History and
 Siegel zero
 The parity principle
 Prime packing
 My own
 Strange encounters
 Future?
 References

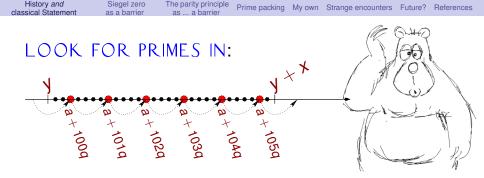
 classical Statement
 as a barrier
 as barrier
 Prime packing
 My own
 Strange encounters
 Future?
 References

On the BRUN-TITCHMARSH Inequality

Olivier Ramaré

January 22, 2016

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()



- Avoid extreme case: q < x,</p>
- Seek UPPER BOUNDS,
- We want primes: choose a prime to q,
- No *a* is special: equidistribution in the $\phi(q)$ classes.

History and classical Statement

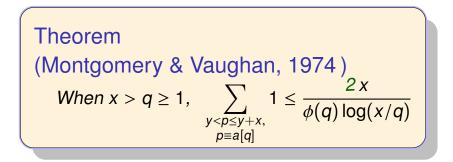
Siegel zero as a barrier

The parity principle

Brun-(Titchmarsh, 1930) Theorem:

as a bar

Terminology of (Linnik, 1961)



 $\pi(10^{10000} + 1000) - \pi(10^{10000}) \le 289.$ Better than 2? Oups !!!

イロト 不得 トイヨト イヨト 二日

 History and classical Statement
 Siegel zero as a barrier
 The parity principle as ... a barrier
 Prime packing
 My own
 Strange encounters
 Future?
 References

Often used with a global lower bound, for instance:

Theorem Let
$$1 \le q \le X^{1/10}$$
. $(X \ge X_0)$
 $\forall a \text{ prime to } q$,
 $\exists m = p_1 p_2 \text{ or } p_1 p_2 p_3 \le X / m \equiv a[q]$.

Proof. $x = X^{1/3}$.

- $\pi(x) \ge x/\log x$ when $x \ge 17$,
- $\frac{1}{2}\log(x/q) \ge 7/20 > 1/3$,
- Brun-Titchmarsh \rightarrow one class / three has primes,
- Add. comb. \rightarrow products of three covers a $b \cdot H$,
- ▶ $\exists n \text{ outside } H \rightarrow \text{result.}$

Two or three prime factors! See later

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Brun-Titchmarsh Theorem: OPTIMAL or NOT?

The parity principle

- Beats the trivial 1 + x/q in a wide range,
- When q = 1 and y = 0,

Siegel zero

ae a harrio

History and

classical Statement

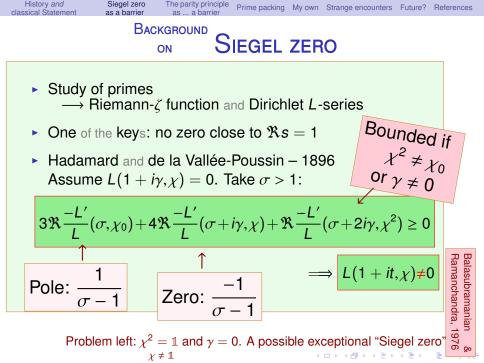
the estimate is sharp up to the 2,

Idem when q is small,

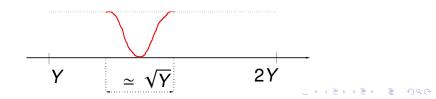
- At size x + y, average density is $1/\log(y + x)$
- When y = 0, density is $1/\log x$, not $1/\log(x/q)$

What about a heuristics?? Consequences?

Prime packing My own Strange encounters Future? References



- Analytical means \rightarrow nothing, even on RH,
- ► Vinogradov → nothing [multiplicativity].



 History and
 Siegel zero
 The parity principle
 Prime packing
 My own
 Strange encounters
 Future?
 References

 classical Statement
 as a barrier
 as ... a barrier
 as ... a barrier
 as ... a barrier

SIEGEL ZERO VERSUS CLASS NUMBER PROBLEM An algebraical interpretation:

No Siegel zero Same as A lower bound for $L(1,\chi)$ (real analysis, tricks) Same as A lower bound for the class number of $\mathbb{Q}(\sqrt{-q})$ (split primes) Same as Counting reduced quadratic forms in a family (quadratic system) Dirichlet class number formula We are again stuck on these three new points -No better luck with upper bounds!

