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With the accumulation of many years of solar and atmospheric neutrino oscillation data, the approximate form of the
3 � 3 neutrino mixing matrix is now known. What is not known is the (presumably Majorana) neutrino mass matrix�

ν itself. In this chapter, the approximate form of
�

ν is derived, leading to seven possible neutrino mass patterns:
three have the normal hierarchy, two have the inverse hierarchy, and two have three nearly degenerate masses. The
generalization of this to allow Ue3 �� 0 with maximal CP violation is also discussed. A specific automatic realization
of this

�
ν from radiative corrections of an underlying non-Abelian discrete A4 symmetry in the context of softly

broken supersymmetry is presented.
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With the recent addition of KamLAND (Kamioka
Liquid Scintillator Anti-Neutrino Detector) data1 to-
gether with the previous SNO (Sudbury Neutrino Ob-
servatory) neutral-current data2, the overall picture of
solar neutrino oscillations3 is becoming very clear.
Combined with the well-established atmospheric neu-
trino data4, the 3 � 3 neutrino mixing matrix is now
determined to a very good first approximation by�

νe

νµ
ντ �	� � cosθ 
 sinθ 0

sinθ �
� 2 cosθ �
� 2 
 1 ��� 2
sinθ �
� 2 cosθ �
� 2 1 �
� 2 � � ν1

ν2
ν3 ��������� (1)

where ν1 � 2 � 3 are assumed to be Majorana neutrino

mass eigenstates. In the above, sin2 2θatm � 1 is al-
ready assumed and θ is the solar mixing angle which
is now known to be large but not maximal5, i.e.
tan2 θ � 0 � 4. The Ue3 entry has been assumed zero
but it is only required experimentally to be small6, i.e.�
Ue3

���
0 � 16.

Denoting the masses of ν1 � 2 � 3 as m1 � 2 � 3, the solar
neutrino data2, 3 require that m2

2 � m2
1 with θ

�
π � 4,

and in the case of the favored large-mixing-angle
solution5 ,

∆m2
sol � m2

2 � m2
1 � 5 � 10 
 5 eV2 � ����� (2)

The atmospheric neutrino data4 require�
m2

3 � m2
1 � 2 � � 2 � 5 � 10 
 3 eV2 � ����� (3)

without deciding whether m2
3 � m2

1 � 2 or m2
3

�
m2

1 � 2.

The big question now is what the neutrino mass
matrix itself should look like. Of course it may be
obtained by using eq.1, i.e.�

ν��� c2m1 � s2m2 sc  m1 
 m2 ! �
� 2 sc  m1 
 m2 ! ��� 2
sc  m1 
 m2 ! �
� 2  s2m1 � c2m2 � m3 ! � 2  s2m1 � c2m2 
 m3 ! � 2
sc  m1 
 m2 ! �
� 2  s2m1 � c2m2 
 m3 ! � 2  s2m1 � c2m2 � m3 ! � 2 "����� (4)

where c # cos θ and s # sin θ . However this is not
very illuminating theoretically. Instead it has been
proposed7 that it be rewritten in the form�

ν �%$& a ' 2b ' 2c d d
d b a ' b
d a ' b b () �*����� (5)

To satisfy m2
2 � m2

1 for θ
�

π � 4, there are 2 cases to
be considered.
(I) For a ' 2b ' c � 0 and c

�
0,

m1 � a ' 2b ' c �,+ c2 ' 2d2 � ����� (6)

m2 � a ' 2b ' c ' + c2 ' 2d2 � ����� (7)

m3 � � a � ����� (8)

tanθ � + 2d �.- + c2 ' 2d2 � c / � ����� (9)

(II) For a ' 2b ' c
�

0 and c � 0,

m1 � a ' 2b ' c ' + c2 ' 2d2 �0����� (10)
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m2 1 a 2 2b 2 c 3�4 c2 2 2d2 576�6�6 (11)

m3 1 3 a 5 6�6�6 (12)

tanθ 1 8 4 c2 2 2d2 3 c 9�: 4 2d 6 6�6�6 (13)

Note that θ depends only on the ratio d : c, which
must be of order unity. This shows the advantage of
adopting the parametrization of eq.5. The constraints
of eqs.2 and 3 are then realized by the following 7
different conditions on a, b, and c.

