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Calorimeter , to be located in PUSHEP, in the Southern part of
India.

The INO Collaboration presently consists of about 60 people from
sixteen institutes and universities across India.

Work on the prototype, magnet design and detector R and D,
simulation,manpower recruitment and training is ongoing.A
detailed Interim Report is available on the INO website http:

www.imsc.res.in

The proposal is under review both domestically and by an
International panel and a final funding decision is expected very
soon.
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The Detector

Magnetized calorimeter.

140 horizontal iron plates each 6 cm thick, interspersed with
Glass RPC.
Modular structure.
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The Detector. . .

Will fulfill the need of the MONOLITH detector proposed earlier for
Gran Sasso.
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The Detector. . .

Will fulfill the need of the MONOLITH detector proposed earlier for
Gran Sasso.

Technological capabilities for construction/fabrication exist within
the country, but sufficient trained manpower is a challenging goal
towards which more efforts are needed.

Estimated timescale from approval is 5 years for 50 kT, though
design may allow earlier operation of completed modules

Estimated cost is about USD 100 million

Raj Gandhi, NNN06, Sep 21 2006, Seattle – p.4/43



The Site

Height of peak is 2207 m.

Hydroelectric power project with access roads,large caverns at 500 m depth and
13 km of tunnels already adjoin the proposed site, thus Geotechnical knowledge of
area exists.

Few hours drive from Bangalore International Airport.
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Physics Capabilities of INO. . .

INO will essentially be an efficient muon detector with charge
identification capability. It has the potential to provide useful and
significant information on the following issues:
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INO will essentially be an efficient muon detector with charge
identification capability. It has the potential to provide useful and
significant information on the following issues:

Sharpen the precision in atmospheric oscillation parameters
and observe the elusive oscillatory dip and rise in the event
rate

Determine the octant of θ23

Observe distinct signatures of matter effects and the Mass
Hierarchy in Atmospheric Neutrinos

Make much-needed measurements of VHE muons (10-300
TeV) via the pair meter technique

Test for CPT violation, Lorentz Invariance and the presence of
long-range forces

Raj Gandhi, NNN06, Sep 21 2006, Seattle – p.6/43



Physics Capabilities of INO. . .

In its second phase, INO can function as a detector for a neutrino
factory exploiting the rich physics potential possible with it due to
its muon charge identification capability.

Its distances both from CERN (7145 km) and from JHF (6556 km)
are close to the magic baseline distance of 7000 km
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Physics Capabilities of INO. . .

In its second phase, INO can function as a detector for a neutrino
factory exploiting the rich physics potential possible with it due to
its muon charge identification capability.

Its distances both from CERN (7145 km) and from JHF (6556 km)
are close to the magic baseline distance of 7000 km

Determination of the mass hierarchy

Detect CP violation in the neutrino sector, in conjunction with
a second appropriately positioned detector.

Improve the precision on θ13 considerably
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Measurements of Atmospheric Oscillation Parameters
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L/E Dip

Clean detection of L/E dip possible within about 2 years of running.
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Comparison with Long Baseline Experiments

3σ spread ( ∆m2
13 = 2 × 10−3 eV2, sin2 θ23 = 0.5).

|∆m2
13| sin2 θ23

current 44% 39%

MINOS+CNGS 13% 39%

T2K 6% 23%

Nova 13% 43%

INO, 50 kton, 5 years 10% 30%

M. Lindner, hep-ph/0503101

Table refers to the older NOνA proposal;
the revised March 2005 NOνA detector is
expected to be competitive with T2K.
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Comparison with Long baseline Experiments
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Is θ23 maximal?
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Measuring the Deviation ofθ23 from maximality. . .

The difference between U/D ratios for neutrinos and anti-neutrinos
is sensitive to the deviation of θ23 from maximality.
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Measuring the Deviation ofθ23 from maximality. . .

The difference between U/D ratios for neutrinos and anti-neutrinos
is sensitive to the deviation of θ23 from maximality.

