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Beta Beam

e A pure, intense, collimated beam of

V. OF ., essentially background free.

e Produced through the beta decay of

radioactive ions circulating in a storage ring.
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Novelties of a Beta Beam

= known energy spectrum, high intensity, low systematic
errors

= neutrino isotropically emitted in rest frame of spinless
parent ion

= Lorentz boost of the parent ions — strong collimation,

— can be produced with existing CERN facilities. “High" ~
option (v > 1500) accessible in the LHC era
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Figure 1. The beta beam complex based on CERN facilities in the low-~y

configuration.
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Beta Beam (contd.)

e The v, (7. ) beams are produced via the  decay of
accelerated and completely ionized ¥Ne (°He ) ions.

° %%N@ —> $8F + et + v,.

e SHe = SLi+ e + Ie.
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Beta Beam (contd.)

The v. ( 7. ) beams are produced via the 5 decay of
accelerated and completely ionized ¥Ne (°He ) ions.

%%Ne — éSF + et + 1.
SHe — SLi + e~ + 7.

Both beams can run simultaneously in the storage ring
which requires: ~ (Nel®) = 1.67 - v (HeY).

Low-~ design, useful decays in case of anti-neutrinos
can be 2.9 x 10'¥/year and for neutrinos 1.1 x 10'®/year.

The v, /v, flux is obtained from standard beta decay
calculation.
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INO

The India-based Neutrino Observatory

— a magnetized lron calorimeter (ICAL) detector with
excellent efficiency of charge identification (~ 95%) and
good energy determination
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INO

The India-based Neutrino Observatory

— a magnetized lron calorimeter (ICAL) detector with
excellent efficiency of charge identification (~ 95%) and
good energy determination

= preferred location is Singara (PUSHEP) in the Nilgiris
(L = 7177 km)

= a 50 Kiloton Iron detector
= signal is the muon track (v, — v, channel)

= energy threshold is around 800 MeV
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Figure 2: Schematic plan of the 32 kTon ICAL detector for INO.
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Figure 3. Boosted spectrum of neutrinos and anti-neutrinos at
the far detector assuming no oscillation. The flux is given in units of

yr_lm_2MeV_1.
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Three-flavour oscillations

= Neutrino parameters: neutrino mass eigenvalues and
the PMNS mixing matrix

= neutrino flavour states |v,) (o = e, u, 7) are linear
superpositions of the mass eigenstates |v;) (i = 1, 2, 3)
with masses m;

Vo) = > Uailvi)
= U = 3 x 3 unitary matrix (PMNS) parametrized as:

U = VogWi3Vig
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Three-flavour oscillations (contd.)

where

C12 s12 0 C13 0 8136_i5
Vig=| —s12 c12 0|, Wig= 0 1 0 :
0 0 1 —s13¢° 0 3

1 0 0
Vog= | 0 co3  s23 |.
0 —s923 c93

= (19 = cos H19, s19 = sin H1o eftc.
= ¢ denotes the CP-violating (Dirac) phase

(Majorana phases ignored)
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Three-flavour oscillations (contd.)

The probability that an initial v, of energy £ gets converted
to a v, after traveling a distance L in vacuum

5 L

Plvf —vy) =07, — 4ZR6 Ur,UgiUyp Uy ) sin®(1. 27AmUE)

J>1

i} L
+ ZZIm Ur;UgiUy;Uy;) sin(2. 54AmZ]E)
7>1

L is expressed in km, £ in GeV and Am? in eV?.

The — (+) refers to neutrinos (anti-neutrinos).
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Matter effects

Probabilites in matter

= Interactions in matter modify the oscillation probability
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Matter effects

Probabilites in matter

= Interactions in matter modify the oscillation probability
= the 3-flavour neutrino evolution equation in matter :

Ve
- d
Z% V,U —
Vr
I m% 0 0 Vee 00 ] Ve
Ul 0 m3 0 |U+| 0 0 0 v,
_ 0 0 m% 0 0 0 _ Vr

o Voo = vV2Grn. (matter-induced potential)
e 1. IS the electron number density
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Neutrino mixing

— atmospheric neutrinos reveal the best-fit values with 3¢
error : |Am3,| ~ 2.127199 5 1073 eV2, fy3 ~ 45.0°70%35

= the same for solar neutrinos : Am?2, ~ 7.9759 x 1073
eV?, 01 ~ 33.21°775,

(our convention : Am?; = m? —m?)
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Neutrino mixing

— atmospheric neutrinos reveal the best-fit values with 3¢
error : |Am3,| ~ 2.127199 5 1073 eV2, fy3 ~ 45.0°70%35

= the same for solar neutrinos : Am?2, ~ 7.9759 x 1073
eV2 019 ~ 33. 210+Zl ggz

(our convention : Am?; = m? —m?)

