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The LHC is coming...

What will we discover?

Low-energy supersymmetry is still the most 
theoretically well-motivated possibility.

Hierarchy problem

Gauge coupling unification

Dark matter (?) 



SUSY in its minimal incarnation is known as 
the MSSM.

The MSSM

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6)

(×3 families) u ũ∗
R u†

R ( 3, 1, −2
3)

d d̃∗R d†R ( 3, 1, 1
3)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , −1
2)

Table 1.1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model. The spin-0 fields
are complex scalars, and the spin-1/2 fields are left-handed two-component Weyl fermions.

completely different reason: because of the structure of supersymmetric theories, only a Y = 1/2 Higgs
chiral supermultiplet can have the Yukawa couplings necessary to give masses to charge +2/3 up-type
quarks (up, charm, top), and only a Y = −1/2 Higgs can have the Yukawa couplings necessary to give
masses to charge −1/3 down-type quarks (down, strange, bottom) and to the charged leptons. We
will call the SU(2)L-doublet complex scalar fields with Y = 1/2 and Y = −1/2 by the names Hu and
Hd, respectively.† The weak isospin components of Hu with T3 = (1/2, −1/2) have electric charges
1, 0 respectively, and are denoted (H+

u , H0
u). Similarly, the SU(2)L-doublet complex scalar Hd has

T3 = (1/2, −1/2) components (H0
d , H−

d ). The neutral scalar that corresponds to the physical Standard
Model Higgs boson is in a linear combination of H0

u and H0
d ; we will discuss this further in section 7.1.

The generic nomenclature for a spin-1/2 superpartner is to append “-ino” to the name of the Standard
Model particle, so the fermionic partners of the Higgs scalars are called higgsinos. They are denoted
by H̃u, H̃d for the SU(2)L-doublet left-handed Weyl spinor fields, with weak isospin components H̃+

u ,
H̃0

u and H̃0
d , H̃−

d .
We have now found all of the chiral supermultiplets of a minimal phenomenologically viable exten-

sion of the Standard Model. They are summarized in Table 1.1, classified according to their transfor-
mation properties under the Standard Model gauge group SU(3)C ×SU(2)L ×U(1)Y , which combines
uL, dL and ν, eL degrees of freedom into SU(2)L doublets. Here we follow a standard convention, that
all chiral supermultiplets are defined in terms of left-handed Weyl spinors, so that the conjugates of
the right-handed quarks and leptons (and their superpartners) appear in Table 1.1. This protocol for
defining chiral supermultiplets turns out to be very useful for constructing supersymmetric Lagrangi-
ans, as we will see in section 3. It is also useful to have a symbol for each of the chiral supermultiplets
as a whole; these are indicated in the second column of Table 1.1. Thus, for example, Q stands for
the SU(2)L-doublet chiral supermultiplet containing ũL, uL (with weak isospin component T3 = 1/2),

and d̃L, dL (with T3 = −1/2), while u stands for the SU(2)L-singlet supermultiplet containing ũ∗
R, u†

R.
There are three families for each of the quark and lepton supermultiplets, Table 1.1 lists the first-family
representatives. A family index i = 1, 2, 3 can be affixed to the chiral supermultiplet names (Qi, ui, . . .)
when needed, for example (e1, e2, e3) = (e, µ, τ). The bar on u, d, e fields is part of the name, and does
not denote any kind of conjugation.

The Higgs chiral supermultiplet Hd (containing H0
d , H−

d , H̃0
d , H̃−

d ) has exactly the same Standard
Model gauge quantum numbers as the left-handed sleptons and leptons Li, for example (ν̃, ẽL, ν,
eL). Naively, one might therefore suppose that we could have been more economical in our assignment

†Other notations in the literature have H1, H2 or H,H instead of Hu, Hd. The notation used here has the virtue of
making it easy to remember which Higgs VEVs gives masses to which type of quarks.
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SUSY in its minimal incarnation is known as 
the MSSM.

The MSSM

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 1.2: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

by taking a neutrino and a Higgs scalar to be superpartners, instead of putting them in separate
supermultiplets. This would amount to the proposal that the Higgs boson and a sneutrino should be the
same particle. This attempt played a key role in some of the first attempts to connect supersymmetry to
phenomenology [5], but it is now known to not work. Even ignoring the anomaly cancellation problem
mentioned above, many insoluble phenomenological problems would result, including lepton-number
non-conservation and a mass for at least one of the neutrinos in gross violation of experimental bounds.
Therefore, all of the superpartners of Standard Model particles are really new particles, and cannot be
identified with some other Standard Model state.

