
Extremal Black Hole Entropy

Most of the material and references can be

found in

A.S. arXiv:0708.1270, arXiv: 0809.3304

Collaborators: Dumitru Astefanesei, Nabamita Baner-

jee, Shamik Banerjee, Atish Dabholkar, Justin David,

Kevin Goldstein, Rajesh Gupta, Norihiro Iizuka, Ashik

Iqubal, Dileep Jatkar, Rudra Jena, Bindusar Sahoo,

Masaki Shigemori, Yogesh Srivastava

1



One of the successes of string theory has been

an explanation of the Bekenstein-Hawking en-

tropy of a class of supersymmetric black holes

in terms of microscopic quantum states.

SBH = ln dmicro

Strominger, Vafa

SBH = A/4GN , A = Area of event horizon

dmicro: degeneracy of microstates carrying a

given set of charges
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Originally the comparison between black hole
and statistical entropy was carried out in the
limit of large charges.

Can we go beyond this limit?

In order to study this problem we need to ad-
dress two separate issues.

1. We need to learn how to take into ac-
count the effect of the higher derivative terms
/ quantum corrections on the computation of
black hole entropy.

2. We also need to know how to calculate the
microscopic degeneracy to greater accuracy.
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In this talk I shall try to address both these

issues.

Although supersymmetry may not be essential

for our discussion, in string theories with suffi-

cient amount of supersymmetry we often have

good control on both sides of the story.

For this reason our explicit analysis will focus

on BPS black holes with sufficient amount of

unbroken supersymmetries.
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Plan:

• Higher derivative corrections (concrete)

• Quantum corrections (postulate)

• Microstate counting (concrete)

• Comparison (concrete / speculative)
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Higher derivative corrections

A general frameork for computing higher deriva-
tive corrections to classical black hole entropy
has been developed by Wald.

This has been applied to compute the entropy
of stringy black holes in many examples.

Cardoso, de Wit, Mohupt, . . .

More generally, for extremal black holes Wald’s
formula can be encoded in the entropy function
formalism.

We shall begin with a lightening review of the
results of the entropy function formalism.
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Q. How do we define an extremal black hole
in a higher derivative theory of gravity?

Consider Reissner-Nordstrom metric in D=4:

ds2 = −(1− ρ+/ρ)(1− ρ−/ρ)dτ2

+
dρ2

(1− ρ+/ρ)(1− ρ−/ρ)

+ρ2(dθ2 + sin2 θdφ2)

Define

2λ = ρ+ − ρ−, t =
λ τ

ρ2
+

, r =
2ρ− ρ+ − ρ−

2λ

and take λ → 0 limit.

ds2 = ρ2
+

[
−(r2 − 1)dt2 +

dr2

r2 − 1

]
+ ρ2

+(dθ2 + sin2 θdφ2)
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ds2 = ρ2
+

[
−(r2 − 1)dt2 +

dr2

r2 − 1

]
+ ρ2

+(dθ2 + sin2 θdφ2)

→ an AdS2 × S2 space.

All known extremal black holes have an AdS2

factor in their near horizon geometry.

↔ an SO(2,1) isometry of the near horizon

geometry.
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Postulate: An extremal black hole has an AdS2

factor / SO(2,1) isometry in the near horizon

geometry even in higher derivative theories of

gravity + other fields.

Regarding all other directions (including angu-

lar coordinates) as compact we can regard the

near horizon geometry of an extremal black

hole as

AdS2 × a compact space (fibered over AdS2)
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Consider string theory in such a background

containing two dimensional metric gµν and U(1)

gauge fields A
(i)
µ among other fields.

The most general field configuration consis-

tent with SO(2,1) isometry:

ds2 ≡ g
(2)
µν dxµdxν = v

(
−(r2 − 1)dt2 +

dr2

r2 − 1

)
F

(i)
rt = ei, · · · · · · · · ·

L(2)(v,~e, · · ·): The dimensionally reduced two

dimensional Lagrangian density evaluated in

this background.
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Define the classical entropy function

E(~q, v, ~e, · · ·) ≡ 2π
(
ei qi − vL(2)

)
One finds that for a black hole of charge ~q

1. All the near horizon parameters are obtained
by extremizing E with respect to v, ei and the
other near horizon parameters.

2. Swald(~q) = E at this extremum.

This reduces the computation of Wald entropy
of an extremal black hole into an algebraic
problem once the higher derivative corrections
to the action are known.
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Q. What is the generalization of Wald’s en-

tropy for extremal black holes in the full quan-

tum theory?

On general grounds one expects that this will

involve some quantum computation in the near

horizon geometry of the black hole.

Quantum entropy function d(~q) is a proposal

for this generalization of eSwald(~q).
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ds2 = v

(
−(r2 − 1)dt2 +

dr2

r2 − 1

)
F

(i)
rt = ei

Euclidean continuation:

t = −iθ, r = cosh η, θ ≡ θ + 2π, 0 ≤ η < ∞

This gives

ds2 = v
(
dη2 + sinh2 η dθ2

)
,

F
(i)
θη = iei sinh η

→ A
(i)
θ = −i ei (cosh η−1) = −i ei (r−1) .
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Proposal for the quantum entropy function d(~q)

d(~q) =
〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉finite

AdS2

〈 〉AdS2
: unnormalized path integral over vari-

ous fields of string theory on euclidean global

AdS2.

