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|N=2 BPS black holes

N=2 supergravity: vector multiplet sector

vector multiplets —— scalars X!  (Wilsonian effective action)

projectively defined: X'—— Y

Lagrangian encoded in a holomorphic
homogeneous function FOY)=XF(Y)

BPS : attractor phenomena

full supersymmetry enhancement at the horizon
—— extremal

versus extremal non-supersymmetric black holes

We don't have to work in terms of the (complicated) effective actions!




Attractor equations (horizon behaviour)

yi—v!=ipl magnetic charges
Fr — Fy 1q7 electric charges

Ferrara, Kallosh, Strominger, 1996
Cardoso, dWV, Kappeli, Mohaupt, 2000

homogeneity: entropy and area are proportional to Q-

Rhor
ls

Q large () —> macroscopic black hole

“large black hole”

and consistent with E/M duality

duality: equivalence classes or invariances




BPS entropy function

S(Y,Y,p,q) = FY,Y) —q(Y' +Y") + p' (Fr + Fy)

X + X'and Fr + F; play the role of electro- and magnetostatic
potentials at the horizon

F(Y,Y) ‘“free energy

02 = (0 & attractor equations det[TmFy;] # 0

T = Smacro(D, q) entropy, like the area,
scales quadratically in the charges

subleading corrections ??




igher-derivative interactions

homogeneity:

niral class:Weyl background F(Y) — F(Y,T)

Weyl background
FOAY, \2T) = A2 F(Y, T) i

attractor equations remain validand YT = —64

T dependence induces R”-terms in the action and
subleading corrections in area and entropy

F(Y,T)=FO®) + ) (Y°)? 2719 F9)(t)

g=1 T
A

/

subleading corrections




Free energy :
FY,Y,0,0) = =i (Y Fy = Y Fy) = 21 (YPy — TFr)

Cardoso, dWV, Kappeli, Mohaupt, 2006

e"am"? 1 CapcYAYPYC ey vA
FY,T)=-¢ Yo - 24.64 Y0

leads indeed to the microscopic result Cardoso, dW, Mohaupt, 1998

L .
Smacro — 27—‘-\/6‘(]0‘ (CABCp P pC + C2A D )
1 1

triple intersection number second Chern class

C2A subleading correction ! Maldacena, Strominger, Witten, 1997
Vafa, 1997

membrane charges: oy = Qo — %CAB

p’ =0

JAqB Cuag = Capcp©

\ dictated by symmetry




~Q{1+0(1/QY)]
~ QVT{1+0(1/Q%)}

area/entropy {

~gs ) >1 large/macroscopic

~ (g \/é ~ 1 small/microscopic = elementary string states

Tested extensively for N=4 supersymmetric string compactifications
(in N=2 formulation)




Problem : Non-holomorphic corrections

So far: holomorphicity = ‘standard’ SG Lagrangians

Wilsonian effective action (integrated out modes with cutoffs)

integrating out massless modes leads to non-local terms
holomorphicity is lost !

non-holomorphic corrections are required:

¢ to realize certain symmetries Dixon, Kaplunovsky, Louis, 1991

¢ background dependence of topological string
Bershadsky, Cecotti, Ooguri,Vafa, 1994

The full non-local action is not known !




Early example : N=4 supersymmetry with S-duality

Cardoso, dW, Mohaupt, 1999

log(S + S)°

T

harmonic non-holomorphic

required by S-duality

o related to threshold correction
More general decomposition:

F o= —Xvo,,Yb 4 2i0

Harvey, Moore, 1996

real, homogeneous

YI pl
transforms as under duality rotations (monodromies)
Iy d1

This determines the transformation of )
The function F' is not invariant!




