

ISM08 Indian Strings Meeting Pondicherry, 6 - 13 December 2008 Bernard de Wit Utrecht University

1: N=2 BPS black holes

effective action attractor phenomena entropy function & free energy subleading & non-holomorphic corrections

2: Partition functions and OSV mixed partition function topological string versus the effective action

- **3:** Non-holomorphic deformation equivalence classes
- 4: Summary / conclusion

N=2 BPS black holes

N=2 supergravity: vector multiplet sector

vector multiplets \longrightarrow scalars X^I

(Wilsonian effective action)

projectively defined: $X^I \longrightarrow Y^I$

Lagrangian encoded in a holomorphic

homogeneous function $F(\lambda Y) = \lambda^2 F(Y)$

BPS: attractor phenomena

full supersymmetry enhancement at the horizon

extremal

versus extremal non-supersymmetric black holes

We don't have to work in terms of the (complicated) effective actions!

Attractor equations (horizon behaviour)

$$Y^I - ar{Y}^I = \mathrm{i} p^I$$
 magnetic charges $F_I - ar{F}_I = \mathrm{i} q_I$ electric charges

Ferrara, Kallosh, Strominger, 1996 Cardoso, dW, Käppeli, Mohaupt, 2000

homogeneity: entropy and area are proportional to Q^2

$$\frac{R_{\rm hor}}{l_{\rm s}} \sim g_{\rm s} Q$$

large $Q \longrightarrow$ macroscopic black hole

"large black hole"

and consistent with E/M duality

duality: equivalence classes or invariances

BPS entropy function

$$\Sigma(Y, \bar{Y}, p, q) = \mathcal{F}(Y, \bar{Y}) - q_I(Y^I + \bar{Y}^I) + p^I(F_I + \bar{F}_I)$$

 $X+ar{X}^I$ and $F_I+ar{F}_I$ play the role of electro- and magnetostatic potentials at the horizon

$$\mathcal{F}(Y,ar{Y})$$
 'free energy'

$$\delta \Sigma = 0 \Leftrightarrow \text{ attractor equations}$$

$$\det[\mathrm{Im}F_{\mathrm{IJ}}] \neq 0$$

$$\pi\Sigma|_*=\mathcal{S}_{\mathrm{macro}}(p,q)$$
 entropy, like the area, scales quadratically in the charges

subleading corrections ??

Higher-derivative interactions

chiral class: Weyl background $F(Y) \longrightarrow F(Y, \Upsilon)$ homogeneity: $F(\lambda Y, \lambda^2 \Upsilon) = \lambda^2 F(Y, \Upsilon)$

attractor equations remain valid and $\Upsilon = -64$

$$\Upsilon = -64$$

 Υ dependence induces R^2 -terms in the action and subleading corrections in area and entropy

$$F(Y,\Upsilon) = F^{(0)}(Y) + \sum_{g=1} (Y^0)^{2-2g} \Upsilon^g \, F^{(g)}(t)$$
 subleading corrections
$$t^A = Y^A/Y^0$$

Free energy:

$$\mathcal{F}(Y, \bar{Y}, \Upsilon, \bar{\Upsilon}) = -i \left(\bar{Y}^I F_I - Y^I \bar{F}_I \right) - 2i \left(\Upsilon F_{\Upsilon} - \bar{\Upsilon} \bar{F}_{\Upsilon} \right)$$

Cardoso, dW, Käppeli, Mohaupt, 2006

example :
$$F(Y,\Upsilon) = -\frac{1}{6}\,\frac{C_{ABC}\,Y^AY^BY^C}{Y^0} - \frac{c_{2A}\,Y^A}{24\cdot 64\,Y^0}\,\Upsilon$$

leads indeed to the microscopic result

Cardoso, dW, Mohaupt, 1998

$$S_{\rm macro} = 2\pi \sqrt{\frac{1}{6}|\hat{q}_0| \left(C_{ABC} \, p^A p^B p^C + c_{2A} \, p^A\right)} \\ \uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

c_{2A} subleading correction!

