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Notations

I G -a connected complex reductive algebraic group, B ⊂ G -a
Borel subgroup, T ⊂ B- a maximal torus. dim(T ) = l .

I C -center of G , Gad = G/C -corresponding semisimple adjoint
group.

I W -Weyl group of (G ,T ), Φ-root system of (G ,T ),
Φ+-positive roots, ∆ = {α1, . . . , αr}- simple roots, where r
is the semisimple rank of G .

I sα- simple reflection corresponding to α ∈ ∆ and
WI -subgroup of W generated by all sα for α ∈ I for I ⊂ ∆.

I W I - the set of minimal length coset representatives of the
parabolic subgroup WI for every I ⊂ ∆.

I C I := W ∆\I \ (
⋃

J(I W ∆\J).

I {fv : v ∈W ∆\I} an R(T̃ )W - basis for R(T̃ )W∆\I for I ⊂ ∆
defined by Steinberg.

I awv ,v ′-mult. struct. consts. of the basis {fv}.
I R(T̃ )I :=

⊕
v∈C I R(T̃ )W · fv .
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Regular Compactifications

X - equivariant compactification of G

X - smooth complete variety, G ⊂ X dense open subvariety,
(G ×G )×G → G (left/right multn. (g1, g2)γ = g1γg−1

2 ) extends
to X .

X - regular compactification of G if

X - G × G -equivariant compactification of G and
X - regular as a G × G -variety.

Regular G -variety⇒ X ⊃ X 0
G - dense G -orbit, X \ X 0

G - union of
normal crossing boundary divisors, Gx- the transversal
intersection of boundary divisors containing it, TxX/TxGx
contains dense orbit of Gx .
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Smooth complete toric varieties are exactly the regular
compactifications of the torus. For the adjoint group Gad , the
wonderful compactification Gad constructed by De Concini and
Procesi is the unique regular compactification of Gad with a unique
closed Gad × Gad -orbit.

Recall that there exists an exact sequence

1→ Z → G̃ := C̃ × G ss π−→G → 1 (1)

where Z is a finite central subgroup, C̃ is a torus and G ss is
semisimple and simply-connected. In particular, G̃ is factorial and
B̃ := π−1(B) and T̃ := π−1(T ) are respectively a Borel subgroup
and a maximal torus of G̃ .
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Equivariant K -theory

Theorem : X -nonsingular projective variety, T acts on X with
finitely many fixed points x1, . . . , xm and finitely many invariant
curves. Then the image of ι∗ : KT (X )→ KT (XT ) is
(f1, . . . , fm) ∈ R(T )m such that fi ≡ fj (mod (1− e−χ)) whenever
xi and xj lie in an invariant irreducible curve C and T -acts on C
through the character χ.

For a smooth projective complex G variety X we have the
following isomorphisms:

I R(T̃ )⊗
R(G̃)

K
G̃

(X ) ' K
T̃

(X ).

I K
G̃

(X ) ' K
T̃

(X )W .

I Z⊗
R(G̃)

K
G̃

(X ) ' K (X ).

where G̃ and T̃ act on X through the canonical surjections to G
and T respectively.
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Structure of regular embeddings

X -projective regular compactification of G .

T - smooth complete toric variety under the action of T × {1},
T is invariant under diag(W ).

F - fan associated to T is a smooth subdivision of the Weyl
chambers in X∗(T )⊗ R, W acts on F by reflection about the
Weyl chambers.

F+ - union of cones of F contained in the positive Weyl chamber

so that F = WF+. T
+

:= toric variety associated to F+.

The maximal cones F+(l) parametrize the closed G × G -orbits in
X each of which is isomorphic to G/B− × G/B. XT×T is
parametrized by F+(l)×W ×W .
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T × T -invariant curves in X :

For σ ∈ F+(l), Zσ-the corresponding closed orbit with base point
zσ.

(1) γ ⊂ Zσ and γ is conjugate in W ×W to a curve γ′ joining zσ
to (sα, 1)zσ or to (1, sα)zσ.

(2) γ is conjugate in W ×W to a curve γ′ joining zσ and
(sα, sα)zσ of the closed orbit Zσ, where γ′ 6⊂ Zσ. In this case, the
cone σ ∈ F+(l) has a facet orthogonal to α.

