charge D1-D5 system = Ramond ground states={lowest
energy state of each twist sector}. Number of these = Ω,
where

Sstat = ln Ω ≈ 2π
√

2N
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D1-D5 system
Supergravity: standard description

In two derivative supergravity, standard description of the D1-D5
system is in terms of the naive metric

ds2 = 1/
√

f1(r)f5(r)
[

−dt2 + dy2]

+

√

f1(r)
f5(r)

[

dx2
1 + · · · + dx2

4

]

+
√

f1(r)f5(r)
[

dr2 + r2dΩ2
3

]

f1(r) = 1 +
16π4gs l6s RQ1/V

r2 f5(r) = 1 +
gs l2s Q5

r2

Near horizon limit= AdS3 × S3, with ℓ2 = (κ2N)/(4π3V ).

Horizon at r = 0: SBek = 0.

In similar theories (D1-D5 on K 3) higher derivative corrections
produce a finite horizon and SWald = Sstat. We expect here too:
area of horizon = Ah∼κ2

5Sstat∼κ2
5

√
N.
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Fuzzball geometries

Mathur and collaborators have found smooth horizon-free
solutions (“fuzzball”) of leading order supergravity
corresponding to CFT states of the 2-charge system.

These geometries agree with the naive geometry at large
r , but disagree for r <∼ r0 where r3

0 ∼ Ah ∼ κ2
5

√
N. At small

r the geometries are “capped”:

A fuzzball solution can sometimes mimic the effect of a
naive geometry (can show absorption) for times less than
a certain time scale τ . Lunin-Mathur argument
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Other related works

Balasubramanian et al showed that for typical microstates
AND short time scales t ≪ O(R

√
N), CFT correlation

functions are independent of the details of the microstate
and agree with the naive supergravity answers at short
time scales.

In typical microstates {Nn} are defined to be close to the
thermal values

Nn = 8/ sinh(βn)

This would suggest a role of averaging in the emergence of
geometries with horizons.

These issues have also been studied in the context of LLM
and similar geometries.
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Absorption cross-section

We will consider scattering a low energy supergravity mode χ off
the D1-D5 system and compute using the orbifold CFT the
absorption cross-section. We will study σabs as a tool to figure
out about the geometry.

We will take χ to be minimally coupled at the leading order
supergravity, e.g. χ = h12. The CFT is considered coupled to the
supergravity field as an external source.

A long string in the CFT with length 2πnR is coupled to a
monochromatic wave χ(t , y) = e−iEt by the term

Sint =
√

2κ

∫ T

−T
dt

∫ 2πnR

0
dσ e−iEt ∂αX 1 ∂αX 2

The absorption probability is given roughly by

P ∼
∑

m

p2
0

sin2[(p0 − E)T ]

(p0 − E)2 , p0 = m/(nR), m = 0, 1, ..
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Finite R, ∆E

This computation is similar to the calculation of σabs for the
3-charge D1-D5-P system by Dhar et al and Das et al in 1996,
which reproduced the supergravity answer. However, those
calculations were obtained in the large R limit.

We will compute σabs at finite R and deduce the
microstate-dependence from finite size effects.

Subtlely: if the spectrum is discrete, σabs does not exist, unless
we consider a wave packet of the incoming wave χ, of a finite
width ∆E .
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Scales

Suppose we are in a long string sector of effective length
2πnR.

Now, if ∆E ≫ 1/R, we lose all information about
discreteness. On the other hand, if ∆E ≪ 1/(nR), then we
are back to an effectively monochromatic wave and hence
there is no absorption.

Furthermore, validity of Fermi’s Golden rule demands that
∆E ≫ 1/T . This gives a lower bound on T .

Also, the basic process of absorption at the first order is
the splitting of the closed string mode χ into two open
strings; in order to avoid recombination of these modes, we
must have T ≪ πnR.
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Scales

Combining all, in a specific long string sector

R ≪ 1
∆E

≪ T < πnR

Note that the upper bound on T is the same as the one
found by Lunin and Mathur.

In a typical state, with 〈n〉 ∼
√

N, we have

R ≪ 1
∆E

≪ T < πR
√

N

The upper bound on T here is the same as the one found
by Balasubramanian et al.