Maldacena, Strominger, Witten, 1997 Vafa, 1997

membrane charges :
$$\hat{q}_0 = q_0 - \frac{1}{2}C^{AB}q_Aq_B$$
 $C_{AB} = C_{ABC}\,p^C$ $p^0 = 0$ dictated by symmetry

area/entropy
$$\begin{cases} \sim Q^2 \Big\{ 1 + \mathcal{O}(\Upsilon/Q^2) \Big\} \\ \sim Q \sqrt{\Upsilon} \Big\{ 1 + \mathcal{O}(\Upsilon/Q^2) \Big\} \end{cases}$$

$$rac{R_{
m hor}}{l_{
m s}} \sim g_{
m s}\,Q \,\gg 1$$
 large/macroscopic $rac{R_{
m hor}}{l_{
m s}} \sim g_{
m s}\,\sqrt{Q} \,pprox 1$ small/microscopic $\Rightarrow q_{
m s}$

$$\frac{R_{\rm hor}}{l_{\rm s}} \sim g_{\rm s} \, \sqrt{Q} \, \approx 1 \qquad {\rm small/microscopic} \ \Rightarrow {\rm elementary \, string \, states}$$

Tested extensively for N=4 supersymmetric string compactifications (in N=2 formulation)

Problem: Non-holomorphic corrections

So far: holomorphicity ⇒ 'standard' SG Lagrangians

Wilsonian effective action (integrated out modes with cutoffs)

integrating out massless modes leads to non-local terms holomorphicity is lost!

non-holomorphic corrections are required:

to realize certain symmetries

Dixon, Kaplunovsky, Louis, 1991

background dependence of topological string

Bershadsky, Cecotti, Ooguri, Vafa, 1994

The full non-local action is not known!

Early example: N=4 supersymmetry with S-duality

$$F = -\frac{Y^1}{Y^0}Y^a\eta_{ab}Y^b$$
 Cardoso, dW, Mohaupt, 1999
$$+\frac{\mathrm{i}}{256\,\pi}\Big[\Upsilon\,\log\eta^{12}(S) + \overline{\Upsilon}\,\log\eta^{12}(\overline{S}) + \frac{1}{2}(\Upsilon+\overline{\Upsilon})\Big] \log(S+\overline{S})^6\Big]$$
 is
$$=\frac{Y^1}{Y^0}$$
 harmonic non-holomorphic required by S-duality

related to threshold correction

Harvey, Moore, 1996

More general decomposition:

$$F \quad = - \frac{Y^1}{Y^0} Y^a \eta_{ab} Y^b + 2 \mathrm{i} \Omega \qquad \qquad \text{real, homogeneous}$$

$$egin{pmatrix} Y^I \\ F_I \end{pmatrix}$$
 transforms as $egin{pmatrix} p^I \\ q_I \end{pmatrix}$ under duality rotations (monodromies)

This determines the transformation of $\,\Omega\,$ The function $\,F\,$ is not invariant!

Furthermore microscopic results 1/4 BPS states

dyonic degeneracies
$$d_k(p,q)=\oint \mathrm{d}\Omega\,\frac{\mathrm{e}^{\mathrm{i}\pi[\rho\,p^2+\sigma\,q^2+(2v-1)p\cdot q]}}{\Phi_k(\Omega)}$$

$$k = 10, 6, 4, 2, 1$$

$$\Omega = \begin{pmatrix} \rho & v \\ v & \sigma \end{pmatrix} \quad \text{period matrix of g=2 Riemann surface}$$

formally S-duality invariant

Dijkgraaf, Verlinde, Verlinde, 1997 Shih, Strominger, Yin, 2005 latkar, Sen, 2005

Leading degeneracy for large charges: make saddle-point approximation on a leading divisor