イロト イ押ト イヨト イヨト

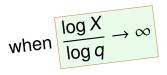
 History and
 Siegel zero
 The parity principle
 Prime packing
 My own
 Strange encounters
 Future?
 References

 classical Statement
 as a barrier
 as un a barrier
 Prime packing
 My own
 Strange encounters
 Future?
 References

BRUN-TITCHMARSH VERSUS SIEGEL ZERO When $L(1 - \delta, \chi) = 0$ and $\delta = o(1/\log q)$:

Cheating a bit

$$\sum_{\substack{p \leq X, \\ p \equiv a[q]}} 1 \sim \frac{\pi(X)}{\phi(q)} \left(1 - \chi(a) \frac{X^{-\delta}}{1 - \delta} \right)$$



(Gallagher, 1970)

For X in some range, For a such that $\chi(a) = -1$: $\sum_{p \le X, 1} 1 \sim \frac{2X}{\phi(q) \log X}$

 $p \equiv a[q]$

Back to the same factor 2 !! We know the subgroup structure

History and Siegel zero The parity principle Prime packing My own Strange encounters Future? References BRUN-TITCHMARSH VERSUS SIEGEL ZERO AND EFFECTIVITY Cheating a bit (Motohashi, 1979), (Basquin, 2006) • Show that $\sum_{p \leq X} 1 \leq (2 - \varepsilon)\pi(X)/\phi(q)$ $p \equiv a[a]$ for some $\varepsilon > 0$ and all $q \leq (\log X)^c$, Same as Prove in an effective fashion that $\sum_{p \leq X, } 1 \sim \pi(X) / \phi(q)$ for $q \leq (\log X)^c$, $p \equiv a[a]$ Same as Make $L(1,\chi) \gg 1/q^{1/c}$ effective, (Goldfeld, 1975), (Gross & Zagier, 1983), (Oesterlé, 1985).

Reinforced Deuring-Heilbronn phenomenom

History and Siegel zero The parity principle Prime packing My own Strange encounters Future? References

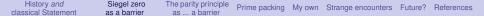
Brun-Titchmarsh: crossing the second wall!

 $1 \ge \alpha > 0$ $\bullet \text{ When } q \le x^{\alpha}, \sum_{\substack{p \le x, \\ p \equiv a[q]}} 1 \le \frac{2c(\alpha)x}{\phi(q)\log(x/q)} \text{ with } c(\alpha) < 1,$ (Motohashi, 1974), (Iwaniec, 1982), (Friedlander & Iwaniec, 1997)

• (Maynard, 2013) has $c(\alpha)(1-\alpha) = 1$ when $\alpha \le 1/8$,

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

• We always have $c(\alpha) \log x \ge \log(x/q)$.



A FOOTNOTE FOR SPECIALISTS

Large sieve extension of Brun-Titchmarsh inequality

↔ Log-free density estimates

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

History and Siegel zero The parity principle Prime packing My own Strange encounters Future? References A SECOND OCCURRENCE OF THE FACTOR (Selberg, 1949) developped by (Bombieri, 1976) Take an optimal linear sieve $\omega(n) =$ number of prime factors of n Expected Contribution of Contribution of integers with with integers EVEN $\omega(n)$ ODD $\omega(n)$ \leftarrow by the sieve TWICE the expectation

- We had an analytical hurdle
- This one is a combinatorial hurdle

History and classical Statement Siegel zero as a barrier The parity principle as ... a barrier

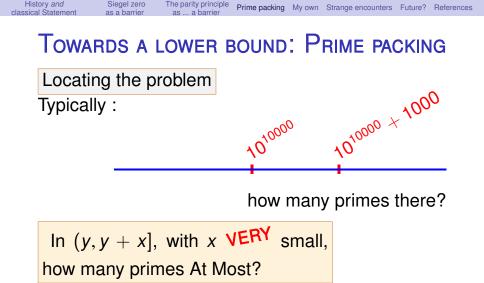
Prime packing My own Strange encounters Future? References

A FIRST STOP!

WHERE DID THE INTERVALS DISAPPEAR?