We will now compute the absorption crosssection σabs

using finite R, ∆E keeping the above bounds in mind.
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Finite R absorption crosssection

With an incoherent wave-packet and summing over various
long strings, the absorption probability is now given by

P ∼
∑

n

Nn

∫

dE
∑

m

( m
nR

)2 sin2(p0 − E)T
(p0 − E)2 ρE0,∆E(E)

Take a Lorentzian wave packet

ρE0,∆E(E) = N E
[(E − E0)2 + (∆E)2]2

This gives

σ(E0, ∆E) = 2κ2
5 N

N
∑

n=1

Nn

∞
∑

m=1

(
m
nR

)2 1

[(2m
nR − E0)2 + (∆E)2]2
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Large R limit
R∆E ≫ 1

In this limit the sum over m becomes an integral: replace
2m/(nR) → x ,

∑

m → (n R/2)
∫

dx

σ = F (E0,∆E) ×
(

N
∑

n=1

n Nn

)

= F (E0,∆E) N

F ∼ E0, E0 ≫ ∆E , F ∼ ∆E , E0 ≪ ∆E .

Classical σabs, calculated from the naive metric with singular
horizon and for a monochromatic wave (frequency E), is
σabs(E) = π3ℓ4E . For a wave-packet

σabs(E) = π3ℓ4N
∫

dE E ρE0,∆E(E) ≡ N F (E0,∆E)

Hence the naive geometry (zero horizon) emerges at low
resolution, defined by R∆E ≫ 1. For any microstate!
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Emergence of black hole geometry

As long as R∆E ≫ 1, even atypical microstates, e.g. the
untwisted state, behave as black holes.

Will see that for R∆E ≪ 1, σabs strongly depends on the
microstate. Typical microstates still behave as black holes,
as long as R∆E ≫ 1/

√
N.

CFT Bulk Observation

R∆E ≫ 1 (coarse-grain) r ≫ rstretch BH (zero area)
R∆E ≪ 1 (fine-grain) r ≪ rstretch LM
Typical states
R∆E ≫ 1/

√
N (medium) r ≫ rstretch/

√
N BH (finite horizon)

T ≪ Trecombn. ∼
√

NR T ≪ Ttrapping Absorption and
∼ nR emergent T -asymmetry
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Finite R correction: sum minus integral

McLaurin integral approximation: if a function f (x) is positive
and monotonically decreasing in P ≤ x ≤ Q, the following is
true

∫ Q

P
dx f (x) + f (P) >

Q
∑

n=P

f (i) >

∫ Q

P
dx f (x) + f (Q),

We can rewrite the above in the form of an estimate for the sum:
Q

∑

n=P

f (i) =

∫ Q

P
dx f (x) + f (Q) + η1 (f (P) − f (Q)) , 0 < η1 < 1

Similarly, for a positive monotonically increasing function f (x) in
P ′ ≤ x ≤ Q′, we get

Q′

∑

n=P′

f (i) =

∫ Q′

P′

dx f (x) + f (P ′) + η2
(

f (Q′) − f (P ′)
)

, 0 < η2 < 1
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Analytic upper bound for σ − σclassical

By using this analysis we find an upper bound of the difference
between the sum over m and its integral approximation (recall
the latter gives the classical value)

|∆σ(E0, ∆E)|max =
κ2

2VR
G̃(E0/∆E)

N
∑

n=1

Nn

Microstate dependence is in the sum
∑

n Nn.
For a Lorentzian wave-packet,

G̃(x) =
x2 + 1

(1 + (
√

x2 + 1 − x)2)2

[

1
2

+
x
2

(π

2
+ tan−1 x

)

]

−1
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Typical state: non-zero E0
Analytic

A typical microstate is defined by {Nn} which closely
approximate a canonical ensemble, given by

〈Nn〉 = 8/ sinh(βn), β ≈ π
√

2/N

e.g. Nn = [〈Nn〉] (nearest integer).

∑

n

Nn ≈ (8/β) log β ∼
√

N log N

Hence

|∆σ(E0, ∆E)|max ∼ κ2
5G̃(E0/∆E)

√
N log N
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Typical state: non-zero E0
Analytic

E0 ≪ ∆E :

σclassical(E0,∆E) = N R∆E
κ2

5

4

[

π

2
+ (2 − π2

4
)

E0

∆E
+ O(

E0

∆E
)2

]

∆σmax(E0,∆E) =
√

N
κ2

5

2
2
√

2
π

[

1
2

+ (1 − π

4
)

E0

∆E
+ O(

E0

∆E
)2

]

×
[

1
2

log(N) − log
π√
2

+ η

]

E0 ≫ ∆E :
σclassical(E0,∆E) = N RE0

κ2
5

4

[

1 + O(
∆E
E0

)2
]

