Groups with expansive automorphisms

C. R. E. Raja

Indian Statistical Institute, Bangalore.

Based on a joint work with H. Glockner of Universitat Paderborn - work supported by DAAD
Automorphism, contraction groups

G - locally compact totally disconnected group, that is, G has arbitrarily small compact open subgroups.

By an automorphisms α of G, we mean a continuous automorphism.

For an automorphism α of G we consider the following two subgroups:

$U_\alpha = \{ x \in G | \lim_{n \to \infty} \alpha^n(x) = e \}$ - known as the contraction group of α

$U_\alpha^{-1} = \{ x \in G | \lim_{n \to -\infty} \alpha^n(x) = e \}$
Automorphism, contraction groups

- G - locally compact totally disconnected group,
Automorphism, contraction groups

- G - locally compact totally disconnected group, that is, G has arbitrarily small compact open subgroups.
Automorphism, contraction groups

- G - locally compact totally disconnected group, that is, G has arbitrarily small compact open subgroups.
- By an automorphisms α of G, we mean a continuous automorphism.
Automorphism, contraction groups

- G - locally compact totally disconnected group, that is, G has arbitrarily small compact open subgroups.
- By an automorphisms α of G, we mean a continuous automorphism.

For an automorphism α of G we consider the following two subgroups:

$$U_\alpha = \{ x \in G | \lim_{n \to \infty} \alpha^n(x) = e \}$$ - known as the contraction group of α $U_\alpha^{-1} = \{ x \in G | \lim_{n \to -\infty} \alpha^n(x) = e \}$$
Automorphism, contraction groups

- G - locally compact totally disconnected group, that is, G has arbitrarily small compact open subgroups.
- By an automorphisms α of G, we mean a continuous automorphism.

For an automorphism α of G we consider the following two subgroups:

- $U_{\alpha} = \{ x \in G \mid \lim_{n \to \infty} \alpha^n(x) = e \}$
G - locally compact totally disconnected group, that is, G has arbitrarily small compact open subgroups.

By an automorphisms \(\alpha \) of G, we mean a continuous automorphism.

For an automorphism \(\alpha \) of G we consider the following two subgroups:

\[
U_{\alpha} = \{ x \in G \mid \lim_{n \to \infty} \alpha^n(x) = e \}
\]

- known as the contraction group of \(\alpha \)
Automorphism, contraction groups

- G - locally compact totally disconnected group, that is, G has arbitrarily small compact open subgroups.
- By an automorphisms α of G, we mean a continuous automorphism.

For an automorphism α of G we consider the following two subgroups:

- $U_\alpha = \{x \in G \mid \lim_{n \to \infty} \alpha^n(x) = e\}$ - known as the contraction group of α
- $U_{\alpha^{-1}} = \{x \in G \mid \lim_{n \to -\infty} \alpha^n(x) = e\}$
Remarks about U_α and U_α^{-1}

We recall the following facts about the contraction groups. In general, neither U_α nor U_α^{-1} is closed; U_α is closed if and only if U_α^{-1} is closed ([BaWi-04]). If G is a p-adic Lie group, U_α is closed, in fact an unipotent algebraic group ([Wa-84]).
We recall the following facts about the contraction groups.
We recall the following facts about the contraction groups.

- In general, neither U_α nor $U_{\alpha^{-1}}$ is closed;
We recall the following facts about the contraction groups.

- In general, neither U_α nor $U_{\alpha^{-1}}$ is closed;
- U_α is closed if and only if $U_{\alpha^{-1}}$ is closed ([BaWi-04]).
We recall the following facts about the contraction groups.

- In general, neither U_α nor $U_{\alpha^{-1}}$ is closed;
- U_α is closed if and only if $U_{\alpha^{-1}}$ is closed ([BaWi-04]);
- If G is a p-adic Lie group, U_α is closed, in fact an unipotent algebraic group ([Wa-84]).
Expansive automorphism

An expansive automorphism α of a totally disconnected locally compact group G is called expansive if there is a compact open subgroup K of G such that $\bigcap_{n \in \mathbb{Z}} \alpha^n(K) = \{e\}$.

Aim: Study the structure of groups that admit expansive automorphisms.

The following are easy to observe:

- Automorphisms on discrete groups are expansive.
- If α restricted to an open subgroup is expansive, then α is expansive.
- Equicontinuous automorphisms on a non-discrete group is not expansive. For instance $\alpha \in \text{GL}_n(\mathbb{Z}_p)$ is not expansive on \mathbb{Q}_p.
Expansive automorphism

\(\alpha \) will denote an automorphisms of a totally disconnected locally compact group \(G \).
Expansive automorphism

α will denote an automorphisms of a totally disconnected locally compact group G.

α is called expansive if

Aim: Study the structure of groups that admit expansive automorphisms.

The following are easy to observe:

- Automorphisms on discrete groups are expansive.
- If α restricted to an open subgroup is expansive, then α is expansive.
- Equicontinuous automorphisms on a non-discrete group is not expansive.

For instance $\alpha \in \text{GL}_n(\mathbb{Z}_p)$ is not expansive on \mathbb{Q}_p.
Expansive automorphism

α will denote an automorphisms of a totally disconnected locally compact group G.
α is called expansive if there is a compact open subgroup K of G such that

\[\bigcap_{n \in \mathbb{Z}} \alpha^n(K) = \{e\} . \]
Expansive automorphism

\(\alpha\) will denote an automorphisms of a totally disconnected locally compact group \(G\).
\(\alpha\) is called expansive if there is a compact open subgroup \(K\) of \(G\) such that \(\bigcap_{n \in \mathbb{Z}} \alpha^n(K) = \{e\}\).
Expansive automorphism

\(\alpha \) will denote an automorphisms of a totally disconnected locally compact group \(G \).
\(\alpha \) is called expansive if there is a compact open subgroup \(K \) of \(G \) such that \(\bigcap_{n \in \mathbb{Z}} \alpha^n(K) = \{ e \} \).