The vector bosons of the Standard Model clearly must reside in gauge supermultiplets. Their
fermionic superpartners are generically referred to as gauginos. The SU(3)C color gauge interactions
of QCD are mediated by the gluon, whose spin-1/2 color-octet supersymmetric partner is the gluino. As
usual, a tilde is used to denote the supersymmetric partner of a Standard Model state, so the symbols
for the gluon and gluino are g and g̃ respectively. The electroweak gauge symmetry SU(2)L ×U(1)Y is
associated with spin-1 gauge bosons W+,W 0,W− and B0, with spin-1/2 superpartners W̃+, W̃ 0, W̃−

and B̃0, called winos and bino. After electroweak symmetry breaking, the W 0, B0 gauge eigenstates
mix to give mass eigenstates Z0 and γ. The corresponding gaugino mixtures of W̃ 0 and B̃0 are called
zino (Z̃0) and photino (γ̃); if supersymmetry were unbroken, they would be mass eigenstates with
masses mZ and 0. Table 1.2 summarizes the gauge supermultiplets of a minimal supersymmetric
extension of the Standard Model.

The chiral and gauge supermultiplets in Tables 1.1 and 1.2 make up the particle content of the
Minimal Supersymmetric Standard Model (MSSM). The most obvious and interesting feature of this
theory is that none of the superpartners of the Standard Model particles has been discovered as of
this writing. If supersymmetry were unbroken, then there would have to be selectrons ẽL and ẽR with
masses exactly equal to me = 0.511... MeV. A similar statement applies to each of the other sleptons
and squarks, and there would also have to be a massless gluino and photino. These particles would have
been extraordinarily easy to detect long ago. Clearly, therefore, supersymmetry is a broken symmetry
in the vacuum state chosen by Nature.

An important clue as to the nature of supersymmetry breaking can be obtained by returning
to the motivation provided by the hierarchy problem. Supersymmetry forced us to introduce two
complex scalar fields for each Standard Model Dirac fermion, which is just what is needed to enable a
cancellation of the quadratically divergent (Λ2

UV) pieces of eqs. (1.2) and (1.3). This sort of cancellation
also requires that the associated dimensionless couplings should be related (for example λS = |λf |2).
The necessary relationships between couplings indeed occur in unbroken supersymmetry, as we will
see in section 3. In fact, unbroken supersymmetry guarantees that the quadratic divergences in scalar
squared masses must vanish to all orders in perturbation theory.‡ Now, if broken supersymmetry is still
to provide a solution to the hierarchy problem even in the presence of supersymmetry breaking, then

‡A simple way to understand this is to recall that unbroken supersymmetry requires the degeneracy of scalar and
fermion masses. Radiative corrections to fermion masses are known to diverge at most logarithmically in any renormal-
izable field theory, so the same must be true for scalar masses in unbroken supersymmetry.
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The MSSM

Despite its theoretical successes, the MSSM 
also has many puzzling aspects. 

SUSY flavor problem

SUSY CP problem

Little hierarchy problem

mu problem

All of these problems are related in some 
way to SUSY breaking.



“Soft SUSY” Lagrangian guarantees that 
quadratic divergences are not re-introduced

Over 100 new parameters in addition to SM!

Can lead to major flavor and CP violation

SUSY in the MSSM

3x3 Hermitian matricesComplex

Lsoft = −1
2

3∑

i=1

Miλiλi −
∑

f̃=Q̃,ũ,d̃,L̃,ẽ

f̃†m2
f̃
f̃ + (Higgs)



SUSY flavor and CP

The soft Lagrangian must originate from a 
theory of spontaneous SUSY breaking.

This theory should have far fewer 
parameters than the full soft Lagrangian.

In particular, this theory should avoid the 
SUSY flavor and CP problems.



Gauge mediation is a promising framework for 
communicating SUSY-breaking to the SSM.

Its advantages include:
Automatic flavor universality (no FCNCs)
Viable spectrum
Calculability
Distinctive phenomenology

Hidden sector:
SUSY+...

Gauge Mediation
Visible sector:

MSSM+...SU(3)xSU(2)xU(1)



Messenger Paradigm

Introduce weakly-coupled “messengers” that 
couple directly to the SUSY-breaking sector and 
are charged under the SM gauge interactions.

