
Integral representations for L-functions and
Hecke operators

Ravi Raghunathan

Indian Institute of Technology Bombay

Indo-French Conference, IMSc., Chennai
January 22, 2016



Introduction

The big picture

The main theorem

Applications

A sketch of the ideas of the proof of the main theorem



Automorphic L-functions

The main aim of this talk is to study the possible locations and
poles of L-functions (Dirichlet series) satisfying a functional
equation and having an Euler product.

Such L-functions typically arise from automorphic forms. The
Langlands conjectures further predict that these series are either
entire or that they have only a few poles at easily determined
locations (in many of the most interesting situations only at s = 0
and s = 1).

Establishing that L-functions are meromorphic and have functional
equations is not so easy. Proving precise holomorphy results is
even harder.

In this talk, we will describe a relatively elementary approach to
the second problem.
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The first example
The basic template for an automorphic L-function is the Riemann
ζ-function ζ(s) =

∑∞
n=1

1
ns which converges in the half-plane

Re(s) > 1.

It is known to have a meromorphic continuation to the whole
complex plane and to satisfy the functional equation

Z (s) = π−s/2Γ(s/2)ζ(s) = Z (1− s).

It also has an Euler product

ζ(s) =
∏
p

(
1

1− p−s

)
,

which converges absolutely for Re(s) > 1. Notice that the
denominators in the product are polynomials of degree 1 in p−s .

We have associated the coefficient αp = 1 of p−s to each prime
number p. It may be viewed as element in the torus GL1(Qp).
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Statutory homage (hommage obligatoire): The ∆ function

Let ∆(z) denote the Ramanujan cusp form of weight 12. More
explicitly, we recall that the τ -function is defined by

∞∑
n=1

τ(n)qn = q
∞∏

m=1

(1− qm)24.

If we set q = e2πiz , we can define

∆(z) =
∞∑
n=1

τ(n)e2πiz .

which can be viewed as a function on the upper half-plane. The
function τ(n) is multiplicative, i.e., τ(mn) = τ(m)τ(n), whenever
(m, n) = 1 (conjectured by Ramanujan in 1916 and proved by
Mordel shortly afterwards).

The function ∆(z) is an example of a cusp form (or more
generally, a modular form) of weight 12.
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Modular forms and Hecke operators

The group SL2(R) acts on the upper half-plane H and hence on
functions f : H→ C.

A modular form of weight k for Γ = SL2(Z) is a function
f : H→ C which satisfies the transformation rule

f (γ · z) = (cz + d)k f (z)

for every γ =

(
a b
c d

)
in SL2(Z) and which satisfies a growth

condition at the cusp infinity of Γ\H. One can make a similar
definition of a modular form for congruence subgroups Γ0(N) ⊂ Γ.

A consequence of γ “invariance” is that we have Fourier expansion

f (z) =
∞∑
n=0

ane
2πinz .

If a0 = 0, we say that f is a cusp form.
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Hecke operators

The space of modular forms of a given weight k for Γ0(N) is
denoted Mk(N). It is a finite dimensional space.

We can define a natural family (actually an algebra) of commuting
self-adjoint operators Tm, (m, n) = 1 which act on this space.
When m = p, a prime the action is given by

(Tp · f )(z) = f (pz) + p
k
2
−1

p−1∑
a=0

f

(
z + a

p

)
.

If f is a simultaneous eigenform for all the Hecke operators, and if

Tm · f = m1− k
2λm(f ), gives the eigenvalue, then it turns out that

the λm are multiplicative.
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Attaching L-series to a modular form

If we define an = n−(k−1)/2λ(n), it is a consequence of the
multiplicativity of the an that the Dirichlet series

D(s, πf ) :=
∞∑
n=1

an
ns

=
∏

p
1

(1−app−s+p−2s)

=
∏

p
1

(1−αpp−s)(1−α−1
p p−s)

Takeaway: To f we can associate a pair of complex numbers
(αp, α

−1
p ) for each prime number p. This pair can be thought of as

an element of the torus in GL2(C).

If f is a cusp form, the L-series is entire and satisfies a functional
equation

L(s, πf ) = (2π)−(s+ k−1
2

)Γ

(
s +

k − 1

2

)
D(s, πf ) = ikL(1− s, πf ).



Attaching L-series to a modular form

If we define an = n−(k−1)/2λ(n), it is a consequence of the
multiplicativity of the an that the Dirichlet series

D(s, πf ) :=
∞∑
n=1

an
ns

=
∏

p
1

(1−app−s+p−2s)

=
∏

p
1

(1−αpp−s)(1−α−1
p p−s)

Takeaway: To f we can associate a pair of complex numbers
(αp, α

−1
p ) for each prime number p. This pair can be thought of as

an element of the torus in GL2(C).