Aim:
Expansive automorphism

\(\alpha \) will denote an automorphisms of a totally disconnected locally compact group \(G \).
\(\alpha \) is called expansive if there is a compact open subgroup \(K \) of \(G \) such that \(\bigcap_{n \in \mathbb{Z}} \alpha^n(K) = \{e\} \).

Aim: Study the structure of groups that admit expansive automorphisms
\(\alpha\) will denote an automorphisms of a totally disconnected locally compact group \(G\).

\(\alpha\) is called expansive if there is a compact open subgroup \(K\) of \(G\) such that \(\bigcap_{n \in \mathbb{Z}} \alpha^n(K) = \{e\}\).

Aim: Study the structure of groups that admit expansive automorphisms

The following are easy to observe:

- Automorphisms on discrete groups are expansive.
- If \(\alpha\) restricted to an open subgroup is expansive, then \(\alpha\) is expansive.
- Equicontinuous automorphisms on a non-discrete group is not expansive.

For instance \(\alpha \in \text{GL}_n(\mathbb{Z}_p)\) is not expansive on \(\mathbb{Q}_p^n\).
Expansive automorphism

α will denote an automorphisms of a totally disconnected locally compact group G.
α is called expansive if there is a compact open subgroup K of G such that $\cap_{n \in \mathbb{Z}} \alpha^n(K) = \{e\}$.

Aim: Study the structure of groups that admit expansive automorphisms
The following are easy to observe:
- Automorphisms on discrete groups are expansive.
Expansive automorphism

\(\alpha \) will denote an automorphisms of a totally disconnected locally compact group \(G \).
\(\alpha \) is called expansive if there is a compact open subgroup \(K \) of \(G \) such that \(\cap_{n \in \mathbb{Z}} \alpha^n(K) = \{e\} \).

Aim: Study the structure of groups that admit expansive automorphisms

The following are easy to observe:

- Automorphisms on discrete groups are expansive.
- If \(\alpha \) restricted to an open subgroup is expansive, then \(\alpha \) is expansive.
α will denote an automorphisms of a totally disconnected locally compact group G.

α is called expansive if there is a compact open subgroup K of G such that $\cap_{n \in \mathbb{Z}} \alpha^n(K) = \{e\}$.

Aim: Study the structure of groups that admit expansive automorphisms

The following are easy to observe:

- Automorphisms on discrete groups are expansive.
- If α restricted to an open subgroup is expansive, then α is expansive.
- Equicontinuous automorphisms on a non-discrete group is not expansive.
Expansive automorphism

\(\alpha \) will denote an automorphisms of a totally disconnected locally compact group \(G \).
\(\alpha \) is called expansive if there is a compact open subgroup \(K \) of \(G \) such that \(\bigcap_{n \in \mathbb{Z}} \alpha^n(K) = \{ e \} \).

Aim: Study the structure of groups that admit expansive automorphisms

The following are easy to observe:

- Automorphisms on discrete groups are expansive.
- If \(\alpha \) restricted to an open subgroup is expansive, then \(\alpha \) is expansive.
- Equicontinuous automorphisms on a non-discrete group is not expansive. For instance \(\alpha \in GL_n(\mathbb{Z}_p) \) is not expansive on \(\mathbb{Q}_p^n \).
Examples - Contraction

Scalar multiplication on \mathbb{Q}_p by p is expansive. In this case, $U_{\alpha} = \mathbb{Q}_p$.

Automorphisms for which $U_{\alpha} = G$, are called contractive and groups admitting contractive automorphisms are called contraction groups. Any contractive automorphism is expansive.
Examples - Contraction

- scalar multiplication on \mathbb{Q}_p by p is expansive.
scalar multiplication on \mathbb{Q}_p by p is expansive. In this case, $U_\alpha = \mathbb{Q}_p$.

Automorphisms for which $U_\alpha = G$, are called contractive and groups admitting contractive automorphisms are called contraction groups.

Any contractive automorphism is expansive.
Examples - Contraction

- scalar multiplication on \mathbb{Q}_p by p is expansive. In this case, $U_\alpha = \mathbb{Q}_p$.

Automorphisms for which $U_\alpha = G$, are called contractive and groups admitting contractive automorphisms are called contraction groups.
Examples - Contraction

- Scalar multiplication on \mathbb{Q}_p by p is expansive. In this case, $U_\alpha = \mathbb{Q}_p$.

Automorphisms for which $U_\alpha = G$, are called contractive and groups admitting contractive automorphisms are called contraction groups.