Popular ansatz for model building -- can 
decouple details of SUSY breaking sector

(But not the most general construction!)

SUSY Visible sector:
MSSM+...SU(3)xSU(2)xU(1)

Messengers



X: spurion for hidden sector SUSY breaking and 
R-symmetry breaking. 

     : messengers in irreps of       . They receive 
tree-level SUSY breaking mass splittings through 
their direct coupling to X.

Minimal Gauge Mediation
(Dine, Nelson, Nir, Shirman, …)

GSM

W = λXφφ̃, 〈X〉 = M + θ2F

“F-type” messenger masses

φ, φ̃

Mφ = M, M2
φ =

(
|M |2 F
F ∗ |M |2

)
→ |M |2 ± F



1-loop gaugino masses:

2-loop sfermion mass-squareds:

Figure 6.3: Contributions to the MSSM gaugino masses
in gauge-mediated supersymmetry breaking models come
from one-loop graphs involving virtual messenger parti-
cles.

B̃, W̃ , g̃

〈FS〉

〈S〉

Replacing S and FS by their VEVs, one finds quadratic mass terms in the potential for the messenger
scalar leptons:

V = |y2〈S〉|2(|!|2 + |!|2) + |y3〈S〉|2(|q|2 + |q|2)
−

(
y2〈FS〉!! + y3〈FS〉qq + c.c.

)

+ quartic terms. (6.49)

The first line in eq. (6.49) represents supersymmetric mass terms that go along with eq. (6.44), while
the second line consists of soft supersymmetry-breaking masses. The complex scalar messengers !, !
thus obtain a squared-mass matrix equal to:

( |y2〈S〉|2 −y∗2〈F ∗
S〉

−y2〈FS〉 |y2〈S〉|2
)

(6.50)

with squared mass eigenvalues |y2〈S〉|2 ± |y2〈FS〉|. In just the same way, the scalars q, q get squared
masses |y3〈S〉|2 ± |y3〈FS〉|.

So far, we have found that the effect of supersymmetry breaking is to split each messenger super-
multiplet pair apart:

!, ! : m2
fermions = |y2〈S〉|2 , m2

scalars = |y2〈S〉|2 ± |y2〈FS〉| , (6.51)

q, q : m2
fermions = |y3〈S〉|2 , m2

scalars = |y3〈S〉|2 ± |y3〈FS〉| . (6.52)

The supersymmetry violation apparent in this messenger spectrum for 〈FS〉 $= 0 is communicated to
the MSSM sparticles through radiative corrections. The MSSM gauginos obtain masses from the 1-loop
Feynman diagram shown in Figure 6.3. The scalar and fermion lines in the loop are messenger fields.
Recall that the interaction vertices in Figure 6.3 are of gauge coupling strength even though they do not
involve gauge bosons; compare Figure 3.3g. In this way, gauge-mediation provides that q, q messenger
loops give masses to the gluino and the bino, and !, ! messenger loops give masses to the wino and
bino fields. Computing the 1-loop diagrams, one finds [142] that the resulting MSSM gaugino masses
are given by

Ma =
αa

4π
Λ, (a = 1, 2, 3), (6.53)

in the normalization for αa discussed in section 5.4, where we have introduced a mass parameter

Λ ≡ 〈FS〉/〈S〉 . (6.54)

(Note that if 〈FS〉 were 0, then Λ = 0 and the messenger scalars would be degenerate with their
fermionic superpartners and there would be no contribution to the MSSM gaugino masses.) In contrast,
the corresponding MSSM gauge bosons cannot get a corresponding mass shift, since they are protected
by gauge invariance. So supersymmetry breaking has been successfully communicated to the MSSM
(“visible sector”). To a good approximation, eq. (6.53) holds for the running gaugino masses at an RG
scale Q0 corresponding to the average characteristic mass of the heavy messenger particles, roughly of

58

Mr=1,2,3 ∼
αr

4π

F

M

MGM Soft Masses

Figure 6.4: MSSM scalar squared masses in gauge-mediated supersymmetry breaking models arise in
leading order from these two-loop Feynman graphs. The heavy dashed lines are messenger scalars, the
solid lines are messenger fermions, the wavy lines are ordinary Standard Model gauge bosons, and the
solid lines with wavy lines superimposed are the MSSM gauginos.

order Mmess ∼ yI〈S〉 for I = 2, 3. The running mass parameters can then be RG-evolved down to the
electroweak scale to predict the physical masses to be measured by future experiments.