If f is a cusp form, the L-series is entire and satisfies a functional
equation

L(s, πf ) = (2π)−(s+ k−1
2

)Γ

(
s +

k − 1

2

)
D(s, πf ) = ikL(1− s, πf ).



Attaching L-series to a modular form

If we define an = n−(k−1)/2λ(n), it is a consequence of the
multiplicativity of the an that the Dirichlet series

D(s, πf ) :=
∞∑
n=1

an
ns

=
∏

p
1

(1−app−s+p−2s)

=
∏

p
1

(1−αpp−s)(1−α−1
p p−s)

Takeaway: To f we can associate a pair of complex numbers
(αp, α

−1
p ) for each prime number p. This pair can be thought of as

an element of the torus in GL2(C).

If f is a cusp form, the L-series is entire and satisfies a functional
equation

L(s, πf ) = (2π)−(s+ k−1
2

)Γ

(
s +

k − 1

2

)
D(s, πf ) = ikL(1− s, πf ).



Attaching L-series to a modular form

If we define an = n−(k−1)/2λ(n), it is a consequence of the
multiplicativity of the an that the Dirichlet series

D(s, πf ) :=
∞∑
n=1

an
ns

=
∏

p
1

(1−app−s+p−2s)

=
∏

p
1

(1−αpp−s)(1−α−1
p p−s)

Takeaway: To f we can associate a pair of complex numbers
(αp, α

−1
p ) for each prime number p. This pair can be thought of as

an element of the torus in GL2(C).

If f is a cusp form, the L-series is entire and satisfies a functional
equation

L(s, πf ) = (2π)−(s+ k−1
2

)Γ

(
s +

k − 1

2

)
D(s, πf ) = ikL(1− s, πf ).



The local Galois L-function
Let F denote a number field, v a place of F and Fv the completion
of F with respect to v .

WFv =

{
the Weil-Deligne group if Fv is p-adic

the Weil group if Fv is real or complex

Let πv an irreducible admissible representation of GLn(Fv ). Using
the Local Langlands Correspondence (due to Harris and Taylor):

πv  σFv (πv ),

where σFv (πv ) is an n-dimensional complex representation of WFv .
For each representation r of GLn(C), we define the local
L-function as follows:

L(s, πv , r) := L(s, (r ◦ σFv (πv )),

where the right hand side is the Galois L-function. It has the form
1/P0(qv )−s where qv is the cardinality of the residue field and P0

is a polynomial with P0(0) = 1.
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The standard L-function

An n-dimensional representation of WFv can be thought of as an
n-tuple of compex numbers α1,v , . . . , αn,v . For all but finitely
many non-archimedean places v , αi ,v 6= 0 for all 1 ≤ i ≤ n. These
are the unramified places and the the αi ,v Satake parameters of π.

When r is the standard representation, we simply write L(s, πv )
instead of L(s, πv , r). It has the form

L(s, πv ) =
∏
i

1

(1− αi ,vq
−s
v )

.

When v is archimedean, the L-function has the form

L(s, πv ) =
∏
i

Γ

(
s + αi ,v

2

)
.
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The exterior square L-functions
Two other important cases for this talk will be r = ∧2 and
r = Sym2, the exterior and symmetric square representations of
GLn(C).

At the finite unramified places, the exterior square L-function has
the form

L(s, πv ,∧2) =
∏

i ,j ,i<j

1

(1− αi ,vαj ,vq
−s
v )

.

At the other (finitely many) non-archimedean places, L(s, πv ,∧2)
will have the same form, but the polynomial in the denominator
maybe of lower degree in q−sv .

When v is archimedean, the L-function has the form

L(s, πv ,∧2) =
∏

i ,j ,i<j

Γ

(
s + αi ,v + αj ,v

2

)
.

We can write similar formulæ for L(s, πv ,Sym
2).
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Global representations and L-functions

Our primary objects of study will be the L-functions of global
admissible representation Π of GLn(AF ). One way such
representations arise are from cuspidal automorphic representations
π of GLn. For instance, every holomorphic eigenform gives rise to
such a representation (for n = 2).

More generally, we may think of Π as arising as a (restricted)
tensor product ⊗′vΠv of irreducible admissible representations Πv .
We will not necessarily know that Π is automorphic.

The global L-function is simply defined as a product of the local
L-functions:

L(s, π, r) =
∏
v

L(s, πv , r).