- Any contractive automorphism is expansive.
Let
\[G = \{ (x, y, z + Z_p) \mid x, y, z \in \mathbb{Q}_p \} \]
with multiplication given by
\[(x, y, z + Z_p)(x', y', z' + Z_p) = (x + x', y + y', z + z' + xy' + Z_p) \]
and
\[\alpha: G \to G \text{ be given by} \]
\[\alpha(x, y, z + Z_p) = \left(\frac{x}{p}, py, z + Z_p \right) \]
Then \(\alpha \) is an expansive automorphism but \(G \) does not admit any contractive automorphism as the commutator of \(G \) is discrete.
Let $G = \{(x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p\}$ with multiplication given by

Then α is an expansive automorphism but G does not admit any contractive automorphism as the commutator of G is discrete.
Let $G = \{(x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p\}$ with multiplication given by
\[(x, y, z + \mathbb{Z}_p)(x', y', z' + \mathbb{Z}_p) = (x + x', y + y', z + z' + xy' + \mathbb{Z}_p)\]
and

Expansive but not contractive
Let $G = \{(x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p\}$ with multiplication given by

$$(x, y, z + \mathbb{Z}_p)(x', y', z' + \mathbb{Z}_p) = (x + x', y + y', z + z' + xy' + \mathbb{Z}_p)$$

and $\alpha: G \to G$ be given by

$$\alpha(x, y, z + \mathbb{Z}_p) = (x/p, py, z + \mathbb{Z}_p).$$
Let $G = \{(x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p\}$ with multiplication given by

$$(x, y, z + \mathbb{Z}_p)(x', y', z' + \mathbb{Z}_p) = (x + x', y + y', z + z' + xy' + \mathbb{Z}_p)$$

and $\alpha : G \to G$ be given by

$$\alpha(x, y, z + \mathbb{Z}_p) = (x/p, py, z + \mathbb{Z}_p).$$

Then α is an expansive automorphism.
Let $G = \{ (x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p \}$ with multiplication given by

$$(x, y, z + \mathbb{Z}_p)(x', y', z' + \mathbb{Z}_p) = (x + x', y + y', z + z' + xy' + \mathbb{Z}_p)$$

and $\alpha: G \to G$ be given by

$$\alpha(x, y, z + \mathbb{Z}_p) = (x/p, py, z + \mathbb{Z}_p).$$

Then α is an expansive automorphism but G does not admit any contractive automorphism as the commutator of G is discrete.
Let α be an automorphism of G.

For a compact open subgroup V, consider the following:

$V^+ = \bigcap_{n \geq 0} \alpha^n(V)$,

$V^- = \bigcap_{n \leq 0} \alpha^n(V)$,

$V_0 = V^+ \cap V^-$,

$V^{++} = \bigcup_{n \geq 0} \alpha^n(V^+)$,

$V^{--} = \bigcup_{n \leq 0} \alpha^n(V^-)$.

In general neither of V^{++}, V^{--} is closed. However, Theorem [Wi-94] there is a compact open subgroup V such that V^{++} and V^{--} are closed and $V = V^+ V^-$. Such a subgroup is called a tidy subgroup for α.

Raja Expansive
Let α be an automorphism of G.
Let α be an automorphism of G. For a compact open subgroup V, consider the following:

- $V^+ = \bigcap_{n \geq 0} \alpha^n(V)$
- $V^- = \bigcap_{n \leq 0} \alpha^n(V)$
- $V_0 = V^+ \cap V^-$
- $V^{++} = \bigcup_{n \geq 0} \alpha^n(V^+)$
- $V^{--} = \bigcup_{n \leq 0} \alpha^n(V^-)$

In general neither of V^{++}, V^{--} is closed. However, Theorem [Wi-94]: There is a compact open subgroup V such that V^{++} and V^{--} are closed and $V = V^+ V^-$. Such a subgroup is called a tidy subgroup for α.
Let α be an automorphism of G. For a compact open subgroup V, consider the following:

$$V_+ = \cap_{n \geq 0} \alpha^n(V), \quad V_- = \cap_{n \leq 0} \alpha^n(V)$$
Let α be an automorphism of G. For a compact open subgroup V, consider the following:

$$V_+ = \cap_{n \geq 0} \alpha^n(V), \quad V_- = \cap_{n \leq 0} \alpha^n(V)$$

$$V_0 = V_+ \cap V_-, \quad V_{++} = \cup_{n \geq 0} \alpha^n(V_+), \quad V_{--} = \cup_{n \leq 0} \alpha^n(V_-)$$
Let \(\alpha \) be an automorphism of \(G \). For a compact open subgroup \(V \), consider the following:

\[
V_+ = \cap_{n \geq 0} \alpha^n(V), \quad V_- = \cap_{n \leq 0} \alpha^n(V)
\]

\[
V_0 = V_+ \cap V_-, \quad V_{++} = \cup_{n \geq 0} \alpha^n(V_+), \quad V_{--} = \cup_{n \leq 0} \alpha^n(V_-)
\]

In general neither of \(V_{++} \), \(V_{--} \) is closed. However,
Let α be an automorphism of G. For a compact open subgroup V, consider the following:

$$V_+ = \bigcap_{n \geq 0} \alpha^n(V), \quad V_- = \bigcap_{n \leq 0} \alpha^n(V)$$

$$V_0 = V_+ \cap V_-, \quad V_{++} = \bigcup_{n \geq 0} \alpha^n(V_+), \quad V_{--} = \bigcup_{n \leq 0} \alpha^n(V_-)$$

In general neither of V_{++}, V_{--} is closed. However,

Theorem [Wi-94]

There is a compact open subgroup V such that V_{++} and V_{--} are closed and $V = V_+ V_-$. Such a subgroup is called a tidy subgroup for α.
Levi factor

We define the Levi factor $M_{\alpha} = \{ x \in G | \{ \alpha_n(x) \} \text{ is compact} \}$ and we have M_{α} is a α-invariant closed subgroup ([Wi-94]).

We observe that Proposition (GlR) α is expansive if and only if α restricted to M_{α} is expansive.