The scalars of the MSSM do not get any radiative corrections to their masses at one-loop order.
The leading contribution to their masses comes from the two-loop graphs shown in Figure 6.4, with
the messenger fermions (heavy solid lines) and messenger scalars (heavy dashed lines) and ordinary
gauge bosons and gauginos running around the loops. By computing these graphs, one finds that each
MSSM scalar φi gets a squared mass given by:

m2
φi

= 2Λ2

[(
α3

4π

)2

C3(i) +
(

α2

4π

)2

C2(i) +
(

α1

4π

)2

C1(i)

]

, (6.55)

with the quadratic Casimir invariants Ca(i) as in eqs. (5.27)-(5.30). The squared masses in eq. (6.55)
are positive (fortunately!).

The terms au, ad, ae arise first at two-loop order, and are suppressed by an extra factor of αa/4π
compared to the gaugino masses. So, to a very good approximation one has, at the messenger scale,

au = ad = ae = 0, (6.56)

a significantly stronger condition than eq. (5.19). Again, eqs. (6.55) and (6.56) should be applied at
an RG scale equal to the average mass of the messenger fields running in the loops. However, evolving
the RG equations down to the electroweak scale generates non-zero au, ad, and ae proportional to the
corresponding Yukawa matrices and the non-zero gaugino masses, as indicated in section 5.5. These
will only be large for the third-family squarks and sleptons, in the approximation of eq. (5.2). The
parameter b may also be taken to vanish near the messenger scale, but this is quite model-dependent,
and in any case b will be non-zero when it is RG-evolved to the electroweak scale. In practice, b can be
fixed in terms of the other parameters by the requirement of correct electroweak symmetry breaking,
as discussed below in section 7.1.

Because the gaugino masses arise at one-loop order and the scalar squared-mass contributions
appear at two-loop order, both eq. (6.53) and (6.55) correspond to the estimate eq. (6.27) for msoft, with
Mmess ∼ yI〈S〉. Equations (6.53) and (6.55) hold in the limit of small 〈FS〉/yI〈S〉2, corresponding to
mass splittings within each messenger supermultiplet that are small compared to the overall messenger
mass scale. The sub-leading corrections in an expansion in 〈FS〉/yI〈S〉2 turn out [143] to be quite small
unless there are very large messenger mass splittings.

The model we have described so far is often called the minimal model of gauge-mediated supersym-
metry breaking. Let us now generalize it to a more complicated messenger sector. Suppose that q, q
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m2
q̃ ∼

(αr

4π

)2
(

F

M

)2



MGM soft masses are controlled by only a 
few parameters. 

This leads to many specific and well-known 
“predictions” of gauge mediation: 

Gaugino unification

Sfermion mass hierarchy

Bino or slepton NLSP

....

MGM Phenomenology



Motivation for GGM

What are the most general predictions/
parameters of gauge mediation? 

Especially important question in the LHC era. 

To date many models of gauge mediation have 
been constructed.

However, it has not been clear up to now which 
features of these models are general and which 
are specific.



Plan of the Talk

Introduction and Motivation

General Gauge Mediation

Currents and Correlators

Soft masses

Sum Rules

Constraints on GGM

Covering the Parameter Space



General Gauge Mediation

Theory decouples into separate hidden and visible 
sectors in g->0 limit. 

(Messengers, if present, are part of the hidden sector.)

Hidden sector:
spontaneously breaks SUSY at a scale M
has a weakly-gauged global symmetry         

Hidden sector
SUSY+...

Visible sector:
MSSM+...SU(3)xSU(2)xU(1)

G ⊃ GSM



General Gauge Mediation
All the information we need about the hidden 
sector is encoded in the currents of G and their 
correlation functions.

Philosophy: work exactly in the hidden sector 
but to leading order in g.

Start by analyzing the hidden sector at g=0. 
Assume for simplicity G=U(1).



Current Supermultiplet

Current sits in a real linear supermultiplet 
defined by:

In components:

J = J (x, θ, θ̄), D2J = D̄2J = 0

J = J + iθj − iθ̄j̄ − θσµθ̄jµ

+
1
2
θθθ̄σ̄µ∂µj − 1

2
θ̄θ̄θσµ∂µj̄ − 1

4
θθθ̄θ̄!J

ordinary U(1) current, satisfies

SUSY generalization of 
current conservation

∂µjµ = 0



Current correlators

Nonzero two-point functions constrained by 
Lorentz invariance, current conservation:

(M = scale of SUSY in hidden sector)

Real

Complex

J = J + iθj − iθ̄j̄ − θσµθ̄jµ + . . .