(1) ;<; a 2 2b 2 c ;
3 4 c2 2 2d2 ;>=?; a 2 2b 2 c ;@=A; a ; ,
i.e. ;m1 ;@=B;m2 ;C=B;m3 ; .

(2) 4 c2 2 2d2 =D; a 2 2b 2 c ;E=F; a ; , i.e. ;m1 ;HG;m2 ;I=J;m3 ; .
(3) ; a 2 2b 2 c ;E= 4 c2 2 2d2 =D; a ; , i.e. ;m1 ;HG;m2 ;I=J;m3 ; .
(4) ; a ; 5 4 c2 2 2d2 =K; a 2 2b 2 c ; , i.e. ;m3 ;L=;m1 ;IGM;m2 ; .
(5) ; a ; 5 ; a 2 2b 2 c ;.= 4 c2 2 2d2, i.e. ;m3 ;L=;m1 ;IGM;m2 ; .
(6) 4 c2 2 2d2 =N;<; a 2 2b 2 c ;O3P; a ;<;Q=N; a ; , i.e.;m1 ;IGM;m2 ;@GR;m3 ; .
(7) ; a 2 2b 2 c ;S= 4 c2 2 2d2 GT; a ; , i.e. ;m1 ;SG;m2 ;IGM;m3 ; .

Cases (1) to (3) have the normal hierarchy. Cases (4)
and (5) have the inverse hierarchy. Cases (6) and (7)
have 3 nearly degenerate masses. The versatility of
eq.5 has clearly been demonstrated.

The above 7 cases encompass all models of the
neutrino mass matrix that have ever been proposed
which also satisfy eq.1. They are also very useful for
discussing the possibility of neutrinoless double beta
(ββ0ν ) decay in the context of neutrino oscillations8 .
The effective mass m0 measured in ββ0ν decay is; a 2 2b 2 2c ; . However, neutrino oscillations constrain; a 2 2b 2 c ; and 4 c2 2 2d2, as well as ; d : c ; . Using; a 2 2b 2 2c ; 1 ;<; a 2 2b 2 c ;VU	; c ;<;1 ;<; a 2 2b 2 c ;�U cos2θ 4 c2 2 2d2 ; 56�6�6 (14)

the following conditions on m0 are easily obtained:

8 1 9 m0 G sin2 θ ;m2 ;@G sin2 θ W ∆m2
sol
5X6�6�6 (15)8 2 9 m0 GM;m1 Y 2 ;C=JZ ∆m2

atm
5 6�6�6 (16)8 3 9 m0 G cos 2θ ;m1 Y 2 ;@= cos2θ Z ∆m2

atm
56�6�6 (17)8 4 9 m0 G[Z ∆m2

atm
5 6�6�6 (18)8 5 9 m0 G cos 2θ Z ∆m2

atm
5 6�6�6 (19)8 6 9 m0 GM;m1 Y 2 Y 3 ; 5 6�6�6 (20)8 7 9 m0 G cos 2θ ;m1 Y 2 Y 3 ; 6 6�6�6 (21)

If m0 is measured9 to be significantly larger than 0.05
eV, then only Cases (6) and (7) are allowed. However,
as eqs.20 and 21 show, the true mass of the three neu-
trinos is still subject to a two-fold ambiguity, which is
a well-known result.

The underlying symmetry of eq.5 which results in
Ue3 1 0 is its invariance under the interchange of νµ
and ντ . Its mass eigenstates are then separated accord-
ing to whether they are even 8 ν1 Y 2 9 or odd 8 ν3 9 under
this interchange, as shown by eq.1. To obtain Ue3 \1 0,
this symmetry has to be broken. One interesting pos-
sibility is to rewrite eq.5 as

]
ν 1_^` a 2 2b 2 2c d d a

d b a 2 b
d a a 2 b b bc 5d6�6�6 (22)

where a 5 b 5 c are real but d is complex. This reduces to
eq.4 if Im d 1 0, but if Im d \1 0, then Ue3 \1 0.