Raja Expansive
We define the Levi factor $M_\alpha = \{x \in G \mid \overline{\{\alpha^n(x)\}} \text{ is compact} \}$
Levi factor

We define the Levi factor $M_\alpha = \{ x \in G \mid \overline{\{ \alpha^n(x) \}} \text{ is compact} \}$ and we have

- M_α is a α-invariant closed subgroup ([Wi-94]).
We define the Levi factor $M_\alpha = \{ x \in G \mid \overline{\{ \alpha^n(x) \}} \text{ is compact} \}$ and we have

- M_α is a α-invariant closed subgroup ([Wi-94]).

we observe that

Proposition (GIR)

α is expansive if and only if α restricted to M_α is expansive.
Consequences of expansiveness

Assuming \(\alpha \) is expansive on \(G \), we observe the following:

- \(G \) is metrizable;
- \(V_0 \) is trivial for some compact open subgroup \(V \); and
- \(V = V + V^- \).

\(U_\alpha \) could be given a locally compact group topology \(\tau \) so that \(\alpha \) is contraction on \((U_\alpha, \tau) \) and the canonical injection \((U_\alpha, \tau) \to G \) is continuous (also proved in [Si-88]).

\(U_\alpha U_\alpha^{-1} \) is open and the converse holds if \(U_\alpha \) is closed.

In general, the converse need not be true.
Assuming \(\alpha \) is expansive on \(G \), we observe the following:
Assuming α is expansive on G, we observe the following:

- G is metrizable;
Consequences of expansiveness

Assuming α is expansive on G, we observe the following:

- G is metrizable;
- V_0 is trivial for some compact open subgroup V and $V = V_+ V_-;$
Assuming α is expansive on G, we observe the following:

- G is metrizable;
- V_0 is trivial for some compact open subgroup V and $V = V_+ V_-$;
- U_{α} could be given a locally compact group topology τ so that α is contraction on (U_{α}, τ) and the canonical injection $(U_{\alpha}, \tau) \rightarrow G$ is continuous (also proved in [Si-88]).
Assuming α is expansive on G, we observe the following:

- G is metrizable;
- V_0 is trivial for some compact open subgroup V and $V = V_+ V_-;$
- U_α could be given a locally compact group topology τ so that α is contraction on (U_α, τ) and the canonical injection $(U_\alpha, \tau) \to G$ is continuous (also proved in [Si-88]).
- $U_\alpha U_\alpha^{-1}$ is open
Assuming α is expansive on G, we observe the following:

- G is metrizable;
- V_0 is trivial for some compact open subgroup V and $V = V_+ V_-$;
- U_α could be given a locally compact group topology τ so that α is contraction on (U_α, τ) and the canonical injection $(U_\alpha, \tau) \rightarrow G$ is continuous (also proved in [Si-88]).
- $U_\alpha U_\alpha^{-1}$ is open and the converse holds if U_α is closed.
Assuming α is expansive on G, we observe the following:

- G is metrizable;
- V_0 is trivial for some compact open subgroup V and $V = V_+ V_-;$
- U_α could be given a locally compact group topology τ so that α is contraction on (U_α, τ) and the canonical injection $(U_\alpha, \tau) \to G$ is continuous (also proved in [Si-88]).
- $U_\alpha U_\alpha^{-1}$ is open and the converse holds if U_α is closed. In general, the converse need not be true.
Counter-example

Take $G = \mathbb{K}Z$ where \mathbb{K} is any compact group and α to be the right shift. In this situation, $U^\alpha U^{\alpha^{-1}} = G$. It can be shown that α is expansive iff \mathbb{K} is finite. Here α is never contractive since U^α as well as $U^{\alpha^{-1}}$ is a proper subgroup.

Raja Expansive
Take $G = K^\mathbb{Z}$
Counter-example

Take $G = K^Z$ where
Counter-example

Take $G = K^\mathbb{Z}$ where K is any compact group
Counter-example

Take $G = K^Z$ where K is any compact group and
Take $G = K^\mathbb{Z}$ where K is any compact group and α to be the right shift.
Counter-example

Take \(G = K^\mathbb{Z} \) where \(K \) is any compact group and \(\alpha \) to be the right shift.

In this situation,
Counter-example

Take $G = K^\mathbb{Z}$ where K is any compact group and α to be the right shift.
In this situation, $U_\alpha U_{\alpha^{-1}} = G$.
Take $G = K^Z$ where K is any compact group and α to be the right shift.
In this situation, $U_\alpha U_{\alpha^{-1}} = G$.
It can be shown that
Take $G = K^Z$ where K is any compact group and α to be the right shift.
In this situation, $U_\alpha U_{\alpha^{-1}} = G$.
It can be shown that α is expansive.
Counter-example

Take $G = K^Z$ where K is any compact group and α to be the right shift.

In this situation, $U_\alpha U_{\alpha^{-1}} = G$.

It can be shown that α is expansive iff
Take $G = K^Z$ where K is any compact group and α to be the right shift.
In this situation, $U_\alpha U_{\alpha^{-1}} = G$.
It can be shown that α is expansive iff K is finite.
Take $G = K^Z$ where K is any compact group and α to be the right shift. In this situation, $U_\alpha U_{\alpha^{-1}} = G$. It can be shown that α is expansive iff K is finite. Here α is never contractive since U_α as well as $U_{\alpha^{-1}}$ is a proper subgroup.
Normal series

Assume α is expansive on G.

Theorem (GlR)

There exists α-stable subnormal series of closed subgroups $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that

1. every α-stable closed normal subgroup of G_{j-1}/G_j is discrete or open.
2. each of the quotient groups G_{j-1}/G_j is discrete, abelian or topologically perfect.

