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1. Abstract

We investigate a construction which associates a finite von Neumann algebra
M(Γ, µ) to a finite weighted graph (Γ, µ). This also yields a ‘natural’ example
of a Fock-type model of an operator with a free Poisson distribution.

Pleasantly, but not surprisingly, the von Neumann algebra associated to to a
‘flower with n petals’ is the group von Neumann algebra of the free group on n
generators.

In general, the algebra M(Γ, µ) is a free product, with amalgamation over a
finite-dimensional abelian subalgebra corresponding to the vertex set, over
algebras associated to subgraphs ‘with one edge’ (actually a pair of dual edges).
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2. Definitions

1 von Neumann algebra : A *-closed subalgebra M of B(H) satisfying: (a)
M is closed under strong (= pointwise) convergence of sequences - i.e., if
xn ∈ M, xnξ → xξ ∀ξ ∈ H ⇒ x ∈ M, or equivalently, (b) M = (M ′)′.

2 A functional τ on an algebra A is said to be
a trace if it satisfies τ(xy) = τ(yx) ∀x , y ∈ A.
positive if A is a *-algebra and τ(x∗x) ≥ 0 ∀x ∈ A.
faithful if τ(x∗x) = 0⇒ x = 0.

3 A non-commutative *-probability space is a pair (A, τ) of a unital
*-algebra A and a positive linear functional τ on A satisfying τ(1) = 1.

4 A finite von Neumann algebra in standard form is a von Neumann
algebra M ⊂ B(H) which admits a cyclic unit vector ξ such that the
equation τ(x) = 〈xξ, ξ〉 defines a faithful tracial state on M.

5 Slide 6 will use terms from Voiculescu’s free probability theory.
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3. Weighted graphs

By a weighted graph we mean a tuple Γ = (V ,E , µ), where:

V is a (finite) set of vertices;

E is a (finite) set of edges, equipped with ‘source’ and ‘range’ maps
s, r : E → V and ‘(orientation) reversal’ invoution map E 3 e 7→ ẽ ∈ E
with (s(e), r(e)) = (r(ẽ), s(ẽ)); and

µ : V → (0,∞) is a ‘weight or spin function’ so normalised that∑
u∈V µ

2(v) = 1

Let Pn(Γ) denote the vector space with basis Pn(Γ) = {[ξ] : ξ is a path of
length n in Γ}. We think of a path ξ = ξ1ξ2 · · · ξn as the ‘concatenation
product’ where ξi denotes the i-th edge of ξ.

We write FΓ = ⊕n≥0Pn(Γ) for the indicated direct sum, and equip it with this

multiplication: if [ξ] ∈ Pm(Γ), [η] ∈ Pn(Γ), then [ξ]#[η] =
∑min(m,n)

k=0 [ζk ],

where [ζk ] ∈ Pm+n−2k is defined by

[ζk ] =

{
µ(r(ξm)
µ(r(ξm−k )

[ξ1ξ2 · · · ξm−kηk+1ηk+2 · · · ηn] if ξm−j+1 = η̃j∀1 ≤ j ≤ k

0 otherwise
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µ : V → (0,∞) is a ‘weight or spin function’ so normalised that∑
u∈V µ

2(v) = 1

Let Pn(Γ) denote the vector space with basis Pn(Γ) = {[ξ] : ξ is a path of
length n in Γ}. We think of a path ξ = ξ1ξ2 · · · ξn as the ‘concatenation
product’ where ξi denotes the i-th edge of ξ.

We write FΓ = ⊕n≥0Pn(Γ) for the indicated direct sum, and equip it with this

multiplication: if [ξ] ∈ Pm(Γ), [η] ∈ Pn(Γ), then [ξ]#[η] =
∑min(m,n)

k=0 [ζk ],

where [ζk ] ∈ Pm+n−2k is defined by

[ζk ] =

{
µ(r(ξm)
µ(r(ξm−k )

[ξ1ξ2 · · · ξm−kηk+1ηk+2 · · · ηn] if ξm−j+1 = η̃j∀1 ≤ j ≤ k

0 otherwise

V.S. Sunder IMSc, Chennai From graphs to free probabilityjoint work with Madhushree Basu and Vijay Kodiyalam



