# Equivariant *K*-theory of group compactifications: further developments

#### V.Uma

Indian Institute of Technology, Chennai

January 21, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 G-a connected complex reductive algebraic group, B ⊂ G -a Borel subgroup, T ⊂ B- a maximal torus. dim(T) = I.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- G-a connected complex reductive algebraic group, B ⊂ G -a Borel subgroup, T ⊂ B- a maximal torus. dim(T) = I.
- ► C-center of G, G<sub>ad</sub> = G/C-corresponding semisimple adjoint group.

- G-a connected complex reductive algebraic group, B ⊂ G -a Borel subgroup, T ⊂ B- a maximal torus. dim(T) = I.
- ► C-center of G, G<sub>ad</sub> = G/C-corresponding semisimple adjoint group.
- W-Weyl group of (G, T), Φ-root system of (G, T), Φ<sup>+</sup>-positive roots, Δ = {α<sub>1</sub>,..., α<sub>r</sub>}- simple roots, where r is the semisimple rank of G.

- G-a connected complex reductive algebraic group, B ⊂ G -a Borel subgroup, T ⊂ B- a maximal torus. dim(T) = I.
- ► C-center of G, G<sub>ad</sub> = G/C-corresponding semisimple adjoint group.
- W-Weyl group of (G, T), Φ-root system of (G, T), Φ<sup>+</sup>-positive roots, Δ = {α<sub>1</sub>,..., α<sub>r</sub>}- simple roots, where r is the semisimple rank of G.
- s<sub>α</sub>- simple reflection corresponding to α ∈ Δ and
   W<sub>I</sub>-subgroup of W generated by all s<sub>α</sub> for α ∈ I for I ⊂ Δ.

- G-a connected complex reductive algebraic group, B ⊂ G -a Borel subgroup, T ⊂ B- a maximal torus. dim(T) = I.
- ► C-center of G, G<sub>ad</sub> = G/C-corresponding semisimple adjoint group.
- W-Weyl group of (G, T), Φ-root system of (G, T), Φ<sup>+</sup>-positive roots, Δ = {α<sub>1</sub>,..., α<sub>r</sub>}- simple roots, where r is the semisimple rank of G.
- ►  $s_{\alpha}$  simple reflection corresponding to  $\alpha \in \Delta$  and  $W_I$ -subgroup of W generated by all  $s_{\alpha}$  for  $\alpha \in I$  for  $I \subset \Delta$ .
- W<sup>I</sup>- the set of minimal length coset representatives of the parabolic subgroup W<sub>I</sub> for every I ⊂ Δ.

- G-a connected complex reductive algebraic group, B ⊂ G -a Borel subgroup, T ⊂ B- a maximal torus. dim(T) = I.
- ► C-center of G, G<sub>ad</sub> = G/C-corresponding semisimple adjoint group.
- W-Weyl group of (G, T), Φ-root system of (G, T), Φ<sup>+</sup>-positive roots, Δ = {α<sub>1</sub>,..., α<sub>r</sub>}- simple roots, where r is the semisimple rank of G.
- s<sub>α</sub>- simple reflection corresponding to α ∈ Δ and
   W<sub>I</sub>-subgroup of W generated by all s<sub>α</sub> for α ∈ I for I ⊂ Δ.
- W<sup>I</sup>- the set of minimal length coset representatives of the parabolic subgroup W<sub>I</sub> for every I ⊂ Δ.

• 
$$C' := W^{\Delta \setminus I} \setminus (\bigcup_{J \subsetneq I} W^{\Delta \setminus J}).$$

- G-a connected complex reductive algebraic group, B ⊂ G -a Borel subgroup, T ⊂ B- a maximal torus. dim(T) = I.
- ► C-center of G, G<sub>ad</sub> = G/C-corresponding semisimple adjoint group.
- W-Weyl group of (G, T), Φ-root system of (G, T), Φ<sup>+</sup>-positive roots, Δ = {α<sub>1</sub>,..., α<sub>r</sub>}- simple roots, where r is the semisimple rank of G.
- s<sub>α</sub>- simple reflection corresponding to α ∈ Δ and
   W<sub>I</sub>-subgroup of W generated by all s<sub>α</sub> for α ∈ I for I ⊂ Δ.
- W<sup>I</sup>- the set of minimal length coset representatives of the parabolic subgroup W<sub>I</sub> for every I ⊂ Δ.
- $\blacktriangleright C' := W^{\Delta \setminus I} \setminus (\bigcup_{J \subsetneq I} W^{\Delta \setminus J}).$
- {f<sub>v</sub> : v ∈ W<sup>Δ\I</sup>} an R(T̃)<sup>W</sup>- basis for R(T̃)<sup>W</sup><sub>Δ\I</sub> for I ⊂ Δ defined by Steinberg.

