Neutrino mass hierarchy and θ_{13} with a magic baseline Beta Beam experiment

Sanjib Kumar Agarwalla

sanjib@mri.ernet.in

Harish-Chandra Research Institute, Allahabad, India work done in collaboration with

Sandhya Choubey, Amitava Raychaudhuri and Abhijit Samanta

Phys. Lett. B629 (2005) 33-40 & hep-ph/0610333

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.1/22

- Unsolved Issues
- **Golden Channel**", $P_{e\mu}$
- **"**Eight-fold" degeneracy
- "Magic Baseline"
- **Solution** CERN based β -beam source
- India-Based Neutrino Observatory (INO)
- **D** Results
- **Conclusions**

Solution The sign of Δm_{31}^2 $(m_3^2 - m_1^2)$ is not known. Neutrino mass spectrum can be direct or inverted hierarchical

Solution Only an upper limit on $\sin^2 2\theta_{13}$ (< 0.17 at 3σ) exists

Solution The CP phase (δ_{CP}) is unconstrained

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.3/22

The appearance probability $(\nu_e \rightarrow \nu_\mu)$ in matter, upto second order in the small parameters $\alpha \equiv \Delta m_{21}^2 / \Delta m_{31}^2$ and $\sin 2\theta_{13}$,

$$\begin{aligned} \mathcal{P}_{e\mu} &\simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2} \\ &+ \alpha \sin 2\theta_{13} \xi \sin \delta \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \\ &+ \alpha \sin 2\theta_{13} \xi \cos \delta \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})} \\ &+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}; \end{aligned}$$

where $\Delta \equiv \Delta m_{31}^2 L/(4E)$, $\xi \equiv \cos \theta_{13} \sin 2\theta_{21} \sin 2\theta_{23}$, and $\hat{A} \equiv \pm (2\sqrt{2}G_F n_e E)/\Delta m_{31}^2$.

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.4/22

Eight-fold Degeneracy

 $(\theta_{13}, \delta_{CP})$ intrinsic degeneracy

 \square ($sgn(\Delta m_{31}^2), \delta_{CP}$) degeneracy

 $(\theta_{23}, \pi/2 - \theta_{23}) \text{ degeneracy}$

\Rightarrow severely deteriorates the sensitivity

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.5/22

If one chooses : $sin(\hat{A}\Delta) = 0$

The δ_{CP} dependence disappears from $P_{e\mu}$

Golden channel enables a clean determination of θ_{13} and $sgn(\Delta m_{31}^2)$

The first non-trivial solution : $\sqrt{2}G_F n_e L = 2\pi$ (indep of E)

- \square Isoscalar medium of constant density ρ : $L_{\rm magic}[{\rm km}] \approx 32725/\rho[{\rm gm/cm}^3]$

Solution According to PREM, the "magic baseline"

 $L_{\text{magic}} = 7690 \text{ km}$

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 -p.6/22

CERN - INO Long Baseline

$L_{\rm CERN-INO} = 7152 \text{ km}$

- The longer baseline captures a matter-induced contribution to the neutrino parameters, essential for probing the sign of Δm_{31}^2
- The CERN INO baseline, close to the 'magic' value, ensures essentially no dependence of the final results on δ_{CP} . This 'magic' value is independent of E
- This permits a clean measurement of θ_{13} avoiding the degeneracy issues which plague other baselines

Resonance in matter effect

The very long CERN - INO baseline provides an excellent avenue to pin-down matter induced contributions

In particular, a resonance occurs at

$$E_{res} \equiv \frac{|\Delta m_{31}^2|\cos 2\theta_{13}}{2\sqrt{2}G_F N_e}$$
$$= 6.1 \text{ GeV}$$

with $|\Delta m_{31}^2| = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{13} = 0.1$ and $\rho_{av} = 4.13 \text{ gm/cc}$ (PREM) for the baseline of 7152 km

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.8/22

Transition probability for different baselines Normal .vs. Inverted hierarchy $\sin^2 2\theta_{13} = 0.1$ & all other osc. param. are fixed to their best-fit

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.9/22

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.10/22

What is Beta Beam?