∮
: a closed contour at the boundary of AdS2.

‘finite’: Infrared finite part of the amplitude.

14



We need to regularize the infinite volume of
AdS2 by putting a cut-off r ≤ r0.

The superscript ‘finite’ refers to the finite part
of the amplitude defined by expressing it as

eCL × finite part

L: length of the boundary of AdS2.

C: A constant

The definition is independent of the details of
the cut-off, ı.e. a cut-off r ≤ r0f(θ) for any
smooth function f(θ) gives the same result for
C and the ‘finite part’.
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We shall try to justify this proposal by showing

that

1. In the classical limit

L(2) → λL(2), ~q → λ~q

with λ large,

ln d(~q) → Swald(~q)

2. This fits in with the usual rules of AdS/CFT

correspondence.
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d(~q) =
〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉finite

AdS2

In the classical limit this reduces to

d(~q) '
[
e−S exp[−iqi

∮
dθ A

(i)cl
θ ]

]finite

A
(i)cl
θ = −i ei (r0−1)

S = Euclidean action = Sbulk + Sboundary
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Sbulk = −
∫ r0

1
dr
√

det g dθL(2) = −(r0−1)2πvL(2)

One can also show that

Sboundary = −Kr0 +O(r−1
0 )

K: some constant which depends on the de-

tails of the boundary terms.

The length of the boundary is

L = 2π
√

vr0 +O(r−1
0 ) .
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This gives

d(~q) '
[
er0(2πvL(2)+K−~e·~q)+2π(~e·~q−vL(2))+O(r−1

0 )
]finite

→ ln d(~q) ' 2π(~e · ~q − vL(2)) = Swald(~q)

In principle quantum corrections to d(~q) can

be calculated using perturbation theory / non-

peturbative effects.
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AdS2/CFT1 correspondence

Euclidean AdS2 is the Poincare disk.

→ its boundary is a circle of circumference L.

Thus AdS/CFT correspondence →〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉
AdS2

= Tr~q e−LH

Tr~q: trace over states of charge ~q in CFT1

H: Hamiltonian of dual CFT1
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What can we say about CFT1?

It should be identified as the infrared limit of
the quantum mechanics that describes the black
hole solution.

In all stringy black holes the microscopic the-
ory has a gap that separates the ground states
from the excited states.

Thus in the infrared limit only the ground states
remain and we have a quantum mechanics with
a finite dimensional Hilbert space.

→ Tr~q e−LH = dmicro(~q)e
−E0L
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This gives

d(~q) ≡
〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉finite

AdS2

=
[
Tr~q e−LH

]finite

=
[
dmicro(~q)e

−E0L
]finite

.

= dmicro(~q) .

Thus our generalization of the Wald entropy

is directly related to the microscopic degen-

eracies of the black hole via AdS/CFT corre-

spondence.
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Microscopic degeneracy

d(~q) can in principle be calculated by analyzing

string theory in the near horizon geometry of

the black hole.

How can we calculate dmicro(~q)?

We shall now describe the results for dmicro(~q)

is a class of

N = 4 supersymmetric string theories obtained

by taking an appropriate quotient of heterotic

ot type II string theory compactified on T6.

23



A generic N = 4 supersymmetric string theory
in D = 4 has R U(1) gauge fields. (R ≥ 6)

6 graviphotons + (R− 6) matter multiplets

There are also two sets of moduli scalar fields:

a complex scalar modulus τ : =(τ) > 0

6(R − 6) real scalars labelled by R × R matrix
M subject to the constraint

MT = M, MTLM = L

L: a matrix with 6 eigenvalues 1 and (R − 6)
eigenvalues −1
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Dyon: carries (electric,magnetic) charges (Q, P )

Q, P : R-dimensional vectors

dmicro(Q, P ): number of quarter BPS states

with charge (Q, P ) weighted by (−1)F (2h)6/6!

F : fermion number, h: helicity

→ a non-vanishing and protected index Kiritsis

25



We calculate the index in the weak coupling

limit.

When we take into account the interaction, we

expect all states whose masses are not pro-

tected to become non-BPS.

→ only the index worth of states will remain

BPS.

Thus we shall interpret dmicro(Q, P ) as the mi-

croscopic degeneracy of BPS states carrying

charges (Q, P ).
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dmicro(Q, P ) can also depend on the asymptotic

values (M∞, τ∞) of the moduli fields.

However since it is an index we expect it to

remain unchanged under a continuous defor-

mation of (M∞, τ∞) around a generic point.

It can jump across a wall of marginal stability

at which a quarter BPS dyon breaks into a pair

of half-BPS dyons.