- G-a connected complex reductive algebraic group, B ⊂ G -a Borel subgroup, T ⊂ B- a maximal torus. dim(T) = I.
- ► C-center of G, G<sub>ad</sub> = G/C-corresponding semisimple adjoint group.
- W-Weyl group of (G, T), Φ-root system of (G, T), Φ<sup>+</sup>-positive roots, Δ = {α<sub>1</sub>,..., α<sub>r</sub>}- simple roots, where r is the semisimple rank of G.
- s<sub>α</sub>- simple reflection corresponding to α ∈ Δ and
   W<sub>I</sub>-subgroup of W generated by all s<sub>α</sub> for α ∈ I for I ⊂ Δ.
- W<sup>I</sup>- the set of minimal length coset representatives of the parabolic subgroup W<sub>I</sub> for every I ⊂ Δ.
- $C' := W^{\Delta \setminus I} \setminus (\bigcup_{J \subsetneq I} W^{\Delta \setminus J}).$
- {f<sub>v</sub> : v ∈ W<sup>Δ\I</sup>} an R(T̃)<sup>W</sup>- basis for R(T̃)<sup>W</sup><sub>Δ\I</sub> for I ⊂ Δ defined by Steinberg.

►  $a_{v,v'}^{w}$ -mult. struct. consts. of the basis  $\{f_v\}$ .

- G-a connected complex reductive algebraic group, B ⊂ G -a Borel subgroup, T ⊂ B- a maximal torus. dim(T) = I.
- ► C-center of G, G<sub>ad</sub> = G/C-corresponding semisimple adjoint group.
- W-Weyl group of (G, T), Φ-root system of (G, T), Φ<sup>+</sup>-positive roots, Δ = {α<sub>1</sub>,..., α<sub>r</sub>}- simple roots, where r is the semisimple rank of G.
- ►  $s_{\alpha}$  simple reflection corresponding to  $\alpha \in \Delta$  and  $W_I$ -subgroup of W generated by all  $s_{\alpha}$  for  $\alpha \in I$  for  $I \subset \Delta$ .
- W<sup>1</sup>- the set of minimal length coset representatives of the parabolic subgroup W<sub>l</sub> for every l ⊂ Δ.
- $\blacktriangleright C' := W^{\Delta \setminus I} \setminus (\bigcup_{J \subsetneq I} W^{\Delta \setminus J}).$
- {f<sub>v</sub> : v ∈ W<sup>Δ\I</sup>} an R(T̃)<sup>W</sup>- basis for R(T̃)<sup>W</sup><sub>Δ\I</sub> for I ⊂ Δ defined by Steinberg.

►  $a_{v,v'}^w$ -mult. struct. consts. of the basis  $\{f_v\}$ .

• 
$$R(\widetilde{T})_I := \bigoplus_{v \in C^I} R(\widetilde{T})^W \cdot f_v.$$

# **Regular Compactifications**

#### X- equivariant compactification of G

X- smooth complete variety,  $G \subset X$  dense open subvariety,  $(G \times G) \times G \rightarrow G$  (left/right multn.  $(g_1, g_2)\gamma = g_1\gamma g_2^{-1}$ ) extends to X.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

# **Regular Compactifications**

#### X- equivariant compactification of G

X- smooth complete variety,  $G \subset X$  dense open subvariety,  $(G \times G) \times G \rightarrow G$  (left/right multn.  $(g_1, g_2)\gamma = g_1\gamma g_2^{-1}$ ) extends to X.

#### X- regular compactification of G if

*X* -  $G \times G$ -equivariant compactification of *G* and *X* - **regular** as a  $G \times G$ -variety.

# **Regular Compactifications**

#### X- equivariant compactification of G

X- smooth complete variety,  $G \subset X$  dense open subvariety,  $(G \times G) \times G \rightarrow G$  (left/right multn.  $(g_1, g_2)\gamma = g_1\gamma g_2^{-1}$ ) extends to X.

#### X- regular compactification of G if

X -  $G \times G$ -equivariant compactification of G and X - **regular** as a  $G \times G$ -variety.

**Regular** G-variety  $\Rightarrow X \supset X_G^0$ - dense G-orbit,  $X \setminus X_G^0$ - union of normal crossing boundary divisors,  $\overline{Gx}$ - the transversal intersection of boundary divisors containing it,  $T_x X / T_x G x$  contains dense orbit of  $G_x$ .

Smooth complete toric varieties are exactly the regular compactifications of the torus. For the adjoint group  $G_{ad}$ , the **wonderful compactification**  $\overline{G_{ad}}$  constructed by De Concini and Procesi is the unique regular compactification of  $G_{ad}$  with a unique closed  $G_{ad} \times G_{ad}$ -orbit.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Smooth complete toric varieties are exactly the regular compactifications of the torus. For the adjoint group  $G_{ad}$ , the **wonderful compactification**  $\overline{G_{ad}}$  constructed by De Concini and Procesi is the unique regular compactification of  $G_{ad}$  with a unique closed  $G_{ad} \times G_{ad}$ -orbit.

Recall that there exists an exact sequence

$$1 \to \mathcal{Z} \to \widetilde{G} := \widetilde{C} \times G^{ss} \xrightarrow{\pi} G \to 1$$
 (1)

where  $\mathcal{Z}$  is a finite central subgroup,  $\widetilde{C}$  is a torus and  $G^{ss}$  is semisimple and simply-connected. In particular,  $\widetilde{G}$  is *factorial* and  $\widetilde{B} := \pi^{-1}(B)$  and  $\widetilde{T} := \pi^{-1}(T)$  are respectively a Borel subgroup and a maximal torus of  $\widetilde{G}$ .

