New AdS4 vacua in string theory and their conformal field theory duals

Alessandro Tomasiello

ISM08

INDIAN STRINGS MEETING

December 6-13, 2008

Anandha Inn, Pondicherry, India

Introduction

This talk is about supersymmetric AdS_4 vacua.

We don't live in AdS_4 ; nor is supersymmetry unbroken. But

• Possible dual CFT3 description. has become possible very recently!

• Useful first step. $\Lambda > 0$ difficult to achieve!

[deWit, Smit, Hari Dass '87; Maldacena, Nuñez '00]

... and with unbroken susy, impossible:

for susy vacua:
$$V \sim (|DW|^2 - |W|^2)$$

Hence we will break susy when we make Λ positive.

Examples:

[Kachru, Kallosh, Linde, Trivedi'03]

Step 1.
$$AdS_4 \times CY_6$$
 in IIB

- quantum corrections (brane instantons)
- using
- O₃, D₃, D₇

Step 2. using $D_3-\overline{D_3}$ pairs

[deWolfe, Giryavets, Kachru, Taylor'05]

Step 2. Not easy (no-go, in some sense)

[Hertzberg, Kachru, Taylor, Tegmark'07]

Can we avoid instantons and orientifolds?

[deWit, Smit, Hari Dass '87; Maldacena, Nuñez '00]

don't apply to $\Lambda < 0$

One construction existed ("Freund-Rubin"):

- works for infinitely many spaces (but not just any space)
- for each space, one vacuum (or two)

...until now:

This talk: new class of AdS4 vacua

[AT '07]

- no orientifolds, no brane instantons
- all moduli stabilized (not there to begin with!)
- infinitely many

 $AdS_4 \times \mathbb{CP}^3$ vacua in IIA

a rich 'discretuum' of vacua with same topology

[sample]

Freund-Rubin:

 works for infinitely many spaces (but not just any space)

• for each space, one vacuum (or two)

My new construction:

so far, only two internal spaces:

$$\mathbb{CP}^3$$
 , $\frac{\mathrm{SU}(3)}{\mathrm{U}(1) \times \mathrm{U}(1)}$;

I have a conjecture for infinitely many more!

• for each space, infinitely many vacua

Bonus: AdS₄ / CFT₃

a dual was found for the 'old solution': Chern-Simons + matter

[Aharony, Bergman, Jafferis, Maldacena '08....]

Finally, AdS₄ / CFT₃ duals with Lagrangian description.

I will present an idea for the dual to the other vacua.

Plan

General considerations about supersymmetry

Some geometry of CP³

Finding the new vacua

Sketch of CFT duals

Supersymmetry

In general:

Conditions for susy solutions \iff Geometrical problem

[Graña, Minasian, Petrini, AT '05, '06]

a refinement of 'generalized complex geometry'

[Hitchin '02, Gualtieri '04]

In particular:

- For all $\Lambda = 0$ vacua, M_6 is 'generalized complex'
- For all $\Lambda < 0$ vacua, M_6 is 'generalized half-flat'

essentially all known vacua in 'SU(3) structure' class

earlier analyzed by [Lüst, Tsimpis'04]

$$J \wedge \Omega = 0$$

[break local SO(6) to SU(3)]

$$\Omega \wedge \overline{\Omega} = iJ^3$$

the general geometrical method boils down to

geometry is supersymmetric
$$dJ \propto {
m Re}\Omega$$

$$\Delta {
m Re}\Omega \propto {
m Re}\Omega$$

Susy then also determines the fluxes:

[F_k are internal fluxes]

[Lüst, Tsimpis'04]

so, morally: $\tan(\theta) \sim F_0/F_6$

actually, F_2 has also a term of norm

$$\propto 1 - 16\sin^2(\theta)$$

$$|\sin(\theta)| < \frac{1}{4}$$

[limit not valid with sources; more on this shortly]

Some geometry of \mathbb{CP}^3

topology

 \mathbb{CP}^3 is a sphere fibration:

cohomology:

h^0	h^1	h^2	h^3	h^4	h^5	h^6
1	0	1	0	1	0	1

• "Isn't $c_1 \neq 0$?"

Actually there is another (almost) complex structure, with $c_1=0$

'not integrable': but this is what susy requires

Metric:

overall size
$$S^2 \qquad \text{fibration is} \\ ds^2 = R^2 (g_{ij} (dx^i + A^i) (dx^j + A^j) + \frac{1}{\sigma} \, ds_{S^4}^2)$$

few parameters to begin with:

'stabilizing moduli' will be easy

The new vacua

susy reduces to...

$$\tan(\theta) = \frac{\sqrt{(\sigma - \frac{2}{5})(2 - \sigma)}}{\sigma + 2}$$
 recall: " F_0/F_6 " "shape"

Flux quantization

• Bianchi: $d(e^{-B} \wedge F)_k = 0$

$$d\tilde{F}_k = 0 \qquad \text{a.s.} \int_{\text{k-cycle}} \tilde{F}_k = n_k$$

$$k = 0, 2, 4, 6$$
 [internal fluxes]

four equations for:

these parameters are discretized

for each of these σ s, can achieve $R \gg l_s$ and $g_s \ll 1$ parametrically

reasonable cuts on KK scale make them finite

agreement with general conjecture by [Acharya, Douglas '06]

generically all fluxes are on.

AdS₄/CFT₃

3d CFTs not as well understood as in 4d and 2d.

- in 2d the conformal group is ∞ -dimensional; not in 3d
- in 4d, gauge couplings run logarithmically;
 can choose coefficient to be zero

(using NSVZ β -function)

in 3d gauge couplings are dimensionful.

Recently:

[Aharony, Bergman, Jafferis, Maldacena'08]

$$\mathcal{N} = 6 \quad \begin{array}{c} \text{superconformal} \\ \text{Chern-Simons} \\ \\ \bigcirc & \longleftrightarrow \\ \\ \text{+ quartic superpotential} \end{array} \qquad \begin{array}{c} \text{dual to} \\ \\ \text{or} \quad \text{AdS}_4 \times (S^7/\mathbb{Z}_k) \\ \\ \text{or} \quad \text{AdS}_4 \times \mathbb{CP}^3 \end{array}$$

What about the other vacua on \mathbb{CP}^3 ?

[Gaiotto, AT: work in progress]

$$\mathcal{N} = 1 \quad \text{superconformal Chern-Simons}$$

$$CS \text{ level } k' \quad \Longleftrightarrow \quad \text{dual to}$$

$$CS \text{ level } k \quad \leftrightarrow \quad \text{new vacua}$$

[our duality better and better justified close to $\mathcal{N} = 6$ solution

Conclusions

New AdS solutions under control and with no moduli

Complexity of vacua not exclusive to Calabi-Yau's

New perspectives in CFT3