Proof

We first find an upper bound for the number of j in any subnormal series $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ for which G_{j-1}/G_j is not discrete. We choose a series that has maximum such j, hence subfactors of such a series satisfy (1). For each such j we introduce $(G_{j-1} \supseteq M_j \supseteq N_j \supseteq G_j)$ so that the conclusion are valid for the subfactors.

Raja Expansive
Assume α is expansive on G.

Theorem (GIR)

There exists α-stable subnormal series of closed subgroups $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that

1. every α-stable closed normal subgroup of G_j is discrete or open.
2. each of the quotient groups G_j / G_{j-1} is discrete, abelian or topologically perfect.
Assume α is expansive on G.

Theorem (GIR)

There exists α-stable subnormal series of closed subgroups $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that

1. every α-stable closed normal subgroup of G_{j-1}/G_j is discrete or open and

 (2) each of the quotient groups G_{j-1}/G_j is discrete, abelian or topologically perfect.

Proof

We first find an upper bound for number of j in any subnormal series $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ for which G_{j-1}/G_j is not discrete. We choose a series that has maximum such j, hence subfactors of such a series satisfy (1). For each such j we introduce $(G_j \supseteq N_j \supseteq G_{j+1})$ so that the conclusion are valid for the subfactors.
Normal series

Assume α is expansive on G.

Theorem (GIR)

There exists α-stable subnormal series of closed subgroups $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that

1. every α-stable closed normal subgroup of G_{j-1}/G_j is discrete or open and
2. each of the quotient groups G_{j-1}/G_j is discrete, abelian or topologically perfect.

Proof

We first find an upper bound for number of j in any subnormal series $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ for which G_{j-1}/G_j is not discrete. We choose a series that has maximum such j, hence subfactors of such a series satisfy (1).

For each such j we introduce $(G_{j-1} \supseteq M_j \supseteq N_j \supseteq G_j)$ so that the conclusion are valid for the subfactors.
Normal series

Assume α is expansive on G.

Theorem (GIR)

There exists α-stable subnormal series of closed subgroups $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that

1. every α-stable closed normal subgroup of G_{j-1}/G_j is discrete or open and
2. each of the quotient groups G_{j-1}/G_j is discrete, abelian or topologically perfect.

Proof
Normal series

Assume α is expansive on G.

Theorem (GIR)

There exists α-stable subnormal series of closed subgroups $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that

1. every α-stable closed normal subgroup of G_{j-1}/G_j is discrete or open and
2. each of the quotient groups G_{j-1}/G_j is discrete, abelian or topologically perfect.

Proof

- We first find an upper bound for number of j in any subnormal series $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ for which G_{j-1}/G_j is not discrete.
Assume α is expansive on G.

Theorem (GIR)

There exists α-stable subnormal series of closed subgroups $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that

1. every α-stable closed normal subgroup of G_{j-1}/G_j is discrete or open and
2. each of the quotient groups G_{j-1}/G_j is discrete, abelian or topologically perfect.

Proof

- We first find an upper bound for number of j in any subnormal series $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ for which G_{j-1}/G_j is not discrete.
- We choose a series that has maximum such j, \ldots
Assume α is expansive on G.

Theorem (GIR)

There exists α-stable subnormal series of closed subgroups $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that

1. every α-stable closed normal subgroup of G_{j-1}/G_j is discrete or open and
2. each of the quotient groups G_{j-1}/G_j is discrete, abelian or topologically perfect.

Proof

- We first find an upper bound for number of j in any subnormal series $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ for which G_{j-1}/G_j is not discrete.

- We choose a series that has maximum such j, hence subfactors of such a series satisfy (1).
Normal series

Assume α is expansive on G.

Theorem (GIR)

There exists α-stable subnormal series of closed subgroups $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that (1) every α-stable closed normal subgroup of G_{j-1}/G_j is discrete or open and (2) each of the quotient groups G_{j-1}/G_j is discrete, abelian or topologically perfect.

Proof

- We first find an upper bound for number of j in any subnormal series $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ for which G_{j-1}/G_j is not discrete.
- We choose a series that has maximum such j, hence subfactors of such a series satisfy (1).
- For each such j we introduce $(G_{j-1} \supseteq) M_j \supseteq N_j (\supseteq G_j)$ so that the conclusion are valid for the subfactors.
A basic property

Theorem (GlR)

If α is expansive on G and H is a closed normal α-stable subgroup of G, then the factor of α is expansive on G/H.

The result was known for compact groups (see [Sch-95], [Wi-15]).

Proof

We restrict to the Levi factor and prove the expansiveness of the factor automorphism.
Theorem (GIR)

If α is expansive on G and H is a closed normal α-stable subgroup of G, then the factor of α is expansive on G/H.

The result was known for compact groups (see [Sch-95], [Wi-15]).

Proof

We restrict to the Levi factor and prove the expansiveness of the factor automorphism.
A basic property

Theorem (GIR)
If α is expansive on G and H is a closed normal \(\alpha \)-stable subgroup of G, then the factor of α is expansive on G/H.

The result was known for compact groups (see [Sch-95], [Wi-15]).

Proof
We restrict to the Levi factor and prove the expansiveness of the factor automorphism.
A basic property

Theorem (GIR)

If α is expansive on G and H is a closed normal α-stable subgroup of G, then the factor of α is expansive on G/H.

The result was known for compact groups (see [Sch-95], [Wi-15]).
Theorem (GIR)

If α is expansive on G and H is a closed normal α-stable subgroup of G, then the factor of α is expansive on G/H.

The result was known for compact groups (see [Sch-95], [Wi-15]).