C0(p2/M2) = 〈J(p)J(−p)〉

C1/2(p2/M2) =
1
p2

pµσαα̇
µ 〈jα(p)j̄α̇(−p)〉

C1(p2/M2) =
1
p2

〈jµ(p)jµ(−p)〉

B(p2/M2) = M−1〈jα(p)jβ(−p)〉

Dim’less



SUSY limit
If SUSY is unbroken, can show:

More generally, SUSY must be restored in the UV

lim
x→0

C0(x), C1/2(x), C1(x) = c ; lim
x→0

B(x) = 0

C0 = C1/2 = C1, B = 0

Can show: determines the hidden sector 
contribution to the beta function.



Coupling to visible sector
Now weakly gauge G=U(1)        

Integrate out hidden sector exactly; work to 
leading order in gauge coupling.

Soft masses can be related to the current-
current correlators.

Lint = 2g

∫
d4θJV + · · · = g(JD − λj − λ̄j̄ − jµVµ) + . . .



Gaugino:

Scalars:
db c

a

e
Fig. 1: The graphical description of the contributions of the two point functions

to the soft masses. (a) represents the gaugino mass contribution from 〈jαjβ〉. In

(b)-(e) the various contributions to the soft scalar masses are given: (b) 〈J〉, (c)

〈JJ〉, (d) 〈jαjα̇〉, and (e) 〈jµjν〉. It should be stressed that the blobs in the figures

represent hidden sector correlation functions. The leading contribution in theories

with messengers arises from one loop of the messengers, but in general when there

are no messengers, it is more complicated.

So far we have discussed the simpler case of a single U(1) gauge group here, in the

case of the actual MSSM one has to consider the separate SU(3), SU(2) and U(1) gauge

groups. We will label the gauge groups by r = 3, 2, 1, respectively. If we want the gauge

couplings to unify, then the value of c(r) = c must be independent of r (assuming SU(5)

normalization of the U(1) factor of course) and we want the thresholds C̃(r)
a (0) to depend

weakly on r. Moreover, if we want perturbative unification, then there is an upper bound

on the magnitude of c. These are examples of some completely general constraints on the

SUSY breaking sector that can be derived using our formalism.

Now, it is straightforward to find the sfermion and gaugino masses of the MSSM.

In Figure 1 we show the diagrams involving the current correlation functions which are

responsible for the MSSM soft masses.

The gaugino masses arise at tree level in the effective theory (3.2); to leading order
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J Jjµ jµ jαj̄α̇

Soft Masses

Mλ = g2MB(p = 0)

Lint = 2g

∫
d4θJV + · · · = g(JD − λj − λ̄j̄ − jµVµ) + . . .

m2
f̃

= g4A Why does this integral converge? 
Not obvious...
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jα jα

A ≡ −
∫

dp2

(2π)4
(
3C1(p2/M2)− 4C1/2(p2/M2) + C0(p2/M2)

)



Analogy with chiral superfield:

An equivalent formulation of the current 
s’multiplet is to start with the defining relation:

It follows that

Q2J = Q̄2J = 0

jα ≡ QαJ

j̄α̇ ≡ Q̄α̇J

σµ
αα̇jµ ≡ [Qα, Q̄α̇]J

D̄Φ =0 ⇔ Qφ = 0

Rewriting the soft masses



Rewriting the soft masses
Using action of supercharges, can show:

Similar manipulations lead to

〈Q2J(p)J(−p)〉 = 〈QαJ(p)QαJ(−p)〉
= 〈jα(p)jα(−p)〉
= MB(p)

〈Q2Q̄2J(p)J(−p)〉 =

p2
(
3C1(p2/M2) − 4C1/2(p2/M2) + C0(p2/M2)

)



Thus:

Comments on the result:

Check: vanish when SUSY is unbroken.

Generalization of small F-term SUSY-breaking 
relations (Distler & Robbins; Intriligator & Sudano)

Mλ = g2〈Q2J(0)J(0)〉

m2
f̃

= g4

∫
dp2

p2
〈Q2Q̄2J(p)J(−p)〉

Rewriting the soft masses

Mλ ∼ F, m2
f̃
∼ |F |2



Thus:

Comments on the result:

At high momentum, only the OPE of J with 
itself matters! Can use this to prove 
convergence of the scalar mass integral.