4. The trace τ

In particular, notice that P0(Γ) = {[v ] : v ∈ V }, and that if v = s(ξ),w = r(ξ)
for some [ξ] ∈ Pn, and if u1, u2 ∈ V , then [u1][ξ][u2] = δu1,vδu2,w [ξ]; and less
trivially, if [ξ] ∈ P1 and [η] ∈ Pm,m ≥ 1, then

[ξ]#[η] =


0 if r(ξ) 6= s(η)
[ξη1...ηm] if r(ξ) = s(η) but ξ 6= η̃1

[ξη1...ηm] + µ(r(ξ))
µ(s(ξ))

[η2 · · · ηm] if ξ = η̃1

We define φ : FΓ→ P0 by requiring that if [ξ] ∈ Pn, then

φ([ξ]) =

{
0 if n > 0
[ξ] if n = 0

and finally define
τ = µ2 ◦ φ

where we simply write µ2 for the linear functional on P0(Γ) which agrees with
µ2 on the basis P0(Γ).
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5. The non commutative probability space M(Γ, µ)

It is true1 that

1 (FΓ, τ) is a tracial non-commutative *-probability space, with [e]∗ = [ẽ];

2 the mapping y 7→ xy extends to a ∗-algebra representation
λ : FΓ→ L(L2(FΓ), τ); and

3 M(Γ, µ) = λ(FΓ))′′ ⊂ L(L2(FΓ), τ) is a finite von Neumann algebra in
standard form.

The definitions show that for [ξ], [η] ∈ ∪nPn(Γ), we have

τ([ξ][η]∗) = δξ,ηµ(r(ξ))µ(s(ξ)) ,

and hence, if we write (ξ) = (µ(s(ξ))µ(r(ξ)))−
1
2 [ξ], then:

{(ξ) : [ξ] ∈ ∪n≥0Pn(Γ)} is an orthonormal basis for H(Γ) = L2(FΓ, τ).

1see[KS2011]
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6. Examples

1 Suppose |V | = |E | = 1, say V = {v} and E = {e}. Then we must have
e = ẽ, s(e) = r(e) = v , µ(v) = 1,Pn = {[en]} and {ξn = (en) : n ≥ 0}
(where en = ee

n terms· · · e and e0 = v) is an orthonormal basis for H(Γ); and
the definitions show that x = λ(e) satisfies xξn = ξn+1 + ξn−1. Thus x is a
standard semi-circular element and M(Γ) = {x}′′ ∼= LZ.

2 Suppose |V | = 1, |E | = 2, say V = {v} and E = {e1, e2} suppose e2 = ẽ1.
Then we must have s(ej) = r(ej) = v , µ(v) = 1. Further {[e1], [e2]} is an
orthonormal basis for H2 = P1(Γ), and Pn(Γ) is isomorphic to ⊗nH2.
Thus H(Γ) may be identified with the full Fock space F(H2) and the
definitions show that x1 = λ([e1]) may be identified as x1 = l1 + l∗2 , where
the lj denote the standard creation operators. It follows that x1 is a
circular element and M(Γ) = {x1}′′ ∼= LF2.

3 Suppose |V | = 2, |E | = 2, say V = {v ,w} and E = {e, ẽ} with

s(e) = v , r(e) = w and µ(w) ≤ µ(v). Write ρ = µ(v)
µ(w)

(≥ 1). If we let

pv = λ([v ]), pw = λ([w ]), it follows that Hv = ran pv has an orthonormal
basis given by {(ηn) : n ≥ 0}, with (ηn) = [eẽeẽe · · · (n terms)] ∈ Pn while
Hw = ran pw has orthonormal basis {(ξn) : n ≥ 0} where
(ξn) = [ẽeẽe · · · (n terms)] ∈ Pn.
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Hw = ran pw has orthonormal basis {(ξn) : n ≥ 0} where
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µ(w)
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7. Examples (contd.)