Proof

We restrict to the Levi factor and prove the expansiveness of the factor automorphism.
The following are abelian groups with expansive automorphisms:

1. \mathbb{Q}_n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta: \mathbb{Q}_n \rightarrow \mathbb{Q}_n$ such that β or β^{-1} is contracting.

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

Let \mathbb{C}_p be the cyclic group of order p and $\mathbb{C}_{\mathbb{N}_0}^p$ be the restricted direct product.

2. $\mathbb{C}_{\mathbb{N}_0}^p \times \mathbb{C}_p$ with the right-shift;

3. $\mathbb{C}_{\mathbb{N}_0}^p \times \mathbb{C}_p$ with the left-shift;

4. $\mathbb{C}_{\mathbb{Z}}^p$ with the right-shift.

Theorem (GlR)

Let A be an abelian, totally disconnected, locally compact group and $\alpha: A \rightarrow A$ be an expansive automorphism. Assume that $A = \cup \alpha U \alpha^{-1}$ and every α-stable proper closed subgroup of A is discrete. Then there exists a prime number p such that (A, α) is isomorphic to one of the above.
The following are abelian groups with expansive automorphisms:

1. \mathbb{Q}_p^n for some $n \in \mathbb{N}$,
Abelian expansive groups

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta : \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.
Abelian expansive groups

The following are abelian groups with expansive automorphisms:

1. \(\mathbb{Q}_p^n \) for some \(n \in \mathbb{N} \), together with a linear automorphism \(\beta : \mathbb{Q}_p^n \to \mathbb{Q}_p^n \) such that \(\beta \) or \(\beta^{-1} \) is contracting.

Let \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \).
Abelian expansive groups

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta : \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

Let C_p be the cyclic group of order p.
Abelian expansive groups

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta : \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

Let C_p be the cyclic group of order p and $C_p^{(-\mathbb{N})}$ be the restricted direct product.
Abelian expansive groups

The following are abelian groups with expansive automorphisms:

(1) \(\mathbb{Q}_p^n \) for some \(n \in \mathbb{N} \), together with a linear automorphism \(\beta : \mathbb{Q}_p^n \to \mathbb{Q}_p^n \) such that \(\beta \) or \(\beta^{-1} \) is contracting.

Let \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \).

Let \(C_p \) be the cyclic group of order \(p \) and \(C_p^{(-\mathbb{N})} \) be the restricted direct product.

(2) \(C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0} \) with the right-shift;
Abelian expansive groups

The following are abelian groups with expansive automorphisms:

1. \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta : \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

2. $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the right-shift;

3. $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the left-shift;

4. $C_p^{\mathbb{Z}_p}$ with the right-shift.
Abelian expansive groups

The following are abelian groups with expansive automorphisms:

(1) \(\mathbb{Q}_p^n \) for some \(n \in \mathbb{N} \), together with a linear automorphism \(\beta : \mathbb{Q}_p^n \to \mathbb{Q}_p^n \) such that \(\beta \) or \(\beta^{-1} \) is contracting.

Let \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \).

Let \(C_p \) be the cyclic group of order \(p \) and \(C_p^{(-\mathbb{N})} \) be the restricted direct product.

(2) \(C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0} \) with the right-shift;
(3) \(C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0} \) with the left-shift;
(4) \(C_p^{\mathbb{Z}} \) with the right-shift.
Abelian expansive groups

The following are abelian groups with expansive automorphisms:

1. \(\mathbb{Q}_p^n \) for some \(n \in \mathbb{N} \), together with a linear automorphism \(\beta : \mathbb{Q}_p^n \to \mathbb{Q}_p^n \) such that \(\beta \) or \(\beta^{-1} \) is contracting.

Let \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \).

Let \(C_p \) be the cyclic group of order \(p \) and \(C_p^{(-\mathbb{N})} \) be the restricted direct product.

2. \(C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0} \) with the right-shift;

3. \(C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0} \) with the left-shift;

4. \(C_p^\mathbb{Z} \) with the right-shift.

Theorem (GIR)

Let \(A \) be an abelian, totally disconnected, locally compact group and \(\alpha : A \to A \) be an expansive automorphism.
Abelian expansive groups

The following are abelian groups with expansive automorphisms:

1. \(\mathbb{Q}_p^n \) for some \(n \in \mathbb{N} \), together with a linear automorphism \(\beta : \mathbb{Q}_p^n \to \mathbb{Q}_p^n \) such that \(\beta \) or \(\beta^{-1} \) is contracting.

Let \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \).

Let \(C_p \) be the cyclic group of order \(p \) and \(C_p^{(-\mathbb{N})} \) be the restricted direct product.

2. \(C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0} \) with the right-shift;
3. \(C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0} \) with the left-shift;
4. \(C_p^\mathbb{Z} \) with the right-shift.

Theorem (GIR)

Let \(A \) be an abelian, totally disconnected, locally compact group and \(\alpha : A \to A \) be an expansive automorphism. Assume that \(A = U_\alpha U_{\alpha^{-1}} \) and
Abelian expansive groups

The following are abelian groups with expansive automorphisms:

1. \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta : \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

Let C_p be the cyclic group of order p and $C_p^{(-\mathbb{N})}$ be the restricted direct product.

2. $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the right-shift;
3. $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the left-shift;
4. $C_p^{\mathbb{Z}}$ with the right-shift.

Theorem (GIR)

Let A be an abelian, totally disconnected, locally compact group and $\alpha : A \to A$ be an expansive automorphism. Assume that $A = U_\alpha U_{\alpha^{-1}}$ and every α-stable proper closed subgroup of A is discrete.
Abelian expansive groups

The following are abelian groups with expansive automorphisms:

1. \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta : \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

Let C_p be the cyclic group of order p and $C_p^{(-\mathbb{N})}$ be the restricted direct product.