Mλ = g2〈Q2J(0)J(0)〉

m2
f̃

= g4

∫
dp2

p2
〈Q2Q̄2J(p)J(−p)〉

Rewriting the soft masses



An aside on the sign of A

Notice that A is a linear combination of two-
point functions with different signs -- it is not 
obviously positive

Indeed, simple models with A<0 already exist in 
the literature...

A ≡ −
∫

dp2

(2π)4
(
3C1(p2/M2)− 4C1/2(p2/M2) + C0(p2/M2)

)
m2

f̃
= g4A

Poppitz & Trivedi; Nakayama, Taki, Watari, Yanagida 



Messengers with D-terms
Poppitz & Trivedi; Nakayama, Taki, Watari, Yanagida 

Messengers       with charge +1, -1 under a U(1)’. 

If the U(1)’ breaks SUSY via an FI term, 

the messengers receive “D-type” SUSY-splittings 

Then explicit calculation shows that: 

φ, φ̃

MF = m, M2
B =

(
m2 + D 0

0 m2 −D

)

A = −D4/M6 + · · · < 0

V ⊃ VD = (D/2 + |φ|2 − |φ̃|2)2



An aside on the sign of A

Important consequence of the indefiniteness of 
the sign of A: one cannot be sure that a given 
gauge mediation model is consistent unless the 
sfermion masses are calculable. 

In particular, many incalculable, strongly-coupled 
“direct gauge mediation” models built in the past 
are now of questionable validity.



Sum Rules

Trivial to generalize from U(1) to SU(3)xSU(2)xU(1)

Five MSSM sfermion masses f=Q,U,D,L,E are given 
in terms of 3 parameters 

So there must be 2 relations...

Corrections: sum rules true at the scale M. (Small) 
corrections from RG and EWSB.

TrY m2 = Tr (B − L)m2 = 0

Ar=1,2,3

m2
f̃

=
3∑

r=1

g4
r c2(f ; r)Ar

Quadratic Casmir



Parameter space

The GGM parameter space consists of 9 real 
parameters: 

Note: GGM in general has a SUSY CP 
problem!

Contrast with MGM parameter space -- many 
more parameters in general

A1,2,3, |B1,2,3|, arg(B1,2,3)



Parameter space

Question: are there simple models of weakly 
coupled messengers that cover the entire 
parameter space?

We are looking for an ``existence proof”



Phenomenological
Constraints on GGM



Messenger Parity

We have related the soft masses to the 
current two-point functions. However, we 
ignored the possible contribution of the one-
point function (FI parameter):

This can be nonzero for         without 
breaking gauge symmetry. 

〈J〉 = ζ #= 0

U(1)Y



Messenger Parity 

It is dangerous because it contributes to the 
scalar masses:

Not positive definite and        (vs.        for 
usual GM contributions). 

So if zeta is too large this can cause some 
scalars (esp. sleptons) to become tachyonic!

δm2
f̃

= g2
1Yfζ

O(g2) O(g4)



Messenger Parity

Thus we would like the hidden sector to be 
invariant under a symmetry that forbids J 
one-point functions. 

The simplest such symmetry is a parity:

Examples of this symmetry in the context of 
minimal gauge mediation have been discussed 
in the literature. (Dine & Fischler; Dimopoulos & 
Giudice)

J → −J



Messenger Parity
E.g. in models with weakly-coupled messengers,

So can always choose a basis in which 
messenger parity is explicitly realized as:

Couplings of the hidden sector must be 
invariant under this transformation. 

J = φ†
iφi − φ̃†

i φ̃i

φi ↔ φ̃i



CP phases

The B’s are complex and independent in 
GGM. However, B’s with arbitrary phases 
would typically lead to an unacceptable level 
of CP violation. 

So either the hidden sector is CP invariant, 
or its CP violation is somehow shielded from 
the visible sector.

We will assume some mechanism at work, 
and take the gaugino masses to be real.



Unification
We would like the hidden sector to be 
compatible with 3-2-1 gauge coupling 
unification.

The beta functions come from the real 
correlators C. In general they have nothing 
to do with the complex correlator B. 

So gaugino unification is not tied to gauge 
coupling unification.