To obtain Ue3 in a general way, first rotate to
the basis spanned by νe

5 8 νµ 2 ντ 9�: 4 2, and 8 ντ 3
νµ 9�: 4 2, i.e.,

]
ν 1e^` a 2 2b 2 2c 4 2Re d 3 4 2iIm d4 2Re d a 2 2b 03 4 2iIm d 0 3 a bc 6�6�6 (23)

Whereas
]

ν is diagonalized by

U
]

νUT 1 ^` m1 0 0
0 m2 0
0 0 m3 bc 5 6�6�6 (24)
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ν
f †

ν is diagonalized by

U g f ν
f †

ν h U† i%jkmlm1 l 2 0 0
0 lm2 l 2 0
0 0 lm3 l 2 no[p p�p�p (25)

Heref
ν
f †

νirqts a u 2b u 2c v 2 u 2 w d w 2 2 x 2 s a u 2b u c v Re d 2 x 2i s a u b u c v Im d
2 x 2 s a u 2b u c v Re d s a u 2b v 2 u 2 s ℜd v 2 2iRe dIm dy 2 x 2i s a u b u c v Im d y 2iRe dℑd a2 u 2 s Im d v 2 zp�p�p (26)

To obtain Ue3 for small Im d, consider the matrix

A i f ν
f †

ν {}| a2 ~ 2 g Im d h 2 � I � p�p�p (27)

where I is the identity matrix. Now A is diagonalized
by U as well and Ue3 is simply given by

Ue3 � Ae3

Aee

i 2 � 2i g a ~ b ~ c h Im dg a ~ 2b ~ 2c h 2 { a2 ~ 2 g Re d h 2 p�p�p (28)

to a very good approximation and leads tog 1 h ��g 2 h ��g 3 h Ue3 � { � 2iIm d
a

� p�p�p (29)g 4 h ��g 6 h Ue3 � iIm d� 2b
� p�p�p (30)g 5 h Ue3 � � 2iIm d

c
� p�p�p (31)g 7 h Ue3 � � 2i g a ~ c h Im d

c2 { a2 ~ 2 g Re d h 2 p�p�p�p (32)

In all cases, the magnitude of Ue3 can be as large as
the present experimental limit6 of 0.16 and its phase is�

π � 2. Thus the CP violating effect in neutrino oscil-
lations is predicted to be maximal by eq.22, which is
a very desirable scenario for future long-baseline neu-
trino experiments.

The above analysis shows that for Ue3
i 0 and

sin2 2θatm
i 1, the seven cases considered cover all

possible patterns of the 3 � 3 Majorana neutrino mass
matrix, as indicated by present atmospheric and so-
lar neutrino data. Any successful model should pre-
dict eq.5 at least as a first approximation. One such
example already exists10, where b i c i d i 0 corre-
sponds to the non-Abelian discrete symmetry A4, i.e.
the finite group of the rotations of a regular tetrahe-
dron. This leads to Case (6), i.e. three nearly degener-
ate masses, with the common mass equal to that mea-
sured in ββ0ν decay. It has also been shown recently11

that starting with this pattern, the correct mass matrix,
i.e. eq.22 with the complex phase in the right place,
is automatically obtained with the most general appli-
cation of radiative corrections. In particular, if soft
supersymmetry breaking is assumed to be the origin
of these radiative corrections, then the neutrino mass
matrix is correlated with flavor violation in the slep-
ton sector, and may be tested in future collider exper-
iments.

Suppose that at some high energy scale, the
charged lepton mass matrix and the Majorana neutrino
mass matrix are such that after diagonalizing the for-
mer, i.e., f

l
i jk me 0 0

0 mµ 0
0 0 mτ

no � p�p�p (33)

the latter is of the formf
ν
i jk m0 0 0

0 0 m0
0 m0 0 no p p�p�p (34)

From the high scale to the electroweak scale, one-loop
radiative corrections will change

f
ν as follows:g f ν h i j � g f ν h i j

~ Rik g f ν h k j
~ g f ν h ikRT

k j � p�p�p (35)

where the radiative correction matrix is assumed to be
of the most general form, i.e.,