### Equivariant K-theory

**Theorem :** X-nonsingular projective variety, T acts on X with finitely many fixed points  $x_1, \ldots, x_m$  and finitely many invariant curves. Then the image of  $\iota^* : K_T(X) \to K_T(X^T)$  is  $(f_1, \ldots, f_m) \in R(T)^m$  such that  $f_i \equiv f_j \pmod{(1 - e^{-\chi})}$  whenever  $x_i$  and  $x_j$  lie in an invariant irreducible curve C and T-acts on C through the character  $\chi$ .

## Equivariant K-theory

**Theorem :** X-nonsingular projective variety, T acts on X with finitely many fixed points  $x_1, \ldots, x_m$  and finitely many invariant curves. Then the image of  $\iota^* : K_T(X) \to K_T(X^T)$  is  $(f_1, \ldots, f_m) \in R(T)^m$  such that  $f_i \equiv f_j \pmod{(1 - e^{-\chi})}$  whenever  $x_i$  and  $x_j$  lie in an invariant irreducible curve C and T-acts on C through the character  $\chi$ .

For a smooth projective complex G variety X we have the following isomorphisms:

• 
$$R(\widetilde{T}) \otimes_{R(\widetilde{G})} K_{\widetilde{G}}(X) \simeq K_{\widetilde{T}}(X).$$

• 
$$K_{\widetilde{G}}(X) \simeq K_{\widetilde{T}}(X)^W$$
.

$$\blacktriangleright \mathbb{Z} \otimes_{R(\widetilde{G})} K_{\widetilde{G}}(X) \simeq K(X).$$

where  $\widetilde{G}$  and  $\widetilde{T}$  act on X through the canonical surjections to G and T respectively.

X-projective regular compactification of G.

X-projective regular compactification of G.

 $\overline{T}$  - smooth complete toric variety under the action of  $T \times \{1\}$ ,  $\overline{T}$  is invariant under diag(W).

X-projective regular compactification of G.

 $\overline{T}$  - smooth complete toric variety under the action of  $T \times \{1\}$ ,  $\overline{T}$  is invariant under diag(W).

 $\mathcal{F}$  - fan associated to  $\overline{\mathcal{T}}$  is a smooth subdivision of the Weyl chambers in  $X_*(\mathcal{T}) \otimes \mathbb{R}$ , W acts on  $\mathcal{F}$  by reflection about the Weyl chambers.

X-projective regular compactification of G.

 $\overline{T}$  - smooth complete toric variety under the action of  $T \times \{1\}$ ,  $\overline{T}$  is invariant under diag(W).

 $\mathcal{F}$  - fan associated to  $\overline{\mathcal{T}}$  is a smooth subdivision of the Weyl chambers in  $X_*(\mathcal{T}) \otimes \mathbb{R}$ , W acts on  $\mathcal{F}$  by reflection about the Weyl chambers.

$$\begin{split} \mathcal{F}_+ & \text{-union of cones of } \mathcal{F} \text{ contained in the positive Weyl chamber} \\ \text{so that } \mathcal{F} = \mathcal{W}\mathcal{F}_+. \quad \overline{\mathcal{T}}^+ := \text{toric variety associated to } \mathcal{F}^+. \end{split}$$

X-projective regular compactification of G.

 $\overline{T}$  - smooth complete toric variety under the action of  $T \times \{1\}$ ,  $\overline{T}$  is invariant under diag(W).

 $\mathcal{F}$  - fan associated to  $\overline{\mathcal{T}}$  is a smooth subdivision of the Weyl chambers in  $X_*(\mathcal{T}) \otimes \mathbb{R}$ , W acts on  $\mathcal{F}$  by reflection about the Weyl chambers.

 $\mathcal{F}_+$  - union of cones of  $\mathcal{F}$  contained in the positive Weyl chamber so that  $\mathcal{F} = W \mathcal{F}_+$ .  $\overline{\mathcal{T}}^+$ := toric variety associated to  $\mathcal{F}^+$ .

The maximal cones  $\mathcal{F}_+(I)$  parametrize the closed  $G \times G$ -orbits in X each of which is isomorphic to  $G/B^- \times G/B$ .  $X^{T \times T}$  is parametrized by  $\mathcal{F}_+(I) \times W \times W$ .

For  $\sigma \in \mathcal{F}_+(I)$ ,  $Z_\sigma$ -the corresponding closed orbit with base point  $z_\sigma$ .

(ロ)、(型)、(E)、(E)、 E) の(の)

For  $\sigma \in \mathcal{F}_+(I)$ ,  $Z_{\sigma}$ -the corresponding closed orbit with base point  $z_{\sigma}$ .

(1)  $\gamma \subset Z_{\sigma}$  and  $\gamma$  is conjugate in  $W \times W$  to a curve  $\gamma'$  joining  $z_{\sigma}$  to  $(s_{\alpha}, 1)z_{\sigma}$  or to  $(1, s_{\alpha})z_{\sigma}$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For  $\sigma \in \mathcal{F}_+(I)$ ,  $Z_{\sigma}$ -the corresponding closed orbit with base point  $z_{\sigma}$ .