(3) γ is conjugate in W ×W to a projective line γ′ joining zσ and
zσ′ which are respectively the base points of distinct closed orbits
Zσ and Zσ′ . In this case, the cones σ and σ′ in F+(l) have a
common facet.
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Example of the wonderful compactification of PGL(2,C)
.
Let G = PGL(2,C) = SL(2,C)/±Id . Then the projective space
P(M(2,C)) is the wonderful compactification of PGL(2,C), on
which the action of PGL(2,C)× PGL(2,C) by multiplication on
the left and on the right extends.

Let Eij denote the elementary matrix with 1 as (i , j)th entry and 0
elsewhere for 1 ≤ i , j ≤ 2. In this case the Weyl group is
W = {1 = Id , sα = −E12 + E21}, and T ' P1 consists of the
diagonal matrices in P(M(2,C)).

Further, the unique closed PGL(2,C)× PGL(2,C)-orbit consists of
the matrices of rank 1 in P(M(2,C)) and is isomorphic to
PGL(2,C)× PGL(2,C)/(B− × B+), choosing as base point the
matrix E11. Furthermore, PGL(2,C) is the open orbit with base
point Id .

The four T × T fixed points of P(M(2,C)) are: E11,
E12 = (1, sα)E11, E21 = (sα, 1)E11 and E22 = (sα, sα)E11. Further,
the T × T curves are the following:

(1) aE11 + bE12; aE11 + bE21; aE12 + bE22; aE21 + bE22.
(2) aE11 + bE22 and aE12 + bE21.

where aEij + bEpq ∀ a, b ∈ C, denotes the projective line joining
Eij and Epq in P(M(2,C)) for i , j , p, q ∈ {1, 2}.
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Pictorially we can view these curves as follows:

E11 E12

E21 E22

Thus we see that the curves of type (1) lie entirely in the unique
closed orbit, whereas the curves of type (2) meet the open orbit.
Moreover, N = T t (sα, 1)T is the union of diagonal and the
antidiagonal matrices. Hence N contains only the curves of type
(2) and does not contain the curves of type (1).
In this case we do not have curves of type (3) since there is a
unique closed G × G -orbit.
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K -theory of regular embeddings

By restricting to the T̃ × T̃ -fixed points (w ,w ′) · zσ for
w ,w ′ ∈W , followed by taking W ×W -invariants and further
using the exact sequence

1→ diag(T̃ )→ T̃ × T̃ → T̃ → 1, (2)

we get

Theorem: K
G̃×G̃ (X ) consists in all families (fσ)(σ ∈ F+(l)) of

elements of R(T̃ × {1})⊗ R(diag(T̃ )) such that

(i) (1, sα)fσ(u, v) ≡ fσ(u, v) (mod (1− e−α(u))) whenever α ∈ ∆
and the cone σ ∈ F+(l) has a facet orthogonal to α.

(ii) fσ ≡ fσ′ (mod (1− e−χ(u))) whenever χ ∈ X ∗(T̃ ) and the
cones σ and σ′ ∈ F+(l) have a common facet orthogonal to
χ.
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Equivariant line bundles on X

I The group of isomorphism classes of G̃ × G̃ -linearised line
bundles on X is isomorphic to PL(F+)-piecewise linear
functions on F+.

I Lh-the line bundle on X corresponding to
h = (hσ)σ∈F+ ∈ PL(F+), B̃− × B̃ acts on the fibre Lh |zσ by
the character (hσ,−hσ).

I Lh := Lh |T+ is a T̃ × T̃ -linearized line bundle on the toric

variety T
+

corresponding to h ∈ PL(F+). In particular,
T̃− × T̃ acts on the fibre Lh |zσ by the character hσ.
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Equivariant K -ring of X

Theorem:

K
G̃×G̃ (X ) =

⊕
I⊆∆

∏
α∈I

(1− eα(u)) · K
T̃

(T
+

)⊗ R(T̃ )I . (3)

The above direct sum is a free K
T̃

(T
+

)⊗ R(G̃ )-module of rank
|W | with basis

{
∏
α∈I

(1− eα(u))⊗ fv : v ∈ C I and I ⊆ ∆}.

