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The INO Detector is a proposed 50-100 KT magnetized Iron
Calorimeter , to be located in PUSHEP, in the Southern part of
India.

The INO Collaboration presently consists of about 60 people from
sixteen institutes and universities across India.

Work on the prototype, magnet design and detector R and D,
simulation,manpower recruitment and training is ongoing.A
detailed Interim Report is available on the INO website http:

WWW.ImsSc.res.in

The proposal is under review both domestically and by an

International panel and a final funding decision is expected very
soon.
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4.2 THEICAL DETECTOR 2l

» Magnetized calorimeter.

#® 140 horizontal iron plates each 6 cm thick, interspersed with

Glass RPC.
» Modular structure.
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The Detector . . I

Will fulfill the need of the MONOLITH detector proposed earlier for
Gran Sasso.

Technological capabilities for construction/fabrication exist within
the country, but sufficient trained manpower is a challenging goal
towards which more efforts are needed.

Estimated timescale from approval is 5 years for 50 KT, though
design may allow earlier operation of completed modules

Estimated cost Is about USD 100 million
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®» Height of peak is 2207 m. s

» Hydroelectric power project with access roads,large caverns at 500 m depth and
13 km of tunnels already adjoin the proposed site, thus Geotechnical knowledge of
area exists.

®» Few hours drive from Bangalore International Airport.

Raj Gandhi, NNNO6, Sep 21 2006, Seattle



Physics Capabillities of INQ. . I
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# [INO will essentially be an efficient muon detector with charge
identification capability. It has the potential to provide useful and
significant information on the following issues:

# Sharpen the precision in atmospheric oscillation parameters
and observe the elusive oscillatory dip and rise in the event
rate

» Determine the octant of 6535

» Observe distinct signatures of matter effects and the Mass
Hierarchy in Atmospheric Neutrinos

» Make much-needed measurements of VHE muons (10-300
TeV) via the pair meter technigue

# Test for CPT violation, Lorentz Invariance and the presence of
long-range forces
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Physics Capabillities of INQ. . I

#» In its second phase, INO can function as a detector for a neutrino
factory exploiting the rich physics potential possible with it due to
Its muon charge identification capability.

® |is distances both from CERN (7145 km) and from JHF (6556 km)
are close to the magic baseline distance of 7000 km
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Physics Capabillities of INQ. . I

#» In its second phase, INO can function as a detector for a neutrino
factory exploiting the rich physics potential possible with it due to
Its muon charge identification capability.

® |is distances both from CERN (7145 km) and from JHF (6556 km)
are close to the magic baseline distance of 7000 km

» Determination of the mass hierarchy

» Detect CP violation in the neutrino sector, in conjunction with
a second appropriately positioned detector.

# |mprove the precision on 6,3 considerably
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Measurements of Atmospheric Oscillation Parameters
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® Clean detection of L/ FE dip possible within about 2 years of running.
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Comparison with Long Baseline Experime:'s

® 3o spread ( Am?15 =2 x 1072 eV?, sin? A3 = 0.5).

|Am213| SiIl2 923

current 44% 39%
MINOS+CNGS 13% 39%
T2K 6% 23%
Nova 13% 43%
INO, 50 kton, 5 years 10% 30%

M. Lindner, hep-ph/0503101
Table refers to the older NOvA proposal;

the revised March 2005 NOvA detector is
expected to be competitive with T2K.
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Is 8,5 maximal?
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Measuring the Deviation d@ks; from maximality. . . I

®» The difference between U/D ratios for neutrinos and anti-neutrinos
IS sensitive to the deviation of 653 from maximality.
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Measuring the Deviation d@ks; from maximality. . . I

®» The difference between U/D ratios for neutrinos and anti-neutrinos
IS sensitive to the deviation of 653 from maximality.

» A non maximal 653 has important implications for model building.
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The Mass Hierarchy, its Significance and Detec:r' n

So far we only know |Am2, | and not its Sign
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The Mass Hierarchy. . I

#» The importance of the mass hierarchy lies in its capability to
discriminate between various types of models for unification, and thus in its
ability to narrow the focus of the quest for physics beyond the
Standard Model.

Raj Gandhi, NNNO6, Sep 21 2006, Seattle



The Mass Hierarchy. . I

#» The importance of the mass hierarchy lies in its capability to
discriminate between various types of models for unification, and thus in its
ability to narrow the focus of the quest for physics beyond the
Standard Model.

® A large class of GUTS use the Type | seesaw mechanism to unify
guarks and leptons. Several positive features are lost if in such
models the neutrino hierarchy is inverted rather than normal

Raj Gandhi, NNNO6, Sep 21 2006, Seattle



The Mass Hierarchy. . I

#» The importance of the mass hierarchy lies in its capability to
discriminate between various types of models for unification, and thus in its
ability to narrow the focus of the quest for physics beyond the
Standard Model.