∆σmax(E0,∆E) =
√

N
κ2

5

2
2
√

2
π

E0

∆E

[

2
π

+ O(
∆E
E0

)2
] [

1
2

log(N) − log
π√
2

+ η

]

Note the perturbation parameter 1/(R ∆E
√

N).
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Typical state: non-zero E0
Numerical
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∆σ ∝
√

N for large N, and is negative for small E0.
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Typical state: E0 = 0
Analytic

Here the sum over m can be done:
∞

∑

m=1

m2

(m2 + a2)2 =
π

4a
[1 + H(2πa)]

where

H(x) ≡ 2
(ex − 1)2 {(1 − x) ex − 1} =

d
dx

2x
ex − 1

For R∆E ≫ 1, we again recover the classical calculation from
the naive geometry. For R∆E ≪ 1, we get

∆σL(E0 = 0, ∆E) ≈ −
√

N κ2
5

√
2

π

[

1 − η′πR(∆E)

2
+ O(R∆E)2

]

Note the − sign.
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Typical state: E0 = 0
Numerical
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�!!!!!!!
N

∆σ/
√

N is plotted in units of κ2
5 for E0 = 0 and for A = πR∆E=

.05, .075, .1, .5. The dotted line at −
√

2/π ≈ −.45 is the analytic
estimate.
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Typical states: Summary

Microstate-dependent absorption crosssection appears
when 1 ≫ R∆E ≫ 1/

√
N, that is, when the energy

resolution lies between the largest energy gap and the
average energy gap.

For E0 ≪ ∆E

|∆σ|max ∝ Ah log(N), Ah ∼ κ2
5

√
N

where Ah is the area of the stretched horizon. The
propoortionality is up to a pure number.

Compared to the (microstate independent) classical
answer, the correction is suppressed by a power of
1/(R∆E

√
N).
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Typical states: Summary

For E0 ≪ ∆E , the sign of the correction is negative

∆σ ∼ −Ah

This can be seen numerically for E0 6= 0 and analytically
for E0 = 0. Of course, the total cross-section is explicitly
positive since it is a sum of positive terms. In our
approximation there is never a domain where the
correction is bigger than the classical term.

For generic E0R ≪ 1, numerical calculations show
∆σ < 0.

For E0
<∼ 1/R, ∆σ > 0. Plot
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Atypical States
Untwisted sector

Consider an atypical twist sector with p equal long strings,
each with winding number q: Nn = p δn q, N = p q.

∆σmax =
1
2
κ2

5
N
q

G̃(E0/∆E)

Untwisted sector (p = N, q = 1): we find

∆σ = κ2
5 N f (E0, ∆E) ∼ σclassical/(R∆E)

The correction to the crosssection is as large as the
classical answer in N-counting, but is suppressed at large
R∆E . This is consistent with the fact that these states are
very discrete even at large N. At large R, however, the
energy spectrum becomes continuous and approches the
classical answer.
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Atypical states
Maximally twisted sector

Maximally twisted sector (p = 1, q = N):

∆σmax =
1
2
κ2

5 G̃(E0/∆E) ∼ σclassical/(N R∆E)

∆σmax is independent of N, but numerically Plot ∆σ is
found to vanish exponentially in N. For E0 = 0 one can
show explicitly that E0 ∼ N exp[−N].

Lesson: although even this state is generic, in the range
∆E ≫ 1/(R

√
N), the discreteness is not perceived by the

incoming wave and hence the state appears as classical.



Introduction: D1-D5 Absorption cross-section Finite R corrections Conclusion and Discussion Extras

Robustness

The above analytic and numerical results have used a
Lorentzian profile for the incoming wave.

We have generalized the analytic results to a Gaussian
profile, with similar results. In particular, for typical states
the bound is again proportional to

√
N. The proportionality

constant becomes a pure number for E0 ≪ ∆E and linear
in E0

∆E for E0 ≫ ∆E . It is likely that there is a large class of
energy profiles for which similar results will hold.



Introduction: D1-D5 Absorption cross-section Finite R corrections Conclusion and Discussion Extras

Averaging and horizon

We recovered the naive geometry with zero horizon with
coarse graining but no averaging. When we use relatively
finer resolution and averaging, we get a result related to a
finite horizon area Ah.

It is known that in case of the 3-charge system, the
absorption crosssection sees the horizon area only when
we average over the microstates.