By our remarks above this is simply the product of finitely many
Γ-functions with a Dirichlet series.
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How to study global L-functions
The Langlands functoriality conjectures predict that when π is a
cuspidal automorphic representation, these global L-functions have
nice properties - holomorphy in C except possibly at a few easily
identified points, a functional equation and boundedness in vertical
strips.

Since the global L-function is defined as an Euler product, the
most one can usually prove is that it is convergent in some right
half-plane. To prove the other properties one needs some other
way of representing these L-functions. There are two successful
approaches.

The first is the Langlands-Shahidi method based on realising
quotients of some of these global L-functions L(s, π, r) in the
constant terms of suitable Eisenstein series.

The second method is the theory of integral representations. We
will need this theory only for the standard L-functions of GLn(AF ).
It involves expressing the L-function as a Mellin transform of a
suitable function on GLn(AF ).
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The hypotheses

Let Π = ⊗′Πv be a irreducible global admissible representation of
GLn(AF ) with a unitary automorphic central character ωΠ.
Suppose that L(s,Π) satisfies the following properties.

(C) The Dirichlet series D(s,Π) of L(s,Π) converges in some right
half-plane Re(s) > σ > 0.

(FNP) L(s,Π) is meromorphic on all of C with a finite number of
poles and is bounded in (lacunary) vertical strips.

(FE) The L-function satisfies a functional equation of the form

L(s,Π) = ABsL(1− s, Π̃),

where Π̃ is the representation contragredient to Π, and B > 0.
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The main theorem

Theorem
With L(s,Π) as above, we have

1. L(s,Π) has at most 2n poles (counted with multiplicity).

2. The locations of the possible poles can be recovered from the
Satake parameters at two unramified places.

3. If σ = 1, then the poles necessarily lie on the lines Re(s) = 0
and Re(s) = 1.

Note that the hypotheses have placed no restriction on the
number, nature and location of the poles. Only the finiteness of
their number has been assumed. The crucial point is that the
existence of an Euler product and Ramanujan bounds on the
average, preclude having poles in the critical strip.
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Refinements for n = 2 - Converse Theorems

Theorem
With L(s,Π) as above and n = 2 we have the following dichotomy.

1. L(s,Π) is entire or

2. L(s,Π) arises from an Eisenstein series (and hence has at
most four poles).

Corollary

Suppose L(s,Π⊗ χ) satisfies the hypotheses of the theorem for
each Hecke character χ unramified outside the set of places where
Π is ramified. Then Π is an automorphic representation.

This is a strengthening of the celebrated converse theorem of
Weil-Jacquet-Langlands using an improvement of
Piatetski-Shapiro. We no longer require that our L-functions be
entire, only that they have at most a finite number of poles. This
improves on results of W. Li and Booker-Krishnamurthy in this
direction (generalisations for n > 2 possible).
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The Langlands-Shahidi method

Thanks to the work of Langlands, Shahidi, Kim-Shahidi and
Gelbart-Shahidi (and others) we know that method of
Langlands-Shahidi yields an L-function LSh(s, π, r) which satisfies
the properties (C), (FNP) and (FE) when π is a (unitary) cuspdial
automorphic representation and r = ∧2,Sym2. Henniart has shown
that the local functions LSh(s, πv , r) and L(s, πv , r) coincide at all
places.

One further knows that (C) is satisfied with σ = 1.

When r = ∧2, Jacquet and Shalika have defined local L-functions
LJS(s, πv ,∧2) using an integral representation. These are known to
coincide with the L(s, πv ,∧2) at all finite places (Kewat-R.).

It follows that the Dirichlet series DJS(s, π,∧2) satisfies a
functional equation with the factors at infinity given by
L(s, πv ,∧2), v | ∞
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Holomorphy of the exterior square L-function

Using the result of Kewat-R. above and combining it with a
theorem of Jacquet and Shalika, and D. Belt, we had proved the
following theorem.

Theorem
(Kewat-R.)The Dirichlet series DJS(s, π,∧2) is entire unless π is
self-dual and ωπ is trivial. In the latter case it will have a pole only
at s = 0, 1 if and only if there is non-vanishing Shalika period.

Thus the only possible poles of L(s, π,∧2) are at 0 and 1 and
those that arise from L(s, πv ,∧2), with v | ∞. However the local

L-factors at infinity have the form Γ
(
s+αi,v+αj,v

2

)
, where

Re(αi,v + αj,v) > −1 using the bounds of Jacquet-Shalika.