The result is identical as that obtained on the basis of:

$$\Sigma(S, \bar{S}, p, q) = -\frac{q^2 - ip \cdot q(S - \bar{S}) + p^2 |S|^2}{S + \bar{S}} + 4\Omega(S, \bar{S}, \Upsilon, \bar{\Upsilon})$$

Cardoso, dW, Käppeli, Mohaupt, 2004

Partition functions and OSV

$$Y^I = rac{\phi^I + \mathrm{i} p^I}{2} \quad \left\{ egin{array}{ll} \phi^I & \mathrm{electrostatic\ potentials} \\ p^I & \mathrm{magnetic\ charges} \end{array}
ight.
ight.$$
 (mixed ensemble)

 \Rightarrow reduced entropy functions $\Sigma = \mathcal{F}_{\mathrm{E}} - q_I \phi^I$

where

$$\mathcal{F}_{\mathrm{E}}(p,\phi) = 4 \left[\mathrm{Im} \, F(Y,\bar{Y},\Upsilon,\bar{\Upsilon}) - \Omega(Y,\bar{Y},\Upsilon,\bar{\Upsilon}) \right]_{Y^I = (\phi^I + \mathrm{i} p^I)/2}$$

Topological string:

$$F(Y,\Upsilon) = F^{(0)}(Y) + \sum_{g=1} (Y^0)^{2-2g} \Upsilon^g F^{(g)}(t)$$

$$(Y^0)^2 F^{(0)}(t)$$

 Y^0 loop-counting parameter

genus-g partition function of a twisted non-linear sigma model with CY target space

$$t^A = Y^A/Y^0$$

$$Z_{\mathrm{BH}}(p,\phi) = \mathrm{e}^{\mathcal{F}_{\mathrm{E}}}$$
 $Z_{\mathrm{top}}(p,\phi) = \mathrm{e}^{-2\mathrm{i}F}$

$$Z_{
m BH}(p,\phi)pprox |Z_{
m top}(p,\phi)|^2$$
Strominger, Ooguri, Vafa, 2004

Topological string:

Bershadsky, Cecotti, Ooguri, Vafa, 1994

- Holomorphic anomaly $\partial_{\bar{t}}F^{(g)} \neq 0 \implies F^{(g)}(t,\bar{t})$
- ullet Topological string coupling : $Y^0 = g_{\mathrm{top}}^{-1}$
- ullet Duality invariant sections $F^{(g)}$
- ullet $F^{(g)}$ captures certain string amplitudes

Antoniadis, Gava, Narain, Taylor, 1993

Note: identification with the effective action!

Non-holomorphic extension?

Cardoso, dW, Käppeli, Mohaupt, 2006

The mixed partition function

$$Z_{\rm BH}(p,\phi) = \sum_{\{q\}} d(p,q) e^{\pi q_I \phi^I} \sim e^{\pi \mathcal{F}_{\rm E}(p,\phi)}$$

inverse Laplace transform:

$$d(p,q) \propto \int d\phi e^{\pi (\mathcal{F}_{E} - q_{I}\phi^{I})} = \int d\phi e^{\pi \Sigma(\phi,p,q)}$$

saddle-point approximation

$$\delta(\mathcal{F}_{E} - q_{I}\phi^{I}) = 0$$
 $q_{I} = \frac{\partial \mathcal{F}_{E}}{\partial \phi^{I}}$ $\mathcal{S}_{\text{macro}} = \pi \Sigma \Big|_{*}$

- integrals ill-defined (contour, convergence)
- E/M duality problematic

improving:

define a duality invariant canonical partition function

$$Z(\phi, \chi) = \sum_{\{p,q\}} d(p,q) e^{\pi[q_I \phi^I - p^I \chi_I]}$$

defines a free energy (naturally formulated as a function of the electro- and magnetostatic potentials ϕ and χ)

inverse Laplace transform:

$$d(p,q) \propto \int \, \mathrm{d}\chi_I \, \mathrm{d}\phi^I \, \, Z(\phi,\chi) \, \, \mathrm{e}^{\pi[-q_I\phi^I + p^I\chi_I]} \quad \text{over periodicity intervals} \quad \frac{(\phi-\mathrm{i},\phi+\mathrm{i})}{(\chi-\mathrm{i},\chi+\mathrm{i})}$$

identify with the field-theoretic data:

$$Z(\phi, \chi) \sim e^{2\pi \mathcal{H}(\phi/2, \chi/2, \Upsilon, \bar{\Upsilon})}$$