Moreover, we can identify the component
K
T̃
⊗ 1 ⊆ K

T̃
(Z )⊗ R(T̃ )W in the above direct sum with the

subring of K
G̃×G̃ (X ) generated by Pic

G̃×G̃ (X ).



Some additional notations

I cK : R(T̃ ) = K
G̃

(G/B)→ K (G/B)- char. hom.

I λI := cK (
∏
α∈I (1− e−α)), I ⊆ ∆.

I fv := cK (fv )

I cw
v ,v ′ := cK |R(G̃)

(awv ,v ′) ∈ Z

I R(T
+

) := Z⊗
R(G̃)

K
T̃

(T
+

) = Z⊗
R(G̃)

K
G̃

(G̃ ×T̃ T
+

) =

K (G̃ ×T̃ T
+

) = K (G ×B T
+

) where B acts on T
+

via its

quotient T . In other words, R(T
+

) is the Grothendieck ring

of the toric bundle over G/B associated with T
+

.
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Ordinary K -ring of X

Theorem:
K (X ) '

⊕
v∈W
R(T

+
) · γv (4)

where
γv := 1⊗ [f v ] ∈ R(T

+
)⊗ K (G/B)I (5)

for v ∈ C I for every I ⊆ ∆. Here R(T
+

) can be identified with
the subring of K (X ) generated by Pic(X ). Further, the above
isomorphism is a ring isomorphism, where

γv · γv ′ :=
∑

J⊆(I∪I ′)

∑
w∈C J

(λI∩I ′ · λ(I∪I ′)\J) · cw
v ,v ′ · γw . (6)



Comparison with equivariant K -ring of the wonderful
compactification

We have a canonical G̃ × G̃ -equivariant surjective morphism
f : X → Gad .

The ring K
G̃×G̃ (X ) gets the structure of an algebra over the ring

K
G̃×G̃ (Gad), by pull-back of equivariant vector bundles along f .

Theorem: The ring K
G̃×G̃ (X ) has the following presentation as a

K
G̃×G̃ (Gad)-algebra

K
G̃×G̃ (X ) =

K
G̃×G̃ (Gad)[X±1

j : ρj ∈ F+(1)]

J
(7)

where J is the ideal in K
G̃×G̃ (Gad)[X±1

j : ρj ∈ F+(1)] generated by

the elements XF for F /∈ F+ and (
∏
ρj∈F+(1) X

<u,vj>
j )− [Lu]

G̃×G̃
for u ∈ X ∗(T ).
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Comparison with the ordinary K -ring of the wonderful
compactification

The ring K (X ) gets the structure of an algebra over the ring
K (Gad), via pull-back of vector bundles along f .

Theorem: The ring K (X ) has the following presentation as a
K (Gad)-algebra:

K (X ) =
K (Gad)[X±1

j : ρj ∈ F+(1)]

I
(8)

where I is the ideal in K (Gad)[X±1
j : ρj ∈ F+(1)] generated by the

elements XF for F /∈ F+ and (
∏
ρj∈F+(1) X

<u,vj>
j )− [Lu] for

u ∈ X ∗(T ). Here [Lu] denotes the class of the line bundle Lu in
K (Gad).
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Geometric interpretation

I X - projective regular compactification of Gad .

I Z - corresponding Tad - toric variety associated to a smooth
subdivision of the positive Weyl chamber.

I On Gad , we have a canonical G ss × G ss -linearized line bundle
Lαi which admits a section si whose zero locus is the
boundary divisor Di for 1 ≤ i ≤ r .

I P- the principal Tad = Gr
m-bundle associated to

⊕
1≤i≤r Lαi

over Gad

I π : P → Gad is G ss × G ss -equivariant for the canonical
G ss × G ss -action on Gad .

Theorem: The ring KG ss×G ss (X ) as a KG ss×G ss (Gad)-algebra and
K (X ) as a K (Gad)-algebra are respectively isomorphic to the
G ss × G ss -equivariant and ordinary Grothendieck ring of the toric
bundle P ×Tad

Z over Gad .
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