(1)  $\gamma \subset Z_{\sigma}$  and  $\gamma$  is conjugate in  $W \times W$  to a curve  $\gamma'$  joining  $z_{\sigma}$  to  $(s_{\alpha}, 1)z_{\sigma}$  or to  $(1, s_{\alpha})z_{\sigma}$ .

(2)  $\gamma$  is conjugate in  $W \times W$  to a curve  $\gamma'$  joining  $z_{\sigma}$  and  $(s_{\alpha}, s_{\alpha})z_{\sigma}$  of the closed orbit  $Z_{\sigma}$ , where  $\gamma' \not\subset Z_{\sigma}$ . In this case, the cone  $\sigma \in \mathcal{F}_+(I)$  has a facet orthogonal to  $\alpha$ .

For  $\sigma \in \mathcal{F}_+(I)$ ,  $Z_{\sigma}$ -the corresponding closed orbit with base point  $z_{\sigma}$ .

(1)  $\gamma \subset Z_{\sigma}$  and  $\gamma$  is conjugate in  $W \times W$  to a curve  $\gamma'$  joining  $z_{\sigma}$  to  $(s_{\alpha}, 1)z_{\sigma}$  or to  $(1, s_{\alpha})z_{\sigma}$ .

(2)  $\gamma$  is conjugate in  $W \times W$  to a curve  $\gamma'$  joining  $z_{\sigma}$  and  $(s_{\alpha}, s_{\alpha})z_{\sigma}$  of the closed orbit  $Z_{\sigma}$ , where  $\gamma' \not\subset Z_{\sigma}$ . In this case, the cone  $\sigma \in \mathcal{F}_+(I)$  has a facet orthogonal to  $\alpha$ .

(3)  $\gamma$  is conjugate in  $W \times W$  to a projective line  $\gamma'$  joining  $z_{\sigma}$  and  $z_{\sigma'}$  which are respectively the base points of distinct closed orbits  $Z_{\sigma}$  and  $Z_{\sigma'}$ . In this case, the cones  $\sigma$  and  $\sigma'$  in  $\mathcal{F}_+(I)$  have a common facet.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Let  $G = PGL(2, \mathbb{C}) = SL(2, \mathbb{C})/\pm Id$ . Then the projective space  $\mathbb{P}(M(2, \mathbb{C}))$  is the wonderful compactification of  $PGL(2, \mathbb{C})$ , on which the action of  $PGL(2, \mathbb{C}) \times PGL(2, \mathbb{C})$  by multiplication on the left and on the right extends.

Let  $G = PGL(2, \mathbb{C}) = SL(2, \mathbb{C})/\pm Id$ . Then the projective space  $\mathbb{P}(M(2, \mathbb{C}))$  is the wonderful compactification of  $PGL(2, \mathbb{C})$ , on which the action of  $PGL(2, \mathbb{C}) \times PGL(2, \mathbb{C})$  by multiplication on the left and on the right extends.

Let  $E_{ij}$  denote the elementary matrix with 1 as (i, j)th entry and 0 elsewhere for  $1 \le i, j \le 2$ . In this case the Weyl group is  $W = \{1 = Id, s_{\alpha} = -E_{12} + E_{21}\}$ , and  $\overline{T} \simeq \mathbb{P}^1$  consists of the diagonal matrices in  $\mathbb{P}(M(2, \mathbb{C}))$ .

Let  $G = PGL(2, \mathbb{C}) = SL(2, \mathbb{C})/\pm Id$ . Then the projective space  $\mathbb{P}(M(2, \mathbb{C}))$  is the wonderful compactification of  $PGL(2, \mathbb{C})$ , on which the action of  $PGL(2, \mathbb{C}) \times PGL(2, \mathbb{C})$  by multiplication on the left and on the right extends.

Let  $E_{ij}$  denote the elementary matrix with 1 as (i, j)th entry and 0 elsewhere for  $1 \le i, j \le 2$ . In this case the Weyl group is  $W = \{1 = Id, s_{\alpha} = -E_{12} + E_{21}\}$ , and  $\overline{T} \simeq \mathbb{P}^1$  consists of the diagonal matrices in  $\mathbb{P}(M(2, \mathbb{C}))$ .

Further, the unique closed  $PGL(2, \mathbb{C}) \times PGL(2, \mathbb{C})$ -orbit consists of the matrices of rank 1 in  $\mathbb{P}(M(2, \mathbb{C}))$  and is isomorphic to  $PGL(2, \mathbb{C}) \times PGL(2, \mathbb{C})/(B^- \times B^+)$ , choosing as base point the matrix  $E_{11}$ . Furthermore,  $PGL(2, \mathbb{C})$  is the open orbit with base point Id.

Let  $G = PGL(2, \mathbb{C}) = SL(2, \mathbb{C})/\pm Id$ . Then the projective space  $\mathbb{P}(M(2, \mathbb{C}))$  is the wonderful compactification of  $PGL(2, \mathbb{C})$ , on which the action of  $PGL(2, \mathbb{C}) \times PGL(2, \mathbb{C})$  by multiplication on the left and on the right extends.