By definition, M(Γ) = {x}′′ where x = λ([e]). Note that the operator x has a
matrix decomposition of the form

x =

[
0 t
0 0

]
with respect to the decomposition H(Γ) = Hv ⊕Hw , where t ∈ L(Hw ,Hv ) is
seen to be given by

t[ξn] = x [ξn]

= [e]#[ẽeẽe · · · (n terms)]

= [ηn+1] + ρ−1[ηn−1] ;

and hence,

t(ξn) = (µ(s(ξn)µ(r(ξn))−
1
2 t[ξn]

= (µ(w)µ(r(ξn))−
1
2

(
[ηn+1] + ρ−1[ηn−1]

)
= (ρ−1µ(v)µ(r(ηn±1))−

1
2

(
[ηn+1] + ρ−1[ηn−1]

)
= ρ

1
2 (ηn+1) + ρ−

1
2 (ηn−1)
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8. Examples (contd.)

It turns out that t∗t has has absolutely continuous spectrum. The proof of the
italicised statement involves some nice operator theory.

The above statement has two consequences:

1 if t = u|t| is the polar decomposition of t, then u maps Hw isometrically
onto the subspace M = ran t of Hv , and if z is the projection onto
Hv 	M then τ(z) = µ2(v)− µ2(w); and

2 {|t|}′′ ∼= LZ.

Since pv + pw = 1 and z ≤ pv , the definitions are seen to show that M(Γ, µ) is
isomorphic to C⊕M2(LZ)2 via the unique isomorphism which maps pv , pw , z , u
and |t|, respectively, to

(1,

(
1 0
0 0

)
), (0,

(
0 0
0 1

)
), (1,

(
0 0
0 0

)
), (0,

(
0 1
0 0

)
), and

(1,

(
0 0
0 a

)
) for some positive a with absolutely continuous spectrum which

generates LZ as a von Neumann algebra.

2The copy of C is absent if µ(v) = µ(w).
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9. Free Poisson variable

Sketch of proof:

1 t∗t leaves the ‘even subspace’ `2(2N) (and hence also its orthogonal
complement, the odd subspace `2(2N + 1)) invariant;

2 the restriction of t∗t to the odd subspace is s + (ρ+ ρ−1), where s is the
semi-circular operator of Example 1; and

3 the restriction of t∗t to the even subspace is s + (ρ+ ρ−1)− ρ−1p0, where
p0 is the projection onto δ0 - thus, it is a perturbation of a translate of the
semi-circular operator s by the rank one projection determined by the
vector whose associated scalar spectral spectral measure of s is the
standard semi-circular law.

4 the proof is completed by an analysis of the Cauchy transform of the
scalar spectral measure of such a perturbation, and using Stieltje’s
inversion formula; which analysis actually shows that this operator has a
free Poisson distribution in the vector state given by δ0.
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10. Amalgamated free products

For each dual pair e, ẽ of edges, write Ee = {e, ẽ}, so |Ee | ≤ 2. We shall write
Γe = (V ,Ee , µ) with source, range and reversal in Ee as in E . We have the
following theorem, whose proof we do not have the time to go into here.

Theorem

With the foregoing notation, we have:

M(Γ, µ) = ∗P0(Γ){M(Γe , µe) : {e, ẽ} ⊂ E} .

It follows from this theorem and our Example 2 that no matter how the
‘orientation reversal map’ e 7→ ẽ is defined on a graph Γ with 1 vertex and n
edges, then

M(Γ, µ) ≡ LFn

for the unique weighting µ on Γ.
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12. From the first section in [BKS]

There has been a serendipitous convergence of investigations being carried out
independently by us (Vijay and me) on the one hand, and by Guionnet, Jones
and Shlyakhtenko on the other - see [GJS1], [KS1], [KS2], [GJS2]. As it has
turned out, we have been providing independent proofs, from slightly different
viewpoints, of the same facts. Both the papers [KS2] and [GJS2], establish
that a certain von Neumann algebra associated to a graph is a free product
with amalgamation of a family of von Neumann algebras corresponding to
simpler graphs. The amalgamated product involved subgraphs indexed by
vertices in [KS2], while the subgraphs are indexed by edges in [GJS2]. This
paper was motivated by trying to understand how the proof of our result in
[KS2] was also drastically simplfied by considering edges rather than vertices.
......
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Bhowmick, ...

France: Georges Skandalis, Jean Renault, Saad Baaj; Damien Gaboriau, Cyril
Houdayer, Gilles Pisier, Eric Ricard Michael Puschnigg, Theo Banica, ...
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