Furthermore microscopic results 1/4 BPS states

oimlp p?+0 ¢ +(2v-1)p-q]

®r ()

dyonic degeneracies dk (p, Q) = %dQ

k=10,6,4,2,1 3 — cycle

Dijkgraaf, Verlinde, Verlinde, 1997
Shih, Strominger; Yin, 2005

Jatkar, Sen, 2005

Q= (5 g) period matrix of g=2 Riemann surface

formally S-duality invariant

Leading degeneracy for large charges :
make saddle-point approximation on a leading divisor

The result is identical as that obtained on the basis of :

¢ —ip-q(S =5 +p°ISI* | 5

(S,8,p,q) = — T3 4Q(8,5,1,7)

Cardoso, dWV, Kappeli, Mohaupt, 2004




Partition functions and OSV

v . )
) electrostatic potentials

Y= 5 7 . (mixed ensemble)
P~ magnetic charges

\

= reduced entropy functions >, = fE — QI¢I

where

Fe(p, ) = 4[Im F(Y,¥,7,T) - (v, ¥, 7,7)]

VI=(¢!+ip!)/2

Topological string:

F(Y,T) = FO® Z (Y0)2—2979 F(9) (¢)
g=1 )

/ |

072 (0 genus-g partition function of
(Y ) Ft )(t) a twisted non-linear sigma

model with CY target space

Y loop-counting parameter t4 =y4/y°




/ZBH (p, ¢) ~ ‘Ztop (p7 ¢)‘2

Strominger, Ooguri, Vafa, 2004

Topological string: Bershadsky, Cecotti, Ooguri,Vafa, 1994
¢ Holomorphic anomaly (’9t—F(9) #+ (0 = F(g)(t, f)

—1

¢ Topological string coupling : Y9 = Gtop

¢ Duality invariant sections F9)

. F(g)captures certain string amplitudes

Antoniadis, Gava, Narain, Taylor, 1993

Note : identification with the effective action !

Non-holomorphic extension ?
Cardoso, dW, Kappeli, Mohaupt, 2006




The mixed partition function

inverse Laplace transform :
d(p, q) oc/ dgbe (Fe—qre") _/ do o7 2(9:1:9)
saddle-point approximation
0(Fe — qi¢') =0 qr =

Smacro =T

B

0T w
¢!

%* integrals ill-defined (contour, convergence)

** E/M duality problematic




Improving :
define a duality invariant canonical partition function

I I
Z(,x) = Z d(p, q) emlar®" —p'x1]
{p,q}

defines a free energy (naturally formulated as a function of the
electro- and magnetostatic potentials @ and X))

inverse Laplace transform:

d(p, q) / dxrde’ Z(¢,x) emlmard +pixil

over periodicity intervals (x —i,x +1)




identify with the field-theoretic data:

(qb, ) 27r H(p/2,x/2,T,T)

7 |

Hesse potential : Legendre transform of Im[F| with respect to (Y — Y’

equal to %fas defined previously, including the Y-dependence

Z d(p, g mlgre¢’ —p' x1] Z o2m H(9/2,x/2,T,Y)
{p,q} shifts




complex formulation:

Z d(p,q) ew[qI(YJFY)I—PI(FHf“)I] N Z o™ F (VY1)
{p,q} shifts

inverse Laplace transform:

d(p,q) / AY + V) A(F + F); em =Y p0)

x / dY dY A= (Y,Y) ™ Z(V:Yp.a)

measure factor : implied by duality!
A (Y, V) = ‘det [Im 12 Frep, + 2FKE} ‘

Cardoso, dWV, Kappeli, Mohaupt, 2006




Saddle-point approximation

eSmacro (P;CJ)

attractor
(semiclassical approximation)

required by duality

mixed partition function : /

Z(p, ) =Y dlp,q) "1 ~ N /A (p, ) " TE@)

(g} shifts
(and higher-order corrections!)

modification of OSV = predictive power is lost !

These results have been confirmed Shih,Yin, 2005

in a variety of applications, e.g, gard?fﬁl dwv, ngg;“’ Mohaupt, 2006
enet, IM1oore,

Cardoso, David, de Wit, Mahapatra, 2008




A more subtle question :

F(Y, ) =FOY)+ ) (¥°)? 2719 F9) (1)

this same expansion is applied to
(a) the topological string and (b) the effective action !
But are they identical functions ?