= current bound on CHOOZ mixing angle #,3 from the
global oscillation analysis : sin® 8,3 < 0.05 (30)

= two large mixing angles and the relative oscillation
frequencies open the possibility to test CP violation in
the neutrino sector, if /13 and 6 are not vanishingly small

Sanjib Kumar Agarwalla WHEPP-9 Jan 2006 —p.14/32



HIERARCHY
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Figure 4: schematic view of the hierarchy.
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Neutrino mixing (contd.)

Unsolved issues

= The sign of Am3, is not known. Neutrino mass
spectrum can be direct or inverted hierarchical

= Only an upper limit on ¢,3. The CP phase, 9, is
unconstrained
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Neutrino mixing (contd.)

Unsolved issues

= The sign of Am3, is not known. Neutrino mass
spectrum can be direct or inverted hierarchical

= Only an upper limit on ¢,3. The CP phase, 9, is
unconstrained

Our goal —

= to address the question of neutrino mass hierarchy

= to determine the mixing angle 6,3 precisely
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Magic baseline

The appearance probability (v. — v,) in matter, upto second
order in the small parameters a = Am3,/Am?; and sin 2013,

. 9 N
1—A)A
Pey o sin? 2613 sin? fog sin” | ~ )A

(1— AP
+  asin2613&sindsin(A) Sm(flA) sinf(1 — {DA]
A (1—A)
in(AA) sin[(1 — A)A
+  «asin 2013 & cos d cos(A) sin . ) sin( ] )A]
A (1—A)
- 9 2
+ o2 cos® fa3 sin? 2615 > IE{SA) :

where A = Am%3L/(4E), & = cos B3 sin 26012 sin 26053,
and A = +(2v2Gpn.E)/Am3s.
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Magic Baseline (contd.)

If one chooses: sin(AA) = ()

e The ¢ dependence disappears from P(v, — v,,).

e A clean measurement of the hierarchy and 6,5 is
possible without any correlation with .
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Magic Baseline (contd.)

If one chooses: sin(AA) = ()

e The ¢ dependence disappears from P(v, — v,,).

e A clean measurement of the hierarchy and 6,5 is
possible without any correlation with .

The first non-trivial solution: \/QG el = 21

e For an approximately isoscalar medium of constant
density p : Liagic km]| ~ 32726/p[gm/cm3].

e The averaged density for the CERN-INO path turns out
to be p = 4.15 gm/cc for which L. = 7886 km.
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CERN - INO long baseline

e The longer baseline captures a matter-induced
contribution to the neutrino parameters, essential for
probing the sign of Ams3..
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CERN - INO long baseline

e The longer baseline captures a matter-induced
contribution to the neutrino parameters, essential for
probing the sign of Ams3..

e The CERN-INO baseline, close to the ‘magic’ value,
ensures essentially no dependence of the final results
on J.

e This permits a clean measurement of ¢;3 avoiding the
degeneracy issues which plague other baselines.
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Interaction Cross sections

= In case of low energy the quasi-elastic events dominate
and the cross-section grows rapidly for £, < 1 GeV

Sanjib Kumar Agarwalla WHEPP-9 Jan 2006 —p.20/32



Interaction Cross sections

= In case of low energy the quasi-elastic events dominate
and the cross-section grows rapidly for £, < 1 GeV

= in the highest-energy case for £, > a few GeV, samples
are mostly deep-inelastic scattering and the growth is
linear in the neutrino energy

= for the medium-energy case, there is a sizeable
contribution from both types of events, as well as
resonant channels which is dominated by the A (1232)
resonance
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Cross sections (contd.)

e We have considered all type of events. Deep-inelastic
events dominate.

e There is also 10% contribution of quasi-elastic and
single-pion production events each.
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Cross sections (contd.)

e We have considered all type of events. Deep-inelastic
events dominate.

e There is also 10% contribution of quasi-elastic and
single-pion production events each.

e Atmospheric neutrino and other backgrounds will be
eliminated by the directionality cut imposed in event
selection.

e Here all the plots are obtained by numerically solving
the full 3-flavour neutrino propagation equation.
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Ams3, determination
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Figure 3: The number of events as a function of 6,3 for neutrinos (an-
tineutrinos) is shown in the left (right) panel for a 5-year run. The blue (red)
curves correspond to Am3, < 0 (Am3, > 0).
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Ams3, determination (contd.)