2. $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the right-shift;
3. $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the left-shift;
4. $C_p^\mathbb{Z}$ with the right-shift.

Theorem (GIR)

Let A be an abelian, totally disconnected, locally compact group and $\alpha : A \to A$ be an expansive automorphism. Assume that $A = U_\alpha U_{\alpha^{-1}}$ and every α-stable proper closed subgroup of A is discrete. Then there exists a prime number p such that (A, α) is isomorphic to one of the above.
Abelian expansive groups

The following are abelian groups with expansive automorphisms:

1. \(\mathbb{Q}_p^n \) for some \(n \in \mathbb{N} \), together with a linear automorphism \(\beta : \mathbb{Q}_p^n \to \mathbb{Q}_p^n \) such that \(\beta \) or \(\beta^{-1} \) is contracting.

Let \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \).

Let \(C_p \) be the cyclic group of order \(p \) and \(C_p^{(-\mathbb{N})} \) be the restricted direct product.

2. \(C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0} \) with the right-shift;
3. \(C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0} \) with the left-shift;
4. \(C_p^\mathbb{Z} \) with the right-shift.

Theorem (GIR)

Let \(A \) be an abelian, totally disconnected, locally compact group and \(\alpha : A \to A \) be an expansive automorphism. Assume that \(A = U_\alpha U_{\alpha^{-1}} \) and every \(\alpha \)-stable proper closed subgroup of \(A \) is discrete. Then there exists a prime number \(p \) such that \((A, \alpha)\) is isomorphic to one of the above.
Lie groups over local fields

Proposition (GlR)

An automorphism α of a Lie group over a local field is expansive if and only if the differential $d\alpha$ has no eigenvalue of absolute value one.

Proposition [Bourbaki]

If a Lie algebra has an automorphism that has no eigenvalue of absolute value one, then the Lie algebra is nilpotent.

Corollary (GlR)

If a Lie group over a local field has an expansive automorphism, then its Lie algebra is nilpotent.

Raja Expansive
Lie groups over local fields

Proposition (GIR)
An automorphism α of a Lie group over a local field is expansive if and only if the differential $d\alpha$ has no eigenvalue of absolute value one.
Proposition (GIR)
An automorphism α of a Lie group over a local field is expansive if and only if the differential $d\alpha$ has no eigenvalue of absolute value one.

Proposition [Bourbaki]
If a Lie algebra has an automorphism that has no eigenvalue of absolute value one, then the Lie algebra is nilpotent.
Lie groups over local fields

Proposition (GIR)

An automorphism α of a Lie group over a local field is expansive if and only if the differential $d\alpha$ has no eigenvalue of absolute value one.

Proposition [Bourbaki]

If a Lie algebra has an automorphism that has no eigenvalue of absolute value one, then the Lie algebra is nilpotent.

Corollary (GIR)

If a Lie group over a local field has an expansive automorphism, then its Lie algebra is nilpotent.
Even for a p-adic Lie group, $U_\alpha U_\alpha^{-1}$ may not be a group. However, Theorem (GlR)

Let G be a p-adic Lie group with an expansive automorphism α.

If G has a continuous injection into $\text{GL}_n(\mathbb{Q}_p)$, then G has a α-stable nilpotent open subgroup.

If G is a p-adic linear group, then $U_\alpha U_\alpha^{-1}$ is an open unipotent (α-stable) algebraic subgroup of G.

Even for a p-adic linear group, U_α may not normalize U_α^{-1}: recall that U_α as well as U_α^{-1} both are closed.
Even for a p-adic Lie group, $U_\alpha U_\alpha^{-1}$ may not be a group. However,
Even for a p-adic Lie group, $U_\alpha U_{\alpha^{-1}}$ may not be a group. However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism α.
Even for a p-adic Lie group, $U_\alpha U_\alpha^{-1}$ may not be a group. However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism α. If G has a continuous injection into $GL_n(\mathbb{Q}_p)$,
Even for a p-adic Lie group, $U_\alpha U_\alpha^{-1}$ may not be a group. However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism α. If G has a continuous injection into $GL_n(\mathbb{Q}_p)$, then G has a α-stable nilpotent open subgroup.
Even for a p-adic Lie group, $U_\alpha U_{\alpha^{-1}}$ may not be a group. However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism α. If G has a continuous injection into $GL_n(\mathbb{Q}_p)$, then G has a α-stable nilpotent open subgroup. If G is a p-adic linear group,
Even for a p-adic Lie group, $U_\alpha U_\alpha^{-1}$ may not be a group. However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism α. If G has a continuous injection into $GL_n(\mathbb{Q}_p)$, then G has a α-stable nilpotent open subgroup. If G is a p-adic linear group, then $U_\alpha U_\alpha^{-1}$ is an open unipotent (α-stable) algebraic subgroup of G.

Recall that U_α as well as U_α^{-1} both are closed.
Even for a \(p \)-adic Lie group, \(U_\alpha U_{\alpha^{-1}} \) may not be a group. However,

Theorem (GIR)

Let \(G \) be a \(p \)-adic Lie group with an expansive automorphism \(\alpha \). If \(G \) has a continuous injection into \(GL_n(\mathbb{Q}_p) \), then \(G \) has a \(\alpha \)-stable nilpotent open subgroup. If \(G \) is a \(p \)-adic linear group, then \(U_\alpha U_{\alpha^{-1}} \) is an open unipotent (\(\alpha \)-stable) algebraic subgroup of \(G \).