Let  $E_{ij}$  denote the elementary matrix with 1 as (i, j)th entry and 0 elsewhere for  $1 \le i, j \le 2$ . In this case the Weyl group is  $W = \{1 = Id, s_{\alpha} = -E_{12} + E_{21}\}$ , and  $\overline{T} \simeq \mathbb{P}^1$  consists of the diagonal matrices in  $\mathbb{P}(M(2, \mathbb{C}))$ .

Further, the unique closed  $PGL(2, \mathbb{C}) \times PGL(2, \mathbb{C})$ -orbit consists of the matrices of rank 1 in  $\mathbb{P}(M(2, \mathbb{C}))$  and is isomorphic to  $PGL(2, \mathbb{C}) \times PGL(2, \mathbb{C})/(B^- \times B^+)$ , choosing as base point the matrix  $E_{11}$ . Furthermore,  $PGL(2, \mathbb{C})$  is the open orbit with base point Id.

The four  $T \times T$  fixed points of  $\mathbb{P}(M(2,\mathbb{C}))$  are:  $E_{11}$ ,  $E_{12} = (1 \ s_2)E_{11}$ ,  $E_{21} = (s_2, 1)E_{11}$  and  $E_{22} = (s_2, s_2)E_{11}$ . Further

Let  $G = PGL(2, \mathbb{C}) = SL(2, \mathbb{C})/\pm Id$ . Then the projective space  $\mathbb{P}(M(2, \mathbb{C}))$  is the wonderful compactification of  $PGL(2, \mathbb{C})$ , on which the action of  $PGL(2, \mathbb{C}) \times PGL(2, \mathbb{C})$  by multiplication on the left and on the right extends.

Let  $E_{ij}$  denote the elementary matrix with 1 as (i, j)th entry and 0 elsewhere for  $1 \le i, j \le 2$ . In this case the Weyl group is  $W = \{1 = Id, s_{\alpha} = -E_{12} + E_{21}\}$ , and  $\overline{T} \simeq \mathbb{P}^1$  consists of the diagonal matrices in  $\mathbb{P}(M(2, \mathbb{C}))$ .

Further, the unique closed  $PGL(2, \mathbb{C}) \times PGL(2, \mathbb{C})$ -orbit consists of the matrices of rank 1 in  $\mathbb{P}(M(2, \mathbb{C}))$  and is isomorphic to  $PGL(2, \mathbb{C}) \times PGL(2, \mathbb{C})/(B^- \times B^+)$ , choosing as base point the matrix  $E_{11}$ . Furthermore,  $PGL(2, \mathbb{C})$  is the open orbit with base point Id.

The four  $T \times T$  fixed points of  $\mathbb{P}(M(2,\mathbb{C}))$  are:  $E_{11}$ ,  $E_{12} = (1 \ s_2)E_{11}$ ,  $E_{21} = (s_2, 1)E_{11}$  and  $E_{22} = (s_2, s_2)E_{11}$ . Further Pictorially we can view these curves as follows:

Pictorially we can view these curves as follows:



Pictorially we can view these curves as follows:



Thus we see that the curves of type (1) lie entirely in the unique closed orbit, whereas the curves of type (2) meet the open orbit. Moreover,  $\overline{N} = \overline{T} \sqcup (s_{\alpha}, 1)\overline{T}$  is the union of diagonal and the antidiagonal matrices. Hence  $\overline{N}$  contains only the curves of type (2) and does not contain the curves of type (1). In this case we do not have curves of type (3) since there is a unique closed  $G \times G$ -orbit.

#### K-theory of regular embeddings

By restricting to the  $\widetilde{T} \times \widetilde{T}$ -fixed points  $(w, w') \cdot z_{\sigma}$  for  $w, w' \in W$ , followed by taking  $W \times W$ -invariants and further using the exact sequence

$$1 \to \operatorname{diag}(\widetilde{T}) \to \widetilde{T} \times \widetilde{T} \to \widetilde{T} \to 1, \tag{2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

we get

#### K-theory of regular embeddings

By restricting to the  $\widetilde{T} \times \widetilde{T}$ -fixed points  $(w, w') \cdot z_{\sigma}$  for  $w, w' \in W$ , followed by taking  $W \times W$ -invariants and further using the exact sequence

$$1 \to \operatorname{diag}(\widetilde{T}) \to \widetilde{T} \times \widetilde{T} \to \widetilde{T} \to 1, \tag{2}$$

we get

**Theorem:**  $K_{\widetilde{G}\times\widetilde{G}}(X)$  consists in all families  $(f_{\sigma})(\sigma \in \mathcal{F}_{+}(I))$  of elements of  $R(\widetilde{T}\times\{1\})\otimes R(diag(\widetilde{T}))$  such that

- (i)  $(1, s_{\alpha})f_{\sigma}(u, v) \equiv f_{\sigma}(u, v) \pmod{(1 e^{-\alpha(u)})}$  whenever  $\alpha \in \Delta$ and the cone  $\sigma \in \mathcal{F}_{+}(I)$  has a facet orthogonal to  $\alpha$ .
- (ii)  $f_{\sigma} \equiv f_{\sigma'} \pmod{(1 e^{-\chi(u)})}$  whenever  $\chi \in X^*(\widetilde{T})$  and the cones  $\sigma$  and  $\sigma' \in \mathcal{F}_+(I)$  have a common facet orthogonal to  $\chi$ .