R i_jk ree reµ reτ
r �eµ rµµ rµτ
r �eτ r �µτ rττ

no p p�p�p (36)

Thus the observed neutrino mass matrix is given byf
ν
i m0

q 1 u 2ree reτ u r �eµ reµ u r �eτ
r �eµ u reτ 2rµτ 1 u rµµ u rττ
r �eτ u reµ 1 u rµµ u rττ 2r �µτ

z pp�p�p (37)

Now rµτ may be chosen real by absorbing its phase
into νµ and ντ . Then using the redefinitions:

δ0 � rµµ
~ rττ { 2rµτ � p�p�p (38)

δ � 2rµτ � p�p�p (39)

δ � � ree { 1
2

rµµ { 1
2

rττ { rµτ � p�p�p (40)

δ � � � r �eµ
~ reτ � p�p�p (41)

the neutrino mass matrix becomesf
ν
i m0

q 1 u δ0 u 2δ u 2δ � δ � � δ � � �
δ � � δ 1 u δ0 u δ
δ � � � 1 u δ0 u δ δ z �p�p�p (42)
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which is exactly that of eq.22. In other words, starting
with eq.34, the correct � ν is automatically obtained.
[To simplify eq.42 without any loss of generality, δ0
will be set equal to zero from here on.]

The successful derivation of eq.42 depends on
having eqs.33 and 34. To be sensible theoretically,
they should be maintained by a symmetry. At first
sight, it appears impossible that there can be a sym-
metry which allows them to coexist. Here is where
the non-Abelian discrete symmetry A4 comes into
play10. The key is that A4 has three inequivalent one-
dimensional representations 1, 1 � , 1 � � , and one three-
dimensional representation 3, with the decomposition

3 � 3 � 1 � 1 � � 1 � � � 3 � 3 � ����� (43)

This allows the following natural assignments of
quarks and leptons:�

ui � di � L � � νi � ei � L � 3 � ����� (44)

u1R � d1R � e1R � 1 � ����� (45)

u2R � d2R � e2R � 1 � � ����� (46)

u3R � d3R � e3R � 1 � � � ����� (47)

Heavy fermion singlets are then added11:

UiL � R � � DiL � R � � EiL � R � � NiR � 3 � ����� (48)

together with the usual Higgs doublet and new heavy
singlets:

�
φ � � φ 0 ��� 1 � χ0

i � 3 � ����� (49)

With this structure, charged leptons acquire an effec-
tive Yukawa coupling matrix ēiLe jRφ 0 which has 3 ar-
bitrary eigenvalues (because of the 3 independent cou-
plings to the 3 inequivalent one-dimensional represen-
tations) and for the case of equal vacuum expectation
values of χi, i.e.�

χ1 � � � χ2 � � � χ3 � � u � ����� (50)

the unitary transformation UL which diagonalizes � l
is given by

UL � 1�
3 �  1 1 1

1 ω ω2

1 ω2 ω ¡¢ � ����� (51)

where ω � e2πi £ 3. This implies that the effective neu-
trino mass operator, i.e. νiν jφ 0φ 0, is proportional to

UT
L UL � �  1 0 0

0 0 1
0 1 0 ¡¢ � ����� (52)

exactly as desired10, 11.
To derive eq.52, the validity of eq.50 has to be

proved. This is naturally accomplished in the context
of supersymmetry. Let χ̂i be superfields, then its su-
perpotential is given by

Ŵ � 1
2

Mχ

�
χ̂1χ̂1 � χ̂2χ̂2 � χ̂3χ̂3 � � hχ χ̂1χ̂2χ̂3 ������ (53)

Note that the hχ term is invariant under A4, a prop-
erty not found in SU

�
2 � or SU

�
3 � . The resulting scalar

potential is

V � ¤Mχ χ1 � hχ χ2χ3 ¤ 2 �	¤Mχ χ2 � hχ χ3χ1 ¤ 2�¥¤Mχ χ3 � hχ χ1χ2 ¤ 2 � ����� (54)

Thus a supersymmetric vacuum

�
V � 0 � exists for�

χ1 � � � χ2 � � � χ3 � � u �[¦ Mχ § hχ � ����� (55)

proving eq.50, with the important additional result
that the spontaneous breaking of A4 at the high scale
u does not break the supersymmetry.