® A large class of GUTS use the Type | seesaw mechanism to unify
guarks and leptons. Several positive features are lost if in such
models the neutrino hierarchy is inverted rather than normal

» Aninverted hierarchy on the other hand would generally require
m1, mo t0 be degenerate, hinting towards an additonal global symmetry

in the lepton sector.

Raj Gandhi, NNNO6, Sep 21 2006, Seattle



The Mass Hierarchy. . I

The importance of the mass hierarchy lies in its capability to
discriminate between various types of models for unification, and thus in its
ability to narrow the focus of the quest for physics beyond the
Standard Model.

A large class of GUTS use the Type | seesaw mechanism to unify
guarks and leptons. Several positive features are lost if in such
models the neutrino hierarchy is inverted rather than normal

An inverted hierarchy on the other hand would generally require
m1, mo t0 be degenerate, hinting towards an additonal global symmetry

in the lepton sector.

It would also favour theories utilising the Type Il seesaw mechanism
with additional Higgs triplets.

Raj Gandhi, NNNO6, Sep 21 2006, Seattle



The Mass Hierarchy. . I

The importance of the mass hierarchy lies in its capability to
discriminate between various types of models for unification, and thus in its
ability to narrow the focus of the quest for physics beyond the
Standard Model.

A large class of GUTS use the Type | seesaw mechanism to unify
guarks and leptons. Several positive features are lost if in such
models the neutrino hierarchy is inverted rather than normal

An inverted hierarchy on the other hand would generally require
m1, mo t0 be degenerate, hinting towards an additonal global symmetry

in the lepton sector.

It would also favour theories utilising the Type Il seesaw mechanism
with additional Higgs triplets.

The type of hierarchy impacts the effectiveness of leptogenesis in
most theoretical models.

Raj Gandhi, NNNO6, Sep 21 2006, Seattle
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R. Gandhi et al.,, Phys. Rev. Lett. 94, 051801 (2005); hep-ph/0411252
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Measuring the Up/Down Asymmet:'

D. Indumathi and M. Murthy,
hep-ph/0407336
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R. Gandhi et al.,, Phys. Rev. Lett. 94, 051801 (2005); hep-ph/0411252
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Results for an Iron Calorimeter type detector
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Results : Iron Calorimeter, 1000 kt-yr. I

L = 6000 to 9700 Km, E =5 to 10 GeV
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® Results for a iron calorimeter detectc

sin? 2613 X2in Xorin
® 2 analysis of ;~ eventin 24 L/E bins 500 ktyr 1000 kt yr
$» 15% energy and 15° angular resolution 0.05 27 3.7
$ 10% systematic error 0.1 6.6 8.9
® 85% efficiency . :
$ Marginalized over Am2,, sin? 013, sin? a3 Gandhi etal. work in progress.
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® Results for a iron calorimeter detectc

sin? 2613 X2in Xorin
® 2 analysis of ;~ eventin 24 L/E bins 500 ktyr 1000 kt yr
$» 15% energy and 15° angular resolution 0.05 27 3.7
$ 10% systematic error 0.1 6.6 8.9
® 85% efficiency . .
$ Marginalized over Am2,, sin? 013, sin? a3 Gandhi etal. work in progress.

9 mparison with water-Cerenkov r
Comparison with water-Cerenkov detecto Sin22015  x2. (6 Mtyr)
#® No charge sensitivity: N, = N,f + Ny 0.05 1.9
0.1 4.4

Gandbhi et al., hep-ph/0406145
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INO as a Detector for VHE Cosmic Ray Muons
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Why study VHE muons from CT

#» Such studies could help resolve an important open question
regarding the Cosmic Ray Spectrum, i.e. the origin of the knee.
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Why study VHE muons from Cﬂ7

#» Such studies could help resolve an important open question
regarding the Cosmic Ray Spectrum, i.e. the origin of the knee.

® These studies would be very useful for all UHE neutrino
telescopes like AMANDA, ICECUBE etc, since muons and
neutrinos at these energies constitute their most important
background. At present there is little or no data on the energy
spectrum of muons above ~ 10 TeV.

#® These studies would provide crucial data towards understanding
the prompt contribution to VHE muon fluxes

Raj Gandhi, NNNO6, Sep 21 2006, Seattle



The Pair Meter Techniq:'e

® Muon energy measurement methods which work well in the GeV
range (magnetic spectrometry or measuring Cerenkov radiation)
are rendered impractical in the TeV range primarily due to
requirements of size imposed by the combination of high energies

and a steeply falling spectrum.
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The Pair Meter Techniq:'e

® Muon energy measurement methods which work well in the GeV
range (magnetic spectrometry or measuring Cerenkov radiation)
are rendered impractical in the TeV range primarily due to
requirements of size imposed by the combination of high energies
and a steeply falling spectrum.