Equivariant line bundles on X

► The group of isomorphism classes of G̃ × G̃-linearised line bundles on X is isomorphic to PL(F<sub>+</sub>)-piecewise linear functions on F<sub>+</sub>.

#### Equivariant line bundles on X

- ► The group of isomorphism classes of G̃ × G̃-linearised line bundles on X is isomorphic to PL(F<sub>+</sub>)-piecewise linear functions on F<sub>+</sub>.
- ▶  $\mathcal{L}_h$ -the line bundle on X corresponding to  $h = (h_\sigma)_{\sigma \in \mathcal{F}_+} \in PL(\mathcal{F}_+), \ \widetilde{B}^- \times \widetilde{B}$  acts on the fibre  $\mathcal{L}_h \mid_{z_\sigma}$  by the character  $(h_\sigma, -h_\sigma)$ .

#### Equivariant line bundles on X

- ► The group of isomorphism classes of G̃ × G̃-linearised line bundles on X is isomorphic to PL(F<sub>+</sub>)-piecewise linear functions on F<sub>+</sub>.
- $\mathcal{L}_h$ -the line bundle on X corresponding to  $h = (h_\sigma)_{\sigma \in \mathcal{F}_+} \in PL(\mathcal{F}_+), \ \widetilde{B}^- \times \widetilde{B}$  acts on the fibre  $\mathcal{L}_h \mid_{z_\sigma}$  by the character  $(h_\sigma, -h_\sigma)$ .
- $L_h := \mathcal{L}_h |_{\overline{T}^+}$  is a  $\widetilde{T} \times \widetilde{T}$ -linearized line bundle on the toric variety  $\overline{T}^+$  corresponding to  $h \in PL(\mathcal{F}_+)$ . In particular,  $\widetilde{T}^- \times \widetilde{T}$  acts on the fibre  $L_h |_{z_\sigma}$  by the character  $h_{\sigma}$ .

Equivariant K-ring of X

#### Theorem:

$$\mathcal{K}_{\widetilde{G}\times\widetilde{G}}(X) = \bigoplus_{I\subseteq\Delta}\prod_{\alpha\in I} (1-e^{\alpha(u)})\cdot \mathcal{K}_{\widetilde{T}}(\overline{T}^+)\otimes R(\widetilde{T})_I.$$
(3)

The above direct sum is a free  $K_{\widetilde{T}}(\overline{T}^+) \otimes R(\widetilde{G})$ -module of rank |W| with basis

$$\{\prod_{\alpha\in I}(1-e^{\alpha(u)})\otimes f_{\mathsf{v}}: \ \mathsf{v}\in \mathsf{C}^{\mathsf{I}} \ \mathsf{and} \ \mathsf{I}\subseteq \Delta\}.$$

Moreover, we can identify the component  $K_{\widetilde{T}} \otimes 1 \subseteq K_{\widetilde{T}}(Z) \otimes R(\widetilde{T})^W$  in the above direct sum with the subring of  $K_{\widetilde{G} \times \widetilde{G}}(X)$  generated by  $Pic_{\widetilde{G} \times \widetilde{G}}(X)$ .

• 
$$c_{\mathcal{K}}: R(\widetilde{T}) = \mathcal{K}_{\widetilde{G}}(G/B) \to \mathcal{K}(G/B)$$
- char. hom.

• 
$$c_{\mathcal{K}} : R(\widetilde{T}) = \mathcal{K}_{\widetilde{G}}(G/B) \to \mathcal{K}(G/B)$$
- char. hom.  
•  $\overline{\lambda}_I := c_{\mathcal{K}}(\prod_{\alpha \in I} (1 - e^{-\alpha})), I \subseteq \Delta$ .  
•  $\overline{f_v} := c_{\mathcal{K}}(f_v)$ 

▶ 
$$c_{K} : R(\widetilde{T}) = K_{\widetilde{G}}(G/B) \to K(G/B)$$
- char. hom.  
▶  $\overline{\lambda}_{I} := c_{K}(\prod_{\alpha \in I}(1 - e^{-\alpha})), I \subseteq \Delta$ .  
▶  $\overline{f_{v}} := c_{K}(f_{v})$   
▶  $c_{v,v'}^{w} := c_{K} \mid_{R(\widetilde{G})} (a_{v,v'}^{w}) \in \mathbb{Z}$   
▶  $\mathcal{R}(\overline{T}^{+}) := \mathbb{Z} \otimes_{R(\widetilde{G})} K_{\widetilde{T}}(\overline{T}^{+}) = \mathbb{Z} \otimes_{R(\widetilde{G})} K_{\widetilde{G}}(\widetilde{G} \times \widetilde{T} \overline{T}^{+}) = K(\widetilde{G} \times \widetilde{T} \overline{T}^{+}) = K(G \times^{B} \overline{T}^{+})$  where *B* acts on  $\overline{T}^{+}$  via its quotient *T*. In other words,  $\mathcal{R}(\overline{T}^{+})$  is the Grothendieck ring of the toric bundle over *G/B* associated with  $\overline{T}^{+}$ .