To generate the proper radiative corrections which
will result in a realistic Majorana neutrino mass ma-
trix, A4 is assumed broken also by the soft supersym-
metry breaking terms. In particular, the mass-squared
matrix of the left sleptons will be assumed to be arbi-
trary. This allows rµτ to be nonzero through µ̃L ¦ τ̃L
mixing, from which the parameter δ may be evalu-
ated, as shown in Figs.1 and 2. For illustration, us-
ing the approximation that m̃2

1 ¨©¨ µ2 ¨©¨ M2
1 ª 2 � m̃2

2,
where µ is the Higgsino mass and M1 ª 2 are gaugino
masses, I find

δ � sin θ cos θ
16π2�¬« � 3g2

2 ¦ g2
1 � ln m̃2

1

µ2 ¦ 1
4

�
3g2

2 � g2
1 �®­ ln

m̃2
1

m̃2
2

¦ 1
2 ¯±° ������ (56)

Using ∆m2
32 � 2 � 5 � 10 ² 3 eV2 from the atmospheric

neutrino data, this implies that« ln m̃2
1

µ2 ¦ 0 � 3 ­ ln
m̃2

1

m̃2
2

¦ 1
2 ¯±° sinθ cosθ³ 0 � 535 ­ 0 � 4 eV

m0 ¯ 2 ������� (57)
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w̃νµ

ντ νµ

µ̃L τ̃L

´

φ 0
2 φ 0

2

Fig. 1 Wavefunction contribution to δ in supersymmetry.

w̃ φ̃2
νµ νµ

φ 0
2 φ 0

2

µ̃L τ̃L

´

Fig. 2 Vertex contribution to δ in supersymmetry.

To the extent that the factor on the left cannot be much
greater than unity, this means that m0 cannot be much
smaller than about 0.4 eV9.

In the presence of Im δ µ µ , as shown by eq.30,

Ue3 ¶ iIm δ µ µ·
2δ ¸ ¹�¹�¹ (58)

and the previous expressions for the neutrino mass
eigenvalues are still approximately valid with the re-
placement of δ µ by δ µIº¼» Im δ µ µ<½ 2 ¾ 2δ and of δ µ µ by
Re δ µ µ . There is also the relationship¿

∆m2
12

∆m2
32 À 2 ¶ ¿ δ µδ º	ÁUe3 Á 2 À 2 º 2

¿
Re δ µ µ

δ À 2 ¹ ¹�¹�¹ (59)

Using ∆m2
12 ¶ 5 ´ 10 Â 5 eV2 from solar neutrino data

and ÁUe3 Á�Ã 0 ¹ 16 from reactor neutrino data6, I find

Im δ µ µ Ã 8 ¹ 8 ´ 10 Â 4 » 0 ¹ 4 eV ¾ m0 ½ 2 ¸F¹�¹�¹ (60)

Re δ µ µ Ã 5 ¹ 5 ´ 10 Â 5 » 0 ¹ 4 eV ¾ m0 ½ 2 ¹F¹�¹�¹ (61)

In conclusion, recent experimental progress on
neutrino oscillations points to a neutrino mixing ma-
trix which can be understood in a systematic way7

in terms of an all-purpose neutrino mass matrix, i.e.
eq.5, and its simple extension, i.e. eq.22, to allow for
a nonzero and imaginary Ue3, i.e. eq.28. Seven pos-
sible cases have been identified, each with a different
prediction for ββ0ν decay, i.e. eqs.15 to 21. A spe-
cific example is that of an underlying A4 symmetry
at some high energy scale, which allows the observed
Majorana neutrino mass matrix to be derived from ra-
diative corrections. It has been shown11 that this auto-
matically leads to sin2 2θatm Ä 1 and a large (but not
maximal) solar mixing angle. Using neutrino oscil-
lation data, and assuming radiative corrections from
soft supersymmetry breaking, the effective mass mea-
sured in neutrinoless double beta decay is predicted to
be not much less than 0.4 eV.

This work was supported in part by the U. S. De-
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94ER40837.
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