Hesse potential : Legendre transform of ${\rm Im}[F]$ with respect to $(Y-\bar Y)^I$ equal to $\frac{1}{2}\mathcal F$ as defined previously, including the Υ -dependence

$$\sum_{\{p,q\}} d(p,q) e^{\pi[q_I \phi^I - p^I \chi_I]} \sim \sum_{\text{shifts}} e^{2\pi \mathcal{H}(\phi/2,\chi/2,\Upsilon,\bar{\Upsilon})}$$

complex formulation:

$$\sum_{\{p,q\}} d(p,q) e^{\pi[q_I(Y+\bar{Y})^I - p^I(\hat{F}+\hat{\bar{F}})_I]} \sim \sum_{\text{shifts}} e^{\pi \mathcal{F}(Y,\bar{Y},\Upsilon,\bar{\Upsilon})}$$

inverse Laplace transform:

$$d(p,q) \propto \int d(Y + \bar{Y})^I d(\hat{F} + \hat{\bar{F}})_I e^{\pi \Sigma(Y,\bar{Y},p,q)}$$
$$\propto \int dY d\bar{Y} \Delta^-(Y,\bar{Y}) e^{\pi \Sigma(Y,\bar{Y},p,q)}$$

measure factor: implied by duality!

$$\Delta^{\pm}(Y, \bar{Y}) = \left| \det \left[\operatorname{Im} \left[2 F_{KL} \pm 2 F_{K\bar{L}} \right] \right| \right|$$

Cardoso, dW, Käppeli, Mohaupt, 2006

Saddle-point approximation

$$d(p,q) = \sqrt{\left|\frac{\Delta^{-}(Y,\bar{Y})}{\Delta^{+}(Y,\bar{Y})}\right|_{\text{attractor}}} e^{\mathcal{S}_{\text{macro}}(p,q)}$$

(semiclassical approximation)

required by duality

$$\frac{\Delta^{-}(Y,\bar{Y})}{\Delta^{+}(Y,\bar{Y})}\Big|_{\text{attractor}} \approx 1$$

mixed partition function:

$$Z(p,\phi) = \sum_{\{q\}} d(p,q) e^{\pi q_I \phi^I} \sim \sum_{\text{shifts}} \sqrt{\Delta^-(p,\phi)} e^{\pi \mathcal{F}_{E}(p,\phi)}$$

(and higher-order corrections!)

modification of OSV ⇒ predictive power is lost!

These results have been confirmed in a variety of applications, e.g.,

Shih, Yin, 2005 Cardoso, dW, Käppeli, Mohaupt, 2006 Denef, Moore, 2007 Cardoso, David, de Wit, Mahapatra, 2008

A more subtle question:

$$F(Y,\Upsilon) = F^{(0)}(Y) + \sum_{g=1} (Y^0)^{2-2g} \Upsilon^g F^{(g)}(t)$$

this same expansion is applied to

(a) the topological string and (b) the effective action!
But are they identical functions?