Ordinary K-ring of X

#### Theorem:

$$K(X) \simeq \bigoplus_{\nu \in W} \mathcal{R}(\overline{T}^+) \cdot \gamma_{\nu} \tag{4}$$

where

$$\gamma_{\nu} := 1 \otimes [\overline{f}_{\nu}] \in \mathcal{R}(\overline{T}^{+}) \otimes \mathcal{K}(G/B)_{I}$$
(5)

for  $v \in C^{I}$  for every  $I \subseteq \Delta$ . Here  $\mathcal{R}(\overline{T}^{+})$  can be identified with the subring of K(X) generated by Pic(X). Further, the above isomorphism is a ring isomorphism, where

$$\gamma_{\nu} \cdot \gamma_{\nu'} := \sum_{J \subseteq (I \cup I')} \sum_{w \in C^J} (\overline{\lambda}_{I \cap I'} \cdot \overline{\lambda}_{(I \cup I') \setminus J}) \cdot c_{\nu,\nu'}^w \cdot \gamma_w.$$
(6)

▲□▶▲圖▶★≧▶★≧▶ ≧ のQ@

We have a canonical  $\widetilde{G} \times \widetilde{G}$ -equivariant surjective morphism  $f: X \to \overline{G_{ad}}$ .

・ロト・日本・モート モー うへぐ

We have a canonical  $\widetilde{G} \times \widetilde{G}$ -equivariant surjective morphism  $f: X \to \overline{G_{ad}}$ .

The ring  $K_{\widetilde{G}\times\widetilde{G}}(X)$  gets the structure of an algebra over the ring  $K_{\widetilde{G}\times\widetilde{G}}(\overline{G_{ad}})$ , by pull-back of equivariant vector bundles along f.

We have a canonical  $\widetilde{G} \times \widetilde{G}$ -equivariant surjective morphism  $f: X \to \overline{G_{ad}}$ .

The ring  $K_{\widetilde{G}\times\widetilde{G}}(X)$  gets the structure of an algebra over the ring  $K_{\widetilde{G}\times\widetilde{G}}(\overline{G_{ad}})$ , by pull-back of equivariant vector bundles along f.

**Theorem:** The ring  $\mathcal{K}_{\widetilde{G}\times\widetilde{G}}(X)$  has the following presentation as a  $\mathcal{K}_{\widetilde{G}\times\widetilde{G}}(\overline{G_{ad}})$ -algebra

$$\mathcal{K}_{\widetilde{G}\times\widetilde{G}}(X) = \frac{\mathcal{K}_{\widetilde{G}\times\widetilde{G}}(\overline{\mathcal{G}_{ad}})[X_j^{\pm 1}:\rho_j\in\mathcal{F}_+(1)]}{\mathfrak{J}}$$
(7)

where  $\mathfrak{J}$  is the ideal in  $\mathcal{K}_{\widetilde{G}\times\widetilde{G}}(\overline{G_{ad}})[X_j^{\pm 1}:\rho_j\in\mathcal{F}_+(1)]$  generated by the elements  $X_F$  for  $F\notin\mathcal{F}_+$  and  $(\prod_{\rho_j\in\mathcal{F}_+(1)}X_j^{< u,v_j>})-[\mathcal{L}_u]_{\widetilde{G}\times\widetilde{G}}$  for  $u\in X^*(\mathcal{T})$ . Comparison with the ordinary *K*-ring of the wonderful compactification

The ring K(X) gets the structure of an algebra over the ring  $K(\overline{G_{ad}})$ , via pull-back of vector bundles along f.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Comparison with the ordinary *K*-ring of the wonderful compactification

The ring K(X) gets the structure of an algebra over the ring  $K(\overline{G_{ad}})$ , via pull-back of vector bundles along f.

**Theorem:** The ring K(X) has the following presentation as a  $K(\overline{G_{ad}})$ -algebra:

$$K(X) = \frac{K(\overline{G_{ad}})[X_j^{\pm 1} : \rho_j \in \mathcal{F}_+(1)]}{\Im}$$
(8)

where  $\mathfrak{I}$  is the ideal in  $\mathcal{K}(\overline{G_{ad}})[X_j^{\pm 1}: \rho_j \in \mathcal{F}_+(1)]$  generated by the elements  $X_F$  for  $F \notin \mathcal{F}_+$  and  $(\prod_{\rho_j \in \mathcal{F}_+(1)} X_j^{< u, v_j >}) - [\mathcal{L}_u]$  for  $u \in X^*(\mathcal{T})$ . Here  $[\mathcal{L}_u]$  denotes the class of the line bundle  $\mathcal{L}_u$  in  $\mathcal{K}(\overline{G_{ad}})$ .