#® The pair meter technique skirts some of these difficulties by
relying on a somewhat indirect method, i.e. the measurements of
the energy and frequency of electron-positron pair cascades
produced by the passage of a high energy muon in dense matter.

® The cross section for eTe~ pair production by a muon with energy
E,, with energy transfer above a threshold £, grows as

In*(2m.E, /m, Fy), where m, and m, are the muon and electron
masses respectively.
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VHE muons entering INO in 5 year

Mumber of muons per sclid angle entering the detector in 5 vears
E0Tel™) | conv+TIG | conv TG FRES1 | PR32 | PRS3
1 1.035 = 107 | 1.03 = 107 [ 374561 | 55432 | 95489 | 136871
10 2436 51232 1204 2054 5341 10443
50 Tl 1ol T4 2365 431 1104
100 127 106 21 T3 134 337
200 22 15 & 22 41 129
3000 3 5 3 11 19 313
4000 4 2 2 &3 11 41
B0 2 1 1 4 ¥ 23
GO0 1.5 1 B 3 5 A0
T 1 B B 4 7.5 31
000 & 15 ! 1.5 3 13
2lalu G5 25 AT 1.25 2.5 10
1000 s 2 3 1 2 4
10000 025 003 0233 | 007 13 N

Tabkle 2: MNMumber of muons per sclid angle entering the detector owver B wears fo
of the entering muon, &,,.

R. Gandhi and S.Panda, hep-ph/0512179
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Cascade production above various thresholds by VHE m
.

Mumber of cascades per muon for different thresheolds £7 in GeV

£y £ 5 10 20 500 100 300 500 1000 [ 5000
1 6.1 .08 2.56 3.78

10 4026 | 1728 | 10,99 | 6.43 3.03 2.56

A0 8316 | 2.3 1728 | 1099 | 534 3.08

a1l 205 3858 | 28326 |[19.67 | 1089 (643 | 278 | 456

100 40758 | 5063 | 3858 | 2846 | 17.258 | 10989 (458 | 3.08 | 256
200 a13 ed.43 | 5063 | 3858 | 2530 | 1728|811 | 534 | 3.03
300 1213 73.3 53,49 [ 4542 | 30.8 2176 [ 1099 | 746 | 4,19
4010 16234 79896 | 6443 [B063 | 3506 (253 | 1339 933 | 534
500 20285 8533 | 6924 |[B489 | 3858 [ 2826|1545 | 10.99 | 643 | 256
500 2435 g9.85 | 73.3 5349 | 4158 [ 308 | 17.28 | 12.47 | 746 | 253
TO0 2341 94376 | Y683 (6164 | 4421 | 3305|1891 | 13.82 | 843 | 4.6
00 3246 G4r.a23 | rebe [ 6443 | 4656 [ 3506 | 204 | 15,06 | 933 | 474
Qo0 3654 10033 | 834.77 | 6695 | 4869 [ 369 | 21.76 | 16.21 | 1018 | 2.89
1000 | 4057 103,16 | 85.33 | 69.24 | BO63 | 3858 | 23.02 | 17.28 | 10.99 | 3.08
10000 | 40554 | 17484 | 151.24 | 149.38 | 103.16 | 8533 | 60.63 | 50.63 | 38.58 | 17.28

Table 3: MNumber of cacades abowe thresholds £y = 5, 10, 20, 50, 100, 300, 500, 1000, 5000 GeV

mucn. Here £, 1= the energy of the muon in TeV entering the detector, and £ Is its correspondi
energy 1n TeV at the surface of the earth, assuming it trasersed a depth of rock corresponding

] 2
3.5 = 10°gm/fem?. R. Gandhi and S. Panda, hep-ph/0512179
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Bounds on CPT/Lorentz Violation
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The Iron Calorimeter as an End- Detector for a Neutrino Fgcto
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The Iron Calorimeter as an End- Detector for a Beta Beam

Raj Gandhi, NNNO6, Sep 21 2006, Seattle



Physics from a Beta Beam. I

» The proximity to the magic baseline distance leads again to
physics uncluttered by CP degeneracies.

#® One obtains sensitivity to both the hierarchy and to 6.
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Beta Beam Results..
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events in 5 yr

Beta Beam results....
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To Sum Up...I

INO, a 50-100 kT magnetized iron calorimeter would usefully
buttress the presently planned program of neutrino experiments
worldwide.

Using atmospheric neutrinos, a 100 KT detector has the potential
to illuminate one of the most important guestions in neutrino
physics, the mass hierarchy

It would provide improved precision on atmospheric neutrino
parameters,improved bounds on CPT/Lorentz violation,crucial
data on VHE muons for the CR and PQCD communities and, in its
second phase, be an excellent end detector for neutrino

factories/beta beams.
At present INO, after an intensive feasibility study, is close to a
final funding decision.
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