(and still agreement with string amplitudes?)

use duality arguments:

effective action

the $F^{(g)}$ are NOT invariant the periods transform correctly under monodromies the duality transformations are Υ -dependent

topological string

the $F^{(g)}$ are INVARIANT sections the periods refer to $F^{(0)}$ the duality transformations are Υ -independent

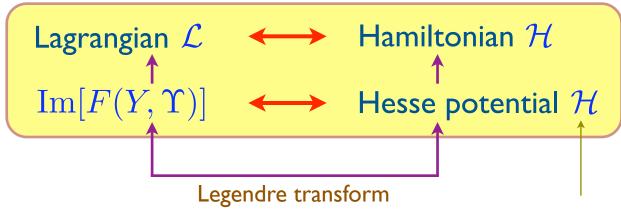
difference has been confirmed:

- ullet $\mathcal{F}^{(1)}$ is still invariant
- ullet for $g \geq 2$ there are differences explicit evaluation and comparison of the non-holomorphic corrections for the FHSV model supports this conclusion. consistent with the reality of Ω Grimm, Klemm, Marino, Weiss, 2007

Cardoso, dW, Mahapatra, 2008

What then is the precise relation?

- Recall: amplitudes ⇔ connected graphs ➡ 1PI graphs
- Then: compare with E/M duality properties of

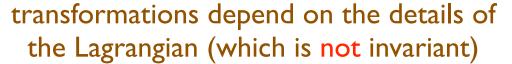


Compare: electromagnetism
$$\mathcal{L}(E,B)$$

$$(E \leftrightarrow H)$$

$$(B \leftrightarrow D)$$

$egin{array}{c} (E \leftrightarrow H) \\ (B \leftrightarrow D) \end{array}$ under E/M duality



$$D=rac{\partial \mathcal{L}}{\partial E}$$
 depend on the details of the Lagrangian $H=rac{\partial \mathcal{L}}{\partial B}$

 $\mathcal{H}(D,B)$ invariant under monodromies transformations do not depend on the details of the Lagrangian

Example: Born-Infeld Lagrangian

$$\mathcal{L} = -g^{-2} \sqrt{\det[\eta_{\mu\nu} + g F_{\mu\nu}]} + g^{-2}$$

$$ds^{2} = -dt^{2} + dr^{2} + r^{2}(\sin^{2}\theta d\varphi^{2} + d\theta^{2})$$

$$F_{rt} = e \qquad F_{\varphi\theta} = p \sin\theta$$

$$\mathcal{L}_{\text{red}} = \int d\varphi \, d\theta \, \mathcal{L}$$

$$= 4\pi r^2 g^{-2} \left[\sqrt{1 - g^2 e^2} \sqrt{1 + g^2 p^2 r^{-2}} - 1 \right]$$

symmetry:
$$\begin{cases} \delta e &= p\sqrt{\frac{1-g^2e^2}{1+g^2p^2}} \\ \delta p &= -e\sqrt{\frac{1+g^2e^2}{1-g^2p^2}} \end{cases}$$
 (suppress: $4\pi, r$)

define electric charge
$$q = \frac{\partial \mathcal{L}_{\text{red}}}{\partial e}$$

Hamiltonian
$$\mathcal{H}=g^{-2}\left[\sqrt{1+g^2(p^2+q^2)}-1\right]$$

symmetry:
$$\begin{cases} \delta q &= p \\ \delta p &= -q \end{cases}$$
 Schrödinger, 1935

independent of the coupling constant g!

Non-holomorphic deformation

$$(F \longrightarrow F + 2\mathrm{i}\Omega)$$

Special geometry:

N=2 supersymmetric gauge theory encoded in function F(X)

complex scalar fields
$$X^I$$
 and $F_I = \frac{\partial F(X)}{\partial X^I}$

period vector
$$\begin{pmatrix} X^I \\ F_I \end{pmatrix}$$
 \longrightarrow $\int_{A^I,B_J} \Omega$

electric/magnetic duality (monodromies):

$$\begin{pmatrix} X^{I} \\ F_{I} \end{pmatrix} \longrightarrow \begin{pmatrix} \tilde{X}^{I} \\ \tilde{F}_{I} \end{pmatrix} = \begin{pmatrix} U^{I}{}_{J} & Z^{IJ} \\ V_{I}{}^{J} & W_{IJ} \end{pmatrix} \begin{pmatrix} X^{J} \\ F_{J} \end{pmatrix}$$

$$Sp(2n, \mathbb{R})$$

integrable:

$$\tilde{F}(\tilde{X}) - \frac{1}{2}\tilde{X}^I \tilde{F}_I(\tilde{X}) = F(X) - \frac{1}{2}X^I F_I(X) + \cdots$$

with non-holomorphic deformation:

The starting point: monodromies

$$X^{I} \rightarrow \tilde{X}^{I} = U^{I}{}_{J}X^{J} + Z^{IJ}F_{J}(X,\bar{X})$$

 $F_{I}(X,\bar{X}) \rightarrow \tilde{F}_{I}(\tilde{X},\bar{\tilde{X}}) = V_{I}{}^{J}F_{J}(X,\bar{X}) + W_{IJ}X^{J}$

so that

$$\frac{\partial \tilde{X}^{I}}{\partial X^{J}} \equiv \mathcal{S}^{I}{}_{J} = U^{I}{}_{J} + Z^{IK}F_{KJ} \qquad \qquad \frac{\partial \tilde{X}^{I}}{\partial \bar{X}^{J}} = Z^{IK}F_{K\bar{J}}$$

As a first result we derive $(F_{IJ} \equiv \partial_J F_I)$:

$$F_{IJ} \to \tilde{F}_{IJ} = (V_I^L \hat{F}_{LK} + W_{IK}) [\hat{S}^{-1}]^K{}_J$$

where

$$\hat{F}_{IJ} = F_{IJ} - F_{I\bar{K}} \bar{Z}^{\bar{K}\bar{L}} \bar{F}_{\bar{L}J}
\hat{S}^{I}{}_{J} = U^{I}{}_{J} + Z^{IK} \hat{F}_{KJ}
\mathcal{Z}^{IJ} = [\mathcal{S}^{-1}]^{I}{}_{K} Z^{KJ}$$

Assume: $F_{I\bar{J}}=\mathrm{e}^{\mathrm{i}\alpha}\bar{F}_{\bar{J}I}$

so that $\hat{F}_{IJ} = \hat{F}_{JI}$ provided that $F_{IJ} = F_{JI}$

In that case: $ilde{F}_{IJ} = ilde{F}_{JI}$

so that both F_I and \tilde{F}_I can be integrated:

$$F_I = \frac{\partial F}{\partial X^I} \qquad \qquad \tilde{F}_I = \frac{\partial \tilde{F}}{\partial \tilde{X}^I}$$

One may also derive

$$F_{I\bar{J}} \to \tilde{F}_{I\bar{J}} = [\hat{\mathcal{S}}^{-1}]^K{}_I [\bar{\mathcal{S}}^{-1}]^{\bar{L}}{}_{\bar{J}} F_{K\bar{L}} = [\mathcal{S}^{-1}]^K{}_I [\bar{\hat{\mathcal{S}}}^{-1}]^{\bar{L}}{}_{\bar{J}} F_{K\bar{L}}$$
 as well as similar formulae for higher derivatives!

Furthermore, with external parameter dependence η :

$$F(X, \bar{X}; \boldsymbol{\eta}) = F^{(0)}(X) + 2i\Omega(X, \bar{X}; \boldsymbol{\eta})$$

one derives $\partial_{\eta} \tilde{F}(\tilde{X}, \tilde{ar{X}}; \eta) = \partial_{\eta} F(X, ar{X}; \eta)$

i.e. transforms as a function!

Summary / conclusions

$$F \longrightarrow F + 2\mathrm{i}\Omega$$
 seems consistent with special geometry

- ullet free energy ${\mathcal F}$ duality invariant
- BPS attractor equations with non-holomorphic terms
- E/M equivalence classes seem to be realized
 - \rightarrow \mathcal{F} transforms as a function
- confirmed by explicit results for FHSV and STU models
- ◆ prediction for measure factor in class of N=2 models
- ◆ the measure factor for the STU model → Justin David's talk

Precise relation 'effective action ⇔ topological string' remains open **Many open questions!**