A pure, intense, collimated beam of ν_e or $\bar{\nu}_e$, essentially background free

■ ν_e and $\bar{\nu}_e$ beams may also be produced at the same time in the set-up

Origin : beta decay of completely ionized, radioactive ions circulating in a storage ring. No contamination of other types of neutrinos

Some positive features

- **Solution** Known energy spectrum
- Image: High intensity and low systematic errors
- In High Lorentz boost of the parent ions \Rightarrow better collimation and higher energy of beam
- Can be produced with existing CERN facilities or planned upgrades
- Solution Both ν_e and $\bar{\nu}_e$ beams can run simultaneously in the storage ring. The boost factors are fixed by their e/m ratio
- S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 -p.12/22

Beta Beam : Ion sources

Ion	τ (s)	E_0 (MeV)	f	Decay fraction	Beam
18_{10} Ne	2.41	3.92	820.37	92.1%	$ u_e$
6_2 He	1.17	4.02	934.53	100%	$\overline{ u}_e$
$\frac{8}{5}\mathbf{B}$	1.11	14.43	600684.26	100%	$ u_e $
⁸ ₃ Li	1.20	13.47	425355.16	100%	$\bar{ u}_e$

Comparison of different source ions

Low- γ design, useful decays in case of anti-neutrinos can be 2.9×10^{18} /year and for neutrinos 1.1×10^{18} /year

Larger total end-point energy, E_0 is preferred

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.13/22

Boosted on-axis spectrum of ν_e and $\bar{\nu}_e$ at the far detector assuming no oscillation

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.14/22

- A magnetized Iron calorimeter (ICAL) detector with excellent efficiency of charge identification (~ 95%) and good energy determination
- Preferred location is <u>Singara (PUSHEP)</u> in the Nilgiris (near Bangalore), 7152 km from CERN
- A 50 kton Iron detector
- Solution Signal is the muon track ($\nu_e \rightarrow \nu_\mu$ channel)
- Energy threshold is around 800 MeV

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.15/22

Best-fit values

$$|\Delta m_{31}^2| = 2.5 \times 10^{-3} \text{ eV}^2$$

 $\sin^2 2\theta_{23} = 1.0$
 $\Delta m_{21}^2 = 8.0 \times 10^{-5} \text{ eV}^2$
 $\sin^2 \theta_{12} = 0.31$
 $\delta_{CP} = 0$

Chosen benchmark values of oscillation parameters, except $\sin^2 2\theta_{13}$

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.16/22

Detector assumptions

Total Mass	50 kton
Energy threshold	1.5 GeV
Detection Efficiency (ϵ)	60%
Charge Identification Efficiency (f_{ID})	95%

Detector characteristics used in the simulations

We assume a Gaussian energy resolution function with $\sigma = 0.15E$

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.17/22

Event Rates in INO-ICAL

Event rates

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.18/22

Event Rates (contd.)

Sensitivity to matter profile

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.19/22

Minimum value of $\sin^2 2\theta_{13}$ (true) as a function of γ at which the wrong hierarchy can be disfavored at the 90% and 3σ C.L. For ν_e ($\bar{\nu}_e$) true hierarchy is assumed normal (inverted) Marginalization over $|\Delta m_{31}^2|$, $\sin^2 2\theta_{23}$, δ_{CP} and $\sin^2 2\theta_{13}$

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.20/22

 $\sin^2 2\theta_{13}$ limit below which experiment is insensitive. For ν_e ($\bar{\nu}_e$) true hierarchy is assumed normal (inverted) Marginalization over $|\Delta m_{31}^2|$, $\sin^2 2\theta_{23}$ and δ_{CP}

S. K. Agarwalla DAE IIT, Kharagpur, India 11th Dec, 06 - p.21/22

- We have discussed the prospects of obtaining information on the mixing angle θ_{13} and the sign of Δm_{31}^2 using the proposed ICAL detector at INO with a Beta beam source at CERN
- The performance of the CERN INO baseline is quite significant in comparison with other baselines avoiding the issue of degeneracy
- It appears that such a combination of a high intensity $\nu_e, \bar{\nu}_e$ source and a magnetized iron detector is well-suited for this purpose