• X- projective regular compactification of  $G_{ad}$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- X- projective regular compactification of  $G_{ad}$ .
- Z- corresponding T<sub>ad</sub>- toric variety associated to a smooth subdivision of the positive Weyl chamber.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ► X- projective regular compactification of G<sub>ad</sub>.
- Z- corresponding T<sub>ad</sub>- toric variety associated to a smooth subdivision of the positive Weyl chamber.
- On G<sub>ad</sub>, we have a canonical G<sup>ss</sup> × G<sup>ss</sup>-linearized line bundle L<sub>αi</sub> which admits a section s<sub>i</sub> whose zero locus is the boundary divisor D<sub>i</sub> for 1 ≤ i ≤ r.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► X- projective regular compactification of G<sub>ad</sub>.
- Z- corresponding T<sub>ad</sub>- toric variety associated to a smooth subdivision of the positive Weyl chamber.
- On G<sub>ad</sub>, we have a canonical G<sup>ss</sup> × G<sup>ss</sup>-linearized line bundle L<sub>αi</sub> which admits a section s<sub>i</sub> whose zero locus is the boundary divisor D<sub>i</sub> for 1 ≤ i ≤ r.
- ► *P* the principal  $T_{ad} = \mathbb{G}_m^r$ -bundle associated to  $\bigoplus_{1 \le i \le r} \mathcal{L}_{\alpha_i}$ over  $\overline{G_{ad}}$

- ► X- projective regular compactification of G<sub>ad</sub>.
- Z- corresponding T<sub>ad</sub>- toric variety associated to a smooth subdivision of the positive Weyl chamber.
- On G<sub>ad</sub>, we have a canonical G<sup>ss</sup> × G<sup>ss</sup>-linearized line bundle L<sub>αi</sub> which admits a section s<sub>i</sub> whose zero locus is the boundary divisor D<sub>i</sub> for 1 ≤ i ≤ r.
- ► *P* the principal  $T_{ad} = \mathbb{G}_m^r$ -bundle associated to  $\bigoplus_{1 \le i \le r} \mathcal{L}_{\alpha_i}$ over  $\overline{G_{ad}}$

•  $\pi: P \to \overline{G_{ad}}$  is  $G^{ss} \times \overline{G^{ss}}$ -equivariant for the canonical  $G^{ss} \times \overline{G^{ss}}$ -action on  $\overline{G_{ad}}$ .

- ► X- projective regular compactification of G<sub>ad</sub>.
- Z- corresponding T<sub>ad</sub>- toric variety associated to a smooth subdivision of the positive Weyl chamber.
- On G<sub>ad</sub>, we have a canonical G<sup>ss</sup> × G<sup>ss</sup>-linearized line bundle L<sub>αi</sub> which admits a section s<sub>i</sub> whose zero locus is the boundary divisor D<sub>i</sub> for 1 ≤ i ≤ r.
- ► *P* the principal  $T_{ad} = \mathbb{G}_m^r$ -bundle associated to  $\bigoplus_{1 \le i \le r} \mathcal{L}_{\alpha_i}$ over  $\overline{G_{ad}}$
- ▶  $\pi: P \to \overline{G_{ad}}$  is  $G^{ss} \times \overline{G^{ss}}$ -equivariant for the canonical  $G^{ss} \times \overline{G^{ss}}$ -action on  $\overline{G_{ad}}$ .

**Theorem:** The ring  $K_{G^{ss} \times G^{ss}}(X)$  as a  $K_{G^{ss} \times G^{ss}}(\overline{G_{ad}})$ -algebra and K(X) as a  $K(\overline{G_{ad}})$ -algebra are respectively isomorphic to the  $G^{ss} \times G^{ss}$ -equivariant and ordinary Grothendieck ring of the **toric** bundle  $P \times_{T_{ad}} Z$  over  $\overline{G_{ad}}$ .

- E. Bifet, C. De Concini and C. Procesi, *Cohomology of regular embeddings*, Adv. Math. **82** (1990), 1-34.
- M. Brion, *The behaviour at infinity of the Bruhat decomposition*, Comment. Math. Helv. **73** (1998), 137-174.
- M. Brion, *Groupe de Picard et nombres caracteristiques des varietes spheriques*, Duke Math. J.**58**, No. 2, 397-424, 1989.
- C. De Concini and C. Procesi, *Complete symmetric varieties, II: Intersection theory*, Algebraic Groups and related topics (R. Hotta, ed.), Adv. Studies in Pure Math., 6, pp 481-513, North Holland, Amsterdam, 1985.
- A. S. Merkurjev, Comparison between equivariant and ordinary K-theory of algebraic varieties, Algebra i Anliz 9 (1997), 175-214. Translation in St. Petersburg Math. J. 9 (1998), 815-850.

R. Steinberg, On a theorem of Pittie, Topology 14 (1975), 173-177.

- P.Sankaran and V.Uma, Cohomology of toric bundles, Comment. Math. Helv., 78 (2003), 540-554. Errata, 79 (2004), 840-841.
- V. Uma, Equivariant K-theory of compactifications of algebraic groups, Transformation Groups **12** (2007), 371-406.
- V. Uma, Equivariant K-theory of group compactifications: further developments, Izv. Math (to appear).
- G.Vezzosi and A.Vistoli, *Higher algebraic K-theory for actions of diagonalizable groups*, Invent. Math. **153** (2003), 1-44.