NO! (and still agreement with string amplitudes?)

use duality arguments :

(the F(9) are NOT invariant A

effective action the periods transform correctly under monodromies

\the duality transformations are Y-dependent y

~

. . (the F(9) are INVARIANT sections
tOPOIogICGI string the periods refer to FO)
Ghe duality transformations are Y-independent




difference has been confirmed:
o FWis still invariant

& for g = 2 there are differences

explicit evaluation and comparison of the non-holomorphic
corrections for the FHSV model supports this conclusion.

consistent with the reality of (2 Grimm, Klemm, Marino, Weiss, 2007
Cardoso, dW, Mahapatra, 2008

What then is the precise relation?
@ Recall : amplitudes < connected graphs #¢ 1P| graphs

o Then : compare with E/M duality properties of

4 A

Lagrangian £L <—> Hamiltonian H

t t

Im[F(Y,Y)] <—> Hesse potential
A A /

\_ J

Legendre transform

Free energy F




Compare : electromagnetism L(E, B)

(F < H)
under E/M duality
(B« D)

transformations depend on the details of
the Lagrangian (which is not invariant)

oL
D=3E
_oc
- OB

depend on the details of the Lagrangian
H

H(D, B) invariant under monodromies

transformations do not depend on the
details of the Lagrangian




Example : Born-Infeld Lagrangian

L= _9_2\/det[77,u1/ =+ gF,LLI/] -+ 9_2

spherical  ds? = —dt? + dr? + r?(sin? § dp? + d6?)
symmetry F.—¢  F,o=psind

Lred /dgp do L
dmrig=? {\/1 — g2e2\/1+ ¢g2p2r-2 — 1

( 1—9262

de

symmetry: <

\ 0p (suppress: 47, 1)




o aLred
 De

define electric charge ¢

Hamiltonian H = g_2 [\/1 +92(p? +¢%) — 1

5(] p Schrodi 1935
symmetry: chrodinger,
op —q

independent of the coupling constant g !




Non-holomorphic deformation ‘ F — F+ 21Q

Special geometry :
N=2 supersymmetric gauge theory encoded in function F'(X)
OF(X)

0X!

) —— 0
Al B,

complex scalar fields X' and F; =

I

period vector (X

Fr

electric/magnetic duality (monodromies):

XI XI UIJ ZIJ XJ
<F1> (FI> : (VI‘] WIJ) (FJ>
N Sp(2n, R)

integrable :

F(X)—iX'F(X)+---




with non-holomorphic deformation :

The starting point: monodromies
X! - X' =U';X7+7ZVF;(X,X)
FI(XvX) — FI(XvX):VIJFJ(XaX)+WIJXJ

so that

X!
X7 = S'y=U"y+ 2" Fyg,

As a first result we derive (F7; = 05FT)

X!

_ 7IK _
ox7 ~~ K

Fr;— Fry= (VitFrg + Wik) [S7HE

Fry — Fig 250 Fr,
UIJ + ZIKFKJ
[S—I]IK ZKJ




Assume: F;7 = e *Fj;
so that F]] — FJI pI‘OVided that F[J — FJ[

In that case: F[J — FJI

so that both F; and F 7can be integrated:
OF P OF

= _ <
T axT T X

One may also derive

Frj— Frp= S5 S 5 Frr = S50 (87" 7 Frr
as well as similar formulae for higher derivatives !

Furthermore, with external parameter dependence 1 :

F(X,X;n) = F9(X) + 2iQ(X, X;n)

one derives &,F(X, )?; n) = 0, F(X, X; n)

i.e. transforms as a function !




Summary / conclusions

F'— F' + 2i€) | seems consistent with special geometry

free energy JF duadlity invariant
BPS attractor equations with non-holomorphic terms
E/M equivalence classes seem to be realized
=) F transforms as a function
confirmed by explicit results for FHSV and STU models
prediction for measure factor in class of N=2 models
the measure factor for the STU model — Justin David’s talk

Precise relation ‘effective action < topological string’ remains open
Many open questions !