(Q, P ) ⇒ (αQ + βP, γQ + δP ) + (δQ− βP,−γQ + αP )

αδ = βγ, α + δ = 1, (αQ + βP, γQ + δP ) ∈ charge lattice
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T-duality transformation:

Q → ΩQ, P → ΩP, M → ΩMΩT

Ω ∈ a discrete subgroup of O(6, R− 6).

S-duality transformation:

Q → aQ + bP, P → cQ + dP

τ → (aτ + b)/(cτ + d)(
a b

c d

)
∈ a discrete subgroup of SL(2,R).
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T-duality invariants constructed from (Q, P )

Q2 = QTLP, P2 = PTLP, Q · P = QTLP

Besides these there can be an additional set of

T-duality invariants ~u which are not invariants

of the continuous group O(6, R − 6), but are

invariants of the discrete subgroup that corre-

sponds to the T-duality group.
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Result

dmicro(Q, P )

= (−1)Q·P+1
∫
C

dρdσdv Ψ(ρ, σ, v; ~u)

exp
[
−iπ(σQ2 + ρP2 + 2vQ · P )

]
.

(ρ = ρ1 + iρ2, σ = σ1 + iσ2, v = v1 + iv2) are
three complex variables.

C: a three real dimensional contour in the (ρ, σ, v)
space defined by fixed values of (ρ2, σ2, v2) and
(ρ1, σ1, v1) integrated over their periods.

Ψ(ρ, σ, v; ~u) can be explicitly calculated in many
cases.
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The choice of C, ı.e. of (ρ2, σ2, v2) depends on
the values of (M∞, τ∞).

As we vary (M∞, τ∞) the contour changes, but
as long as we do not encounter a pole of the
integrand the result for dmicro(Q, P ) remains
unchanged.

As (M∞, τ∞) crosses a wall of marginal stability
the contour hits a pole.

Thus the jump in dmicro(Q, P ) as we cross the
walls of marginal stability can be encoded in
the residue of the integrand at the correspond-
ing pole.
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The jump across the wall associated with the
decay

(Q, P ) ⇒ (αQ + βP, γQ + δP ) + (δQ− βP,−γQ + αP )

is controlled by the pole at

ργ − σβ + v(α− δ) = 0 .

On the black hole side these jumps can be ex-
plained by the (dis-)appearance of multicen-
tered black hole solutions as (M∞, τ∞) crosses
a wall of marginal stability.

Thus the residues at these poles capture the
degeneracies of the multicentered black hole
solutions.
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The quantum entropy function captures infor-
mation about the degeneracies of single cen-
tered black holes only.

Thus in order to compute the relevant dmicro(Q, P )
we must adjust (M∞, τ∞) so that only single
centered black hole solutions exist.

Requires choosing Cheng, Verlinde

ρ2 = Λ
Q2√

Q2P 2 − (Q · P )2
,

σ2 = Λ
P 2√

Q2P 2 − (Q · P )2
,

v2 = −Λ
Q · P√

Q2P 2 − (Q · P )2
, Λ >> 1 .
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Given the exact expression for d(Q, P ) we can
try to extract its behaviour for large charges.

1. Do the v integral by picking up residues at
various poles.

2. Do the (ρ, σ) integral by saddle point method.

Example: For heterotic string theory on T6 the
relevant poles are at

n2(σρ− v2) + jv + n1σ −m1ρ + m2 = 0,

for m1, n1, m2, n2 ∈ ZZ, j ∈ 2ZZ + 1,

m1n1 + m2n2 +
j2

4
=

1

4
.
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The contribution from this pole to dmicro(Q, P )

has the form

exp

[
π

n2

√
Q2P2 − (Q · P )2

(
1 +O

(
charge−2

))]

Dominant contribution comes from n2 = 1.

The leading contribution to dmicro(Q, P ) agrees

with the classical supergravity contribution to

the quantum entropy function.
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In principle the power corrections can be com-

pared with the systematic quantum and higher

derivative corrections to the quantum entropy

function.

This has been done in various limits but a com-

pletely systematic comparison is still lacking.
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What about the exponentially suppressed cor-

rectons?

Since they have a different exponential factor

it would seem that they represent contribu-

tion from a different saddle point which has

the same asymptotic field configuration as the

Euclidean AdS2 space-time.

Can we identify such a saddle point?

Proposal: These come from ZZN orbifolds of

AdS2 with N = n2.
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Classical contribution to d(Q, P ) from this sad-

dle point is

exp
[

π

N

√
Q2P2 − (Q · P )2

]
exactly as required.

(see Nabamita’s talk for more details)
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Summary

1. Proposal for relating the extremal black hole

entropy to the microscopic degeneracy

d(~q) =
〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉finite

AdS2

– reduces to the relation between wald entropy

and statistical entropy in the classical limit.

– in the spirit of AdS/CFT correspondence.
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2. On the microscopic side we have a com-

plete understanding of the degeneracies of a

class of quarter BPS black holes in N = 4 su-

persymmetric string theories.

A systematic analysis of the d(q) = dmicro(q)

postulate is still lacking, but the difficulties are

mainly technical and may be overcome in the

near future.
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