It follows that D(s, π,∧2) cannot have poles other than at 1 on
the line Re(s) = 1. On the other hand our main theorem says that
it cannot have poles anywhere else in the critical strip.
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The final theorem for the exterior square L-function

Theorem
Let π be a cuspidal automorphic representation. The L-function
L(s, π,∧2) is entire unless π is self-dual and ωπ is trivial. In the
latter case it will have a simple poles at s = 0 and s = 1 if and
only if there is non-vanishing Shalika period.

Remarks:

(1) We should be able to prove a similar theorem for L(s, π,Sym2)
by combining the work of Kim-Shahidi and Takeda.

(2) Both these theorems will follow from the works of
Arthur+Moeglin-Waldspurger on the trace formula together
with the work of Grbac-Shahidi. We emphasise that our
approach is much more elementary with no reliance on the
trace formula. It uses only tools and ideas from the previous
century.
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Further remarks - appeals to a higher authority

(3) Piatetski-Shapiro was a proponent of using the method of
integral representations (also known as the Rankin-Selberg
method) to analyse L-functions. He believed that the poles of
L-functions could be more easily identified by the
Rankin-Selberg method. He was fond of observing that
“Arthur’s method is more general, but this approach is much
simpler”. Our main theorem is a modest step in this direction.

(4) In principle, we could try to apply our idea to retrieve older
holomorphy results for the L-functions of symmetric powers of
GL2 and this method might simplify some of the proofs of
Kim-Shahidi. Some of these L-functions are not part of the
trace formula framework.
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The main idea

The basic idea behind the proof is the following: The poles of the
L-functions can be recovered from the asymptotics of Whittaker
functions. The fact that the set of these exponents is forced to
remain invariant under the action of suitable Hecke operators,
severely restricts the possibilities for this set.

We will describe the simplest case of this phenomenon - the case
n = 2 and F = Q which corresponds to the case of modular forms.
We will also assume that we are in the situation of full level. Most
of the basic features of the proof can already be seen here. We
note that we have the integral representation

L(s, πf ) =

∫ ∞
0

f (iy)y s−
1
2 d∗y .
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The Bochner correspondence
The starting point is the (Riemann-Hecke-)Bochner
correspondence. Given a Dirichlet series

∑∞
n=1 ann

−s and its
L-function L(s),

ϕ(z) = z
1
2

∞∑
n=0

ane
2πinz ,

where a0 is the residue of L(s) at s = 1.

Using the functional equation, standard arguments involving the
inverse Mellin transform and shifting the line of integration using
the Phragmén-Lindelöf principle yields an equation of the form

ϕ(z)− ϕ(−1/z) = q(z),

where

q(z) =
m∑
i=1

pi (log z)zβi ,

where the pi (t) are polynomial functions.
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the Phragmén-Lindelöf principle yields an equation of the form

ϕ(z)− ϕ(−1/z) = q(z),

where

q(z) =
m∑
i=1

pi (log z)zβi ,

where the pi (t) are polynomial functions.



The Bochner correspondence
The starting point is the (Riemann-Hecke-)Bochner
correspondence. Given a Dirichlet series

∑∞
n=1 ann

−s and its
L-function L(s),

ϕ(z) = z
1
2

∞∑
n=0

ane
2πinz ,

where a0 is the residue of L(s) at s = 1.

Using the functional equation, standard arguments involving the
inverse Mellin transform and shifting the line of integration using
the Phragmén-Lindelöf principle yields an equation of the form

ϕ(z)− ϕ(−1/z) = q(z),

where

q(z) =
m∑
i=1

pi (log z)zβi ,

where the pi (t) are polynomial functions.



Asymptotic exponents and poles

The key point is that the term zβi appears in q(z) if and only if
−βi + 1/2 is a pole of L(s).

Moreover, if the order of the pole at
−βi + 1/2, is l , the polynomial pi has degree l − 1.

Observe that if zβi occurs in the expression for q(z), then so must
z−βi . It follows that

ϕ(z) ∼ q1(z), as z → 0,

where
q1(z) =

∑
i |Re(βi)≥0

pi (log z)zβi .

We have thus related the exponents in the asymptotic expression
for ϕ(z) to the poles of the L-function.
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Applying the Hecke operators

If we apply the Hecke operator Tp to this situation we obtain a
relation between the asymptotics:

p−1/2q1(pz) + p1/2q1

(
z

p

)
∼ apq1(z).

By comparing the leading coefficients (i.e., the exponent β which
has the smallest real part among the exponents) we see that

pβ−1/2 + p1/2−β = ap.

If we set X = pβ−1/2 we get a quadratic equation in X . Note that
we get the same equation at every unramified place. Thus β can
be completely determined if we know the Hecke eigenvalue at two
unramified places.
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