A non maximal θ23 has important implications for model building.
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Measuring the deviation ofθ23 from maximality

S. Choubey and P. Roy, hep-ph/0509197
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The Mass Hierarchy, its Significance and Detection

So far we only know |∆m2
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The Mass Hierarchy. . .

The importance of the mass hierarchy lies in its capability to
discriminate between various types of models for unification, and thus in its
ability to narrow the focus of the quest for physics beyond the
Standard Model.
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The importance of the mass hierarchy lies in its capability to
discriminate between various types of models for unification, and thus in its
ability to narrow the focus of the quest for physics beyond the
Standard Model.

A large class of GUTS use the Type I seesaw mechanism to unify
quarks and leptons. Several positive features are lost if in such
models the neutrino hierarchy is inverted rather than normal

An inverted hierarchy on the other hand would generally require
m1, m2 to be degenerate, hinting towards an additonal global symmetry

in the lepton sector.

It would also favour theories utilising the Type II seesaw mechanism

with additional Higgs triplets.

The type of hierarchy impacts the effectiveness of leptogenesis in
most theoretical models.
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Plot of Probabilities. . .
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Plot of Probabilities. . .
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Measuring the Up/Down Asymmetry

D. Indumathi and M. Murthy,
hep-ph/0407336
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Plot of Probabilities. . .
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Survival Probability :θ13 sensitivity. . .
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Results for an Iron Calorimeter type detector
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Results : Iron Calorimeter, 1000 kt-yr. . .
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Asymmetry in Up-Down Event Rates. . .

D. Indumathi and M.V.N. Murthy; hep-ph/0407336 Raj Gandhi, NNN06, Sep 21 2006, Seattle – p.24/43



Results : Iron Calorimeter, 1000 kt-yr. . .

8000 8500 9000 9500 10000 10500

L(Km)

8

10

12

14

N
µ-

Nµ-
v
(0.10) = 175

Nµ-
m

(0.05) = 179

Nµ-
m

(0.10) = 192

Nµ-
m

(0.20) = 223

L = 8000 to 10700 Km, E = 4 to 8 GeV 

∆31 = 0.002 eV
2

R. Gandhi et al., hep-ph/0411252

3 3.1 3.2 3.3 3.4

Log10L/E [Km/GeV]

0

5

10

15

20

N
µ-

Nµ-
v
(0.10) = 175

Nµ-
m

(0.05) = 179

Nµ-
m

(0.10) = 192

Nµ-
m

(0.20) = 223

L = 8000 to 10700 Km, E = 4 to 8 GeV 

∆31 = 0.002 eV
2

Raj Gandhi, NNN06, Sep 21 2006, Seattle – p.25/43



Results : Iron Calorimeter, 1000 kt-yr. . .
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Bin by bin χ2-analysis

Results for a iron calorimeter detector
χ2 analysis of µ− event in 24 L/E bins
15% energy and 15o angular resolution
10% systematic error

85% efficiency

Marginalized over ∆m2
31

, sin2 θ13, sin2 θ23

sin2 2θ13 χ2
min

χ2
min

500 kt yr 1000 kt yr
0.05 2.7 3.7
0.1 6.6 8.9

Gandhi et al. work in progress.
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The Importance of Detector Resolution

Petcov and Schwetz,hep-ph/0511277

Raj Gandhi, NNN06, Sep 21 2006, Seattle – p.27/43



Bin by bin χ2-analysis

Results for a iron calorimeter detector
χ2 analysis of µ− event in 24 L/E bins
15% energy and 15o angular resolution
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Comparison with water-Cerenkov detector
No charge sensitivity: Nµ = N+

µ + N−

µ

sin2 2θ13 χ2
min

(6 Mt yr)
0.05 1.9
0.1 4.4

Gandhi et al., hep-ph/0406145
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INO as a Detector for VHE Cosmic Ray Muons
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Why study VHE muons from CR?