Covering the parameter 
space of GGM



Parameter space

Question: are there simple models of weakly 
coupled messengers that cover the entire 
parameter space and satisfy the 
phenomenological constraints?

Messenger parity
CP invariance
Gauge couple unification

We are looking for an ``existence proof”



Parameter space

Carpenter, Dine, Festuccia & Mason studied 
this question recently in the context of 
messenger models with small F-type SUSY 
breaking.

They found models with the right number of 
parameters (6) but which did not cover the 
entire parameter space.



Setup
We also consider models with messengers with 
tree-level SUSY splittings, but allow for the 
possibility of D-type splittings.

Such splittings could come from e.g. a U(1)’, or 
from non-Abelian hidden sector dynamics such 
as in the model of Seiberg, Volansky & Wecht. 



Warmup: G=U(1)

As a warmup, let us consider the parameter 
space covering problem for a U(1) gauge 
group.

Here there is only one A and one B 
parameter; so we would like a theory that 
covers the range

A

|B|2 ∈ (0,∞)



Warmup: G=U(1)
Case 1: One messenger.

Messenger parity => MGM

Here there are two parameters (M,F), but 
can show that they do not cover the entire 
parameter space:

MF = M, M2
B =

(
M2 F
F M2

)(
φ∗

φ̃

)

(
φ φ̃∗ )

A

|B|2 ∈ (0.37, 1)



Warmup: G=U(1)

Case 2: Two messengers.

Messenger parity => allows for D-type splitting 

MF =
(

M1 0
0 M2

)

M2
B =





M2
1 + ξ 0 F1 0
0 M2

2 − ξ 0 F2

F1 0 M2
1 + ξ 0

0 F2 0 M2
2 − ξ









φ1

φ̃∗
1

φ2

φ̃∗
2





B ∼ F1

M1
+

F2

M2

A ∼
(

F1

M1

)2

+
(

F2

M2

)2

+ ξ log
M1

M2

With nonzero xi, can 
now cover the entire 

parameter space!



General Result

Consider a collection of vectorlike messengers 
all transforming in the same irrep        of 
3-2-1. Then they contribute to the soft masses

          : group theory factors

             : functions of messenger masses 
and couplings

So on general grounds, need at least three 
different 3-2-1 irreps.

(R, R̃)

δAr = aR,rA(R), δBr = bR,rB(R)

aR,r, bR,r

A(R), B(R)



Finding the Model

Case 1: any number of        (not necessarily 
OGM) -- only two irreps (D,L) => can cover 
at most a 4d subspace

Case 2: single          -- right # of irreps, 
but messenger parity allows only MGM => 
cannot cover entire space (cf. CDFM). 

(5, 5̄)

D               L

Q               U                E

5→ (3̄, 1, 1/3)⊕ (1, 2,−1/2)
10→ (3, 2, 1/6)⊕ (3̄, 1,−2/3)⊕ (1, 1, 1)

(10, 1̄0)



Finding the Model

Case 3: single         +       -- same as case 2

Case 4: that leaves             

as the minimal possibilities. By including D-type 
SUSY breaking as in the U(1) example, one can 
cover the entire parameter space of GGM.

(5, 5̄)(10, 1̄0)

(10, 1̄0) + 2(5, 5̄) and 2(10, 1̄0)

So the entire parameter space of GGM is physical, 
and its phenomenology should be studied!



Summary
We constructed a framework for analyzing 
general models of gauge mediation: arbitrary 
hidden sectors coupled to the MSSM via SM 
gauge interactions.

Using our framework, we derived general 
properties of gauge mediation. These include:

Parameter space: 3 complex parameters (gaugino 
masses) and 3 real parameters (sfermion masses)

Two sum rules for sfermion masses

SUSY CP problem in general



Summary
We presented weakly-coupled messenger 
models which satisfy all phenomenological 
constraints and cover the entire GGM 
parameter space.

Our framework is well-suited for analyzing 
strongly-coupled hidden sectors. 
(cf. Ooguri, Ookouchi, Park & Song)



Outlook

Detailed study of entire GGM parameter 
space at colliders (cf. recent work of L. 
Carpenter)

The formulas for the soft masses in terms of 
Q^2 and Q^4 are quite pretty. What else can 
be done with them?

Is there a theorem for positivity of the 
sfermion masses for pure F-term breaking?

mu/Bmu still an important open problem...