- In q-aspect: the factor 2 is NOT justified.
- Is this factor required by the interval aspect?

We consider q = 1.

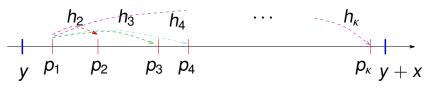


On average x/log(y + x)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

History and Siegel zero classical Statement as a barrier as ... a barrier The parity principle Prime packing My own Strange encounters Future? References

Let us look at the spacings:



$$p_1 + (h_1 = 0, h_2, h_3, \cdots, h_\kappa)$$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

A κ -tuple is admissible $(h_1, h_2, \dots, h_{\kappa})$ when $\forall q \ge 1, \quad \{h_1, h_2, \dots, h_{\kappa}\}/q\mathbb{Z} \neq \mathbb{Z}/q\mathbb{Z}$

> Enough: *q* prime and $q \le \kappa^*$. (2, 4, 6) no! Framework of ... (Hardy & Littlewood, 1922)!

History and Siegel zero The parity principle Prime packing My own Strange encounters Future? References classical Statement as a barrier

Length of a
$$\kappa$$
-tuple : $L(h) = h_{\kappa} - h_1 + 1$

PROBLEM: Given κ , find *h* that minimizes L(h).

Theorem (Hensley & Richards, 1974) Let $\varepsilon > 0$ and L be large. \exists admissible κ -tuple of length $\leq L$ such that $\kappa \geq \pi(L) + (\log 2 - \varepsilon) \frac{L}{(\log L)^2}.$

Schinzel: $\log 2 \rightarrow 2 \log 2$ most probably

イロト 不得 トイヨト イヨト

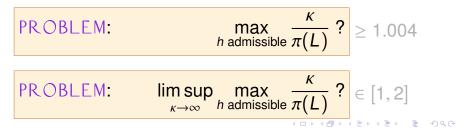
3

History and classical Statement	Siegel zero as a barrier	The parity principle as a barrier	Prime packing	My own	Strange encounters	Future?	References	

A numerical approach

Theorem (Dusart, 1998)
$$\exists$$
admissible 1415-tuple of length $L = 11763$

 $\pi(11763) = 1409$, hence $+6 \parallel \kappa \ge 1.004\pi(L)$ $(2\pi(11763/2) = 1550 > 1415)$



A MORE MODEST PROJECT

Back to diminishing the upper bound Statement and history

The parity principle

as a barrie

Siegel zero

as a barrier

History and

classical Statement

Theorem (O.R. & S. Yazdani, 2016 ?)
When
$$x \ge x_0$$
, $\pi(y + x) - \pi(y) \le \frac{2x}{5.66 + \log x}$

 $\begin{array}{c} (\text{Bombieri, 1971}) \ 5.66 \rightarrow -3 \\ (\text{Montgomery \& Vaughan, 1973}) \ 5.66 \rightarrow 5/6 \\ (\text{Selberg, 1991}) \ 5.66 \rightarrow 2.81 \\ (\text{O.R. \& Schlage-Puchta, 2006}) \ 5.66 \rightarrow 3.53 \end{array}$

Prime packing My own Strange encounters Future? References

classical Statement as a barrier as ... a barrier Plinte packing with Strange encounters Polarer Plane Plan

Cheating a bit!

Prime packing My own Strange encounters Future? References

$$\begin{array}{|c|c|} \hline \textbf{B} & \textbf{B} & \textbf{B} \\ \hline \textbf{B} & \textbf{B} \\ \hline \textbf{B} & \textbf{B} \\ \hline \textbf{B} & \textbf{B} \\ \textbf{M} & \textbf{M} \\ \hline \textbf{M} \\ \hline \textbf{M} & \textbf{M} \\ \hline \textbf{M} \\ \hline \textbf{M} & \textbf{M} \\ \hline \textbf{M} \hline \textbf{M} \\ \hline \textbf{M} \\ \hline \textbf{M} \hline \textbf{M} \hline \textbf{M} \hline \textbf{M} \\ \hline \textbf{M} \hline \textbf{M} \\ \hline \textbf{M} \hline \textbf{M} \hline \textbf{M} \hline \textbf{M} \hline \textbf{M} \hline \textbf{M}$$