Such studies could help resolve an important open question
regarding the Cosmic Ray Spectrum, i.e. the origin of the knee.
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Why study VHE muons from CR?

Such studies could help resolve an important open question
regarding the Cosmic Ray Spectrum, i.e. the origin of the knee.

These studies would be very useful for all UHE neutrino
telescopes like AMANDA, ICECUBE etc, since muons and
neutrinos at these energies constitute their most important
background. At present there is little or no data on the energy
spectrum of muons above ∼ 10 TeV.

These studies would provide crucial data towards understanding
the prompt contribution to VHE muon fluxes
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The Pair Meter Technique

Muon energy measurement methods which work well in the GeV
range (magnetic spectrometry or measuring Cerenkov radiation)
are rendered impractical in the TeV range primarily due to
requirements of size imposed by the combination of high energies
and a steeply falling spectrum.

Raj Gandhi, NNN06, Sep 21 2006, Seattle – p.30/43



The Pair Meter Technique

Muon energy measurement methods which work well in the GeV
range (magnetic spectrometry or measuring Cerenkov radiation)
are rendered impractical in the TeV range primarily due to
requirements of size imposed by the combination of high energies
and a steeply falling spectrum.

The pair meter technique skirts some of these difficulties by
relying on a somewhat indirect method, i.e. the measurements of
the energy and frequency of electron-positron pair cascades
produced by the passage of a high energy muon in dense matter.

Raj Gandhi, NNN06, Sep 21 2006, Seattle – p.30/43
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Muon energy measurement methods which work well in the GeV
range (magnetic spectrometry or measuring Cerenkov radiation)
are rendered impractical in the TeV range primarily due to
requirements of size imposed by the combination of high energies
and a steeply falling spectrum.

The pair meter technique skirts some of these difficulties by
relying on a somewhat indirect method, i.e. the measurements of
the energy and frequency of electron-positron pair cascades
produced by the passage of a high energy muon in dense matter.

The cross section for e+e− pair production by a muon with energy
Eµ with energy transfer above a threshold E0 grows as
ln2(2meEµ/mµE0), where mµ and me are the muon and electron
masses respectively.
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VHE Muon Detection in INO. . .

R. Gandhi and S. Panda , hep-ph/0512179
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VHE muons entering INO in 5 years

R. Gandhi and S.Panda, hep-ph/0512179
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Cascade production above various thresholds by VHE muons inINO

R. Gandhi and S. Panda, hep-ph/0512179
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Bounds on CPT/Lorentz Violation
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Sensitivity of Neutrino-Antineutrino Event Ratios to CPT.....

A. Datta et al, hep-ph/0408179
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The Iron Calorimeter as an End- Detector for a Neutrino Factory

Raj Gandhi, NNN06, Sep 21 2006, Seattle – p.37/43



The Utility of a “Magic Baseline Detector”

R. Gandhi and W. Winter, work in progress
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The Iron Calorimeter as an End- Detector for a Beta Beam

Raj Gandhi, NNN06, Sep 21 2006, Seattle – p.39/43



Physics from a Beta Beam. . .

The proximity to the magic baseline distance leads again to
physics uncluttered by CP degeneracies.

One obtains sensitivity to both the hierarchy and to θ13.
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Beta Beam Results...

S. Agarwalla, A. Raychaudhuri and A. Samanta, hep-ph 0505015
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Beta Beam results.....
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To Sum Up. . .

INO, a 50-100 kT magnetized iron calorimeter would usefully
buttress the presently planned program of neutrino experiments
worldwide.
Using atmospheric neutrinos, a 100 kT detector has the potential
to illuminate one of the most important questions in neutrino
physics, the mass hierarchy

It would provide improved precision on atmospheric neutrino
parameters,improved bounds on CPT/Lorentz violation,crucial
data on VHE muons for the CR and PQCD communities and, in its
second phase, be an excellent end detector for neutrino
factories/beta beams.
At present INO, after an intensive feasibility study, is close to a
final funding decision.
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