Determination of the sign(Amgg) —

= the mass hierarchy can be probed at the 5.3 (3.4)0 level

with a neutrino (anti-neutrino) beam for values of sin® 63
as low as 0.0003

= the sensitivity increases dramatically with 03
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Ams3, determination (contd.)

Determination of the sign(Amgg) —

= the mass hierarchy can be probed at the 5.3 (3.4)0 level

with a neutrino (anti-neutrino) beam for values of sin® 63
as low as 0.0003

= the sensitivity increases dramatically with 03

= for Am3, within the present 1o interval [1.85 - 2.48]

x 1073 eV?, this significance varies within 4.8 - 5.7¢
(3.6 - 3.00) for neutrinos (anti-neutrinos)
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Ams3, determination (contd.)

sin® 2013 | v.-beam (3¢) | v.-beam (30)
0.01 2.82 years 3.16 years
0.03 1.07 years 1.15 years
0.08 178 days 197 days

Table 1: measurement of hierarchy with only one
type of beam at a time
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Ams3, determination (contd.)

Error estimation —

— we have considered an uncertainty of 2% in the
knowledge of the number of ions in the storage ring

= we have assumed a 10% fluctuation in the cross
section, o

Sanjib Kumar Agarwalla WHEPP-9 Jan 2006 — p.25/32



Ams3, determination (contd.)

Error estimation —

— we have considered an uncertainty of 2% in the
knowledge of the number of ions in the storage ring

= we have assumed a 10% fluctuation in the cross
section, o

= the statistical error has been added to the above In
quadrature

= we have neglected nuclear effects

Sanjib Kumar Agarwalla WHEPP-9 Jan 2006 — p.25/32



0,3 measurement
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Figure O: Variation of the number of events with 6,5 for v (left) and v

(right) for a 5-year run. Here, Ams3, is chosen + (—) for v (D).
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13 measurement (contd.)

Precision measurement of {3 —

= sin® 26,3 can be probed down to 0.001

= the estimated 30 errors on ;3 measured to be 1°(5°)

are 106 (£237) with § = 0° and Am32, > 0 for neutrinos
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13 measurement (contd.)

Precision measurement of {3 —
= sin® 26,3 can be probed down to 0.001

= the estimated 30 errors on ;3 measured to be 1°(5°)
are 106 (£237) with § = 0° and Am32, > 0 for neutrinos

= for v with Am3, < 0 the fluctuations are fg;gi (f%;i)
around 1°(5°) at 3¢ level

— the 1o error of Am3, translates to uncertainties of *0-3,

—0.4°
(F07°) at 6,5 = 5° for a v (7) beam with normal (inverted)
hierarchy
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boost .vs. hierarchy
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Figure /. The sensitivity in the hierarchy measurement as a function of

v for neutrinos (anti-neutrinos) is shown in the left (right) panel.
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boost .vs. precision in 6,3
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Figure 8: variation of precision in the measurement of #5 with v at 30
level for v with Amz, > 0 (left) and o with Am3, < 0 (right).
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013, 0 degeneracy
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Figure O: Showing the degeneracy between 013 and § with sin? 26,3

= 0.001 and 0 = 0° as input values.
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Some comments

e In principle, the long baseline beta beam experiment
can narrow down the permitted range of Am3,.

e However, it is very likely that this improvement will be
achieved in the meanwhile by other experiments.
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Conclusions

e We have discussed the prospects of obtaining
iInformation on the mixing angle ¢;3 and the sign of

Am3, using the proposed ICAL detector at INO with a
high + beta beam source at CERN.
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Conclusions

e We have discussed the prospects of obtaining
iInformation on the mixing angle ¢;3 and the sign of
Am3, using the proposed ICAL detector at INO with a
high + beta beam source at CERN.

e The performance of the CERN - INO baseline is quite
significant in comparison with other baselines avoiding
the issue of degeneracy.

e It appears that such a combination of a high intensity
Ve, Ue SOUrce and a magnetized iron detector is
well-suited for this purpose.
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