In case of elastic scattering off a massive heterotic string
state, the scattering amplitude reproduces properties of
the putative black hole state only after averaging over a
microcanonical ensemble of states of.
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Two continuum’s

30 35 40 45 50
n

50

100

150

A=.05, N = 10000

We have plotted on the y-axis σ̃(n) for E0 = 0, in units of
π R/(32 ∆E). The upper histogram and curve refer to σ̃classical(n) and
its continuum approximation, respectively. The lower histogram refer
to the full expression, n Nn (1 + H(A n)), while the lower curve plots
the function [8x/ sinh(β x)] (1 + H(A x)). The upper curve
corresponds to the naive geometry which arises due to low resolution
(large A ≡ R ∆E) while the lower curve refers to a different
continuum which arises due to averaging over microstates.
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Conclusion and Open problems

We have computed finite R absorption crosssection for the 2-charge
D1-D5 system on T 4 and studied the conditions for microstate
(in)dependence. Under suitable conditions, we have obtained finite R
corrections related to the area Ah of the stretched horizon.

Open problems:

Find precise bulk interpretation of the Ah terms we have
obtained.

Compare our results with scattering in LM geometries.

Generalize to D1-D5 on K3. In the latter case, classical σabs has
been calculated in the derivative corrected geometry.

Move away from the orbifold limit. In case of the 3-charge
thermal state, there are non-renormalization theorems for our
supergravity mode.

Generalize to 3-charge geometries. Compare with 3-charge LM
type states.
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Absorption by a fuzzball solution
The geometry is a rotating D1-D5 system with angular momentum J
with a 6 dimensional metric

ds2
= −

1

h(r, θ)
(dt2

− dy2
) + h(r, θ)f (r, θ)

 

dθ
2

+
dr2

r2 + a2

!

−

2ar1r5

h(r, θ)f (r, θ)

“

cos2
θ dy dψ + sin2

θ dt dφ
”

+ h(r, θ)

" 

r2
+

a2r2
1 r2

5 cos2 θ

(h(r, θ)f (r, θ))2

!

cos2
θ dψ

2
+

+

 

r2
+ a2

−

a2r2
1 r2

5 sin2 θ

(h(r, θ)f (r, θ))2

!

sin2
θ dφ

2
#

where

f (r, θ) = r2
+ a2 cos2

θ h(r, θ) =

"

(1 +
r2
1

f (r, θ)
)(1 +

r2
5

f (r, θ)
)

#

The radius of the y direction is R and the angular momentum J is
given by

J =
1
2

Q1Q5
R

r1r5
a

For a = 0 we get back the naive geometry with an infinite throat. For
nonzero a the throat is replaced by a cap.
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Absorption by a fuzzball solution

Solve the wave equation of a massless minimally coupled scalar in
this geometry. Since there is a cap, the reflection coefficient R at
infinity satisfies |R| = 1.

However, R may be written as an infinite series of terms which may
be interpreted as arising from the wave that enters the throat and
repeatedly undergoes the process of reflection by the cap and part
reflection and part outward transmission at the throat.

For the s-wave and for wℓ2 ≪ R,w2(r2
1 + r2

5 ) ≪ 1, this expansion is

R ∼ e−iπǫ − 2π2 (wℓ)4

16
− 4π2 (wℓ)4

16

∞
∑

m=1

e2πim wRN
4J
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Absorption by a fuzzball solution

The above expression is an infinite series of terms representing
waves with successive time delays of

tdelay = 2π
∂

∂w
(
wRN
4J

) =
πRN
2J

This expression was interpreted by Lunin and Mathur as
follows. The m-th term is the contribution for a wave which went
into the throat, and re-emerged after going back and forth
between the cap and the mouth of the throat m times. The
probability for entering the throat can be then read off

Pthroat = 4π2 (wℓ)4

16

This is in precisely the same as the probability for absorption in
the naive geometry. Back
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Plot for E0R ≥ 0.5

-10

 0

 10

 20

 30

 40

 50

 60

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000

(S
ig

m
a 

- 
S

ig
m

aC
la

ss
ic

al
)/

sq
rt

(N
)

N

"A=.05, E0 R=.5"
"A=.05, E0 R=.7"
"A=.05, E0 R=1."

We have plotted ∆σL(E0, ∆E) (in units of κ2
5) on the y -axis.

A = π ∆ER. All plots have E0R ≥ .5. Back
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Plot for maximally twisted state
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N

e0=.01, A=.05, M=100000

We show (σ − σL,classical)/N vs N in units κ2
5. M denotes the

upper limit in the sum over m. A = πR∆E , e0 = RE0. The
McLaurin upper bound in this case is 0.0278431. Back
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