The parity principle

History and

Siegel zero

► Selberg: Model(
$$w$$
) = $\frac{\varphi(\mathfrak{f})}{\mathfrak{f}}w$

Now: Model(w) is optimal
+ expressed as lin. comb. of
$$\sum_{\substack{n \le w, \\ \gcd(n, \mathfrak{f}) = 1}} \chi(n)$$

where χ are Generalized Dirichlet characters

dem for $D_{f}(u)$

 History and
 Siegel zero
 The parity principle
 Prime packing
 My own
 Strange encounters
 Future?
 References

 classical Statement
 as a barrier
 as ... a barrier
 as ... a barrier
 barr

Some simple tools:

 $\mu(q) = \begin{cases} (-1)^r & \text{when } q = p_1 \cdots p_r, \, p_i \neq p_j, \\ 0 & \text{else.} \end{cases}$ $\phi(q) = \sum_{n < q} 1 \stackrel{\sim}{\approx} q$ $\sigma(q) = \sum d \,\widetilde{\approx} \, q$ n≤q, dla (n,q)=1 $c_q(n) = \sum_{n=1}^{\infty}$ e^{2iπan/q} ← Ramanujan sum $1 \le a \le q$ (a,q)=1

Main property we use:

$$c_q(n)=\mu(q)$$
 when $(n,q)=\gcd(n,q)=1$

History and Siegel zero classical Statement as a barrier as ... a barrier brime packing My own Strange encounters Future? References

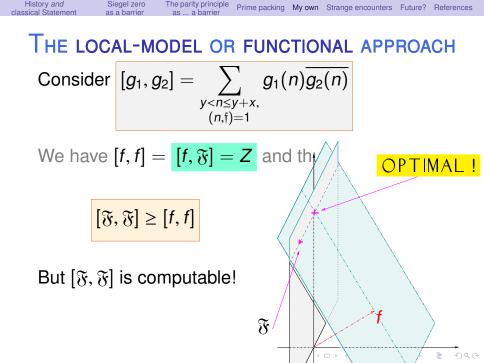
SIEVING THE LARGER PRIMES

- Wanted: $f = \mathbb{1}_{n \in (y, y+x] \cap \mathcal{P}}$
- ▶ From: Set = { $n \in (y, y + x]$, gcd(n, f) = 1} $(y \ge x)$
- ▶ Using: $n \in$ Set and prime $\Rightarrow \mu(q)c_q(n) = 1$, $\forall q \leq \sqrt{x}$

$$\mathfrak{F}(n) = \frac{1}{C} \sum_{\substack{q/\sigma(q) \le \sqrt{x}, \\ \gcd(q, \mathfrak{f}) = 1}} \frac{\left(1 - \frac{\sigma(q)}{\sqrt{x}}\right)}{\sum_{\substack{q/\sigma(q) \le \sqrt{x}, \\ \text{Local-Global gluing} \\ + \text{ optimization prayer}}} \frac{\mu(q)c_q(n)}{\phi(q)}$$

Choice of $C \longrightarrow \mathfrak{F}(p) = 1$ when $p \in (y, y + x]$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○



History and Siegel zero The parity principle Prime packing My own Strange encounters Future? References classical Statement as a barrier

A METHOLOGICAL INTERLUDE

The "small sieve" approach: $|\mathfrak{F}(n)|^2 \ge f(n)$ and thus....

 $[\mathfrak{F},\mathfrak{F}] \geq [f,f]$!! Yet again!!

Local ModelsLarge sieve
$$[\mathfrak{F},\mathfrak{F}] = \sum_{n} \left| \sum_{q \leq \sqrt{x} \ a \mod *q} h(a/q)e(na/q) \right|^2$$
Small sieve $\mathfrak{F}(n) = \sum_{d|n} \lambda_d, \quad \lambda_d = \sum_{d|q \cdots} \cdots$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- Special sieve with a thicker close-to-diagonal,
- Generalized characters,
- Mellin (and reverse!) transform in several complex variables,
- Distribution measure of arithmetical function

Some funny beasts to study

Cheating a bit

$$\begin{aligned} A_{f}(s) &= \prod_{\gcd(p,f)=1} \left(\frac{p-1}{p} \right)^{2} \left(1 + \frac{2}{p} \left(\frac{p+1}{p} \right)^{s} \right) \\ B_{f}(s) &= \prod_{\gcd(p,f)=1} \left(1 + \frac{(p+1)^{2s}}{p^{4}} \right) \\ C_{f}(s) &= \prod_{\gcd(p,f)=1} \left(1 + \frac{(p+1)^{2s}}{p^{s+2}} \right) \left(1 - \frac{1}{p^{2-s}} \right) \end{aligned}$$

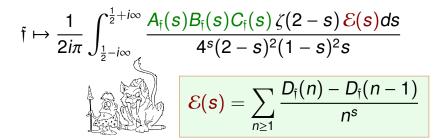
MAIN HURDLE LEFT

Prime packing My own Strange encounters Future? References

ション 小田 マイビット ビックタン

The parity principle

as a barrie



Even if $\mathcal{E}(s)$ is given, computing is difficult!

First step:

History and

classical Statement

Siegel zero

as a barrier

• $A_{f}(s), B_{f}(s)$ and $C_{f}(s) \longrightarrow$ finite Euler products

OUTPUT:

History and

Siegel zero

- $f = 2 \times 3 \times 5 \times 7 \longrightarrow \text{Constant} \ge 4.51$
- ▶ $f = 2 \times 3 \times 5 \times 7 \times 11 \longrightarrow Constant \ge 4.91$
- ▶ $f = 2 \times 3 \times 5 \times 7 \times 11 \times 13 \longrightarrow Constant \ge 5.38$
- ▶ $f = 2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \longrightarrow Constant \ge 5.66$

PROSPECTIVES

Is the 2 required? I don't know! Hensley & Richards propose: no. *I believe:* 2x

$$\exists f(X) \to \infty / \pi(y+x) - \pi(y) \le \frac{2x}{f(x) + \log x}$$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

What about the L^q-problem?
$$\int_{Y}^{2Y} \left| \sum_{y$$

Can we really adapt that to primes in progressions?

(Odlyzko <u>et al.</u>, 1999) give a heuristics that says that:

	first 6,
The most frequent difference is	then 30,
ne most nequent uncrence is	then 210,
	and so on

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

They sustain their point by producing calculations. Marek Wolf started this business by exhibing some surprising numerical tables.

History and classical Statement	Siegel zero as a barrier	The parity principle as a barrier	Prime packing	My own	Strange encounters	Future?	References

Balasubramanian, R., & Ramachandra, K. 1976.

The place of an identity of Ramanujan in prime number theory.

Proc. Indian Acad. Sci. Sect. A, 83(4), 156-165.

Basquin, J. 2006.

Mémoire de DEA.

1–37.

Bombieri, E. 1971.

A note on the large sieve. Acta Arith., **18**, 401–404.

Bombieri, E. 1976.

The asymptotic sieve. Rend., Accad. Naz. XL, V. Ser. 1-2, 243–269.

Bombieri, E. 1987/1974.

Le grand crible dans la théorie analytique des nombres. Astérisque, **18**, 103pp.

Cramer, H. 1936.

On the order of magnitude of the difference between consecutive prime numbers. Acta Arith., 2, 23–46.

Dusart, P. 1998.

Autour de la fonction qui compte le nombre de nombres premiers.

Ph.D. thesis, Limoges, http://www.unilim.fr/laco/theses/1998/T1998_01.pdf. 173 pp.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Friedlander, John, & Iwaniec, Henryk. 1997.

The Brun-Titchmarsh theorem.

Pages 85–93 of: Analytic number theory (Kyoto, 1996). London Math. Soc. Lecture Note Ser., vol. 247. Cambridge Univ. Press, Cambridge.

Gallagher, P.X. 1970.

A large sieve density estimate near $\sigma = 1$. Invent. Math., 11, 329–339.

History and classical Statement	Siegel zero as a barrier	The parity principle as a barrier	Prime packing	My own	Strange encounters	Future?	References	

Gallagher, P.X. 1976.

On the distribution of primes in short intervals. Mathematika, 23, 4–9.

Goldfeld, D. 1975.

The Class Number of Quadratic Fields and the Conjectures of Birch and Swinnerton-Dyer. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4, 623–663.

Granville, A. 1995.

Harald Cramér and the distribution of prime numbers. Scand. Actuar. J., 12–28. Harald Cramér Symposium (Stockholm, 1993).

Gross, B., & Zagier, D. 1983.

Points de Heegner et derivées de fonctions L. C. R. Acad. Sci, Paris, Ser. I, **297**, 85–87.

Halberstam, H., & Richert, H.E. 1974.

Sieve methods. Academic Press (London), 364pp.

Hardy, G.H., & Littlewood, J.E. 1922.

Some problems of "Partitio Numerorum" III. On the expression of a number as a sum of primes. Acta Math., 44, 1–70.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Hensley, D., & Richards, I. 1974.

Primes in intervals. Acta Arith., 4(25), 375–391.

Hildebrand, A., & Maier, H. 1988. Gaps between prime numbers.

Proc. Amer. Math. Soc., 104(1), 1-9.

Iwaniec, Henryk. 1982.

On the Brun-Titchmarsh theorem. J. Math. Soc. Japan, 34(1), 95–123.

History and classical Statement	Siegel zero as a barrier	The parity principle as a barrier	Prime packing	My own	Strange encounters	Future?	References	

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Linnik, Yu.V. 1961.

The dispersion method in binary additive problems. Leningrad, 208pp.

Maier, H. 1985.

Primes in short intervals. Michigan Math. J., **32**(2), 221–225.

Maier, H., & Pomerance, C. 1990. Unusually large gaps between consecutive primes. Trans. Am. Math. Soc., **322**(1), 201–237.

Maynard, James. 2013.

On the Brun-Titchmarsh theorem. Acta Arith., **157**(3), 249–296.

Montgomery, H.L., & Vaughan, R.C. 1973. The large sieve. Mathematika, 20(2), 119–133.

Montgomery, H.L., & Vaughan, R.C. 1974. Hilbert's inequality.

J. Lond. Math. Soc., II Ser., 8, 73-82.

Motohashi, Y. 1979.

A note on Siegel's zeros.

Proc. Jap. Acad., Ser. A, 55, 190-192.

Motohashi, Yoichi. 1974.

On some improvements of the Brun-Titchmarsh theorem. J. Math. Soc. Japan, 26, 306–323.

Odlyzko, A., Rubinstein, M., & Wolf, M. 1999. Jumping Champions. Exp. Math., 8(2), 107–118.

History and classical Statement	Siegel zero as a barrier	The parity principle as a barrier	Prime packing	My own	Strange encounters	Future?	References	

Oesterlé, J. 1985.

Nombres de classes des corps quadratiques imaginaires. <u>Astérisque</u>, **121/122**, 309–323.

Pintz, J. 1997.

Very large gaps between consecutive primes.

J. Number Theory, 63(2), 286-301.

Ramaré, O. 2009.

Arithmetical aspects of the large sieve inequality.

Harish-Chandra Research Institute Lecture Notes, vol. 1. New Delhi: Hindustan Book Agency. With the collaboration of D. S. Ramana.

Ramaré, O., & Schlage-Puchta, J.-C. 2008.

Improving on the Brun-Titchmarsh theorem. Acta Arith., **131**(4), 351–366.

Rankin, R.A. 1938.

The difference between consecutive prime numbers. J. Lond. Math. Soc., **13**, 242–247.

Rosser, J.B., & Schoenfeld, L. 1962.

Approximate formulas for some functions of prime numbers. Illinois J. Math., 6, 64–94.

Schinzel, A., & Sierpiński, W. 1958.

Sur certaines hypothèses concernant les nombres premiers. Acta Arith., 4(3), 185–208.

Selberg, A. 1949.

On elementary problems in prime number-theory and their limitations. C.R. Onzième Congrès Math. Scandinaves, Trondheim, Johan Grundt Tanums Forlag, 13–22.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Selberg, A. 1991.

Collected Papers. Springer-Verlag, II, 251pp.

	History and classical Statement	Siegel zero as a barrier	The parity principle as a barrier	Prime packing	My own	Strange encounters	Future?	References
--	------------------------------------	-----------------------------	--------------------------------------	---------------	--------	--------------------	---------	------------

Shanks, D. 1964.

On maximal gaps between successive primes. Math. Comp., 18, 646–651.

Titchmarsh, E.C. 1930.

A divisor problem.

Rendiconti Palermo, 54, 414-429.