Even for a \(p \)-adic linear group, \(U_\alpha \) may not normalize \(U_{\alpha^{-1}} \):
Even for a p-adic Lie group, $U_\alpha U_{\alpha^{-1}}$ may not be a group. However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism α. If G has a continuous injection into $GL_n(\mathbb{Q}_p)$, then G has a α-stable nilpotent open subgroup. If G is a p-adic linear group, then $U_\alpha U_{\alpha^{-1}}$ is an open unipotent (α-stable) algebraic subgroup of G.

Even for a p-adic linear group, U_α may not normalize $U_{\alpha^{-1}}$: recall that U_α as well as $U_{\alpha^{-1}}$ both are closed.
Let $G = \{(x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p\}$ with multiplication given by
Let $G = \{(x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p\}$ with multiplication given by
\[(x, y, z + \mathbb{Z}_p)(x', y', z' + \mathbb{Z}_p) = (x + x', y + y', z + z' + xy' + \mathbb{Z}_p)\]
and
Let $G = \{(x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p\}$ with multiplication given by

$$(x, y, z + \mathbb{Z}_p)(x', y', z' + \mathbb{Z}_p) = (x + x', y + y', z + z' + xy' + \mathbb{Z}_p)$$

and $\alpha : G \to G$ be given by

$$\alpha(x, y, z + \mathbb{Z}_p) = (x/p, py, z + \mathbb{Z}_p).$$
Let $G = \{(x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p\}$ with multiplication given by

$$(x, y, z + \mathbb{Z}_p)(x', y', z' + \mathbb{Z}_p) = (x + x', y + y', z + z' + xy' + \mathbb{Z}_p)$$

and $\alpha: G \to G$ be given by

$$\alpha(x, y, z + \mathbb{Z}_p) = (x/p, py, z + \mathbb{Z}_p).$$

Here, $U_\alpha = \{(0, y, \mathbb{Z}_p) \mid y \in \mathbb{Q}_p\}$ and $U_{\alpha^{-1}} = \{(x, 0, \mathbb{Z}_p) \mid x \in \mathbb{Q}_p\}.$
Let \(G = \{(x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p\} \) with multiplication given by

\[
(x, y, z + \mathbb{Z}_p)(x', y', z' + \mathbb{Z}_p) = (x + x', y + y', z + z' + xy' + \mathbb{Z}_p)
\]

and \(\alpha: G \to G \) be given by

\[
\alpha(x, y, z + Z_p) = \left(x/p, py, z + \mathbb{Z}_p\right).
\]

Here, \(U_\alpha = \{(0, y, \mathbb{Z}_p) \mid y \in \mathbb{Q}_p\} \) and \(U_{\alpha^{-1}} = \{(x, 0, \mathbb{Z}_p) \mid x \in \mathbb{Q}_p\} \). Thus, \(U_\alpha U_{\alpha^{-1}} = \{(x, y, \mathbb{Z}_p) \mid x, y \in \mathbb{Q}_p\} \) which is not even a group.
p-adic Lie groups contd.,

\[H = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, z \in \mathbb{Q}_p \right\} \]

and \(G = H \times H \).

Define \(\beta : H \to H \) by

\[\beta \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & px/\p & z/\p^2 \\ 0 & 1 & y/\p \\ 0 & 0 & 1 \end{pmatrix} \]

and take \(\alpha = \beta \times \beta^{-1} \) on \(G \).

Then \(U_\alpha = \left\{ \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| x \in \mathbb{Q}_p \right\} \times \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \middle| y, z \in \mathbb{Q}_p \right\} \)

and \(U_\alpha^{-1} = \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \middle| y, z \in \mathbb{Q}_p \right\} \times \left\{ \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| x \in \mathbb{Q}_p \right\} \).

In this case \(U_\alpha U_\alpha^{-1} = G \), but neither \(U_\alpha \) nor \(U_\alpha^{-1} \) normalize the other.
Take $H = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Q}_p \right\}$ and $G = H \times H$. Define $\beta : H \to H$ by

$$
\begin{pmatrix} 1 & px & z/p \\ 0 & 1 & y/p^2 \\ 0 & 0 & 1 \end{pmatrix}
$$

and take $\alpha = \beta \times \beta^{-1}$ on G. Then $U_\alpha = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \right\} \times \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \right\}$ and $U_{\alpha^{-1}} = \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \right\} \times \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$. In this case $U_\alpha U_{\alpha^{-1}} = G$ but neither U_α nor $U_{\alpha^{-1}}$ normalize the other.
Take $H = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Q}_p \right\}$ and $G = H \times H$.

Define $\beta : H \to H$ by $\beta \left(\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \right) = \begin{pmatrix} 1 & px & z/p \\ 0 & 1 & y/p^2 \\ 0 & 0 & 1 \end{pmatrix}$.
Take $H = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Q}_p \right\}$ and $G = H \times H$.

Define $\beta : H \to H$ by $\beta \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & px & z/p \\ 0 & 1 & y/p^2 \\ 0 & 0 & 1 \end{pmatrix}$ and take $\alpha = \beta \times \beta^{-1}$ on G.
Take $H = \{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Q}_p \}$ and $G = H \times H$.

Define $\beta : H \to H$ by $\beta \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & px & z/p \\ 0 & 1 & y/p^2 \\ 0 & 0 & 1 \end{pmatrix}$ and take $\alpha = \beta \times \beta^{-1}$ on G.

Then

$U_{\alpha} = \{ \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid x \in \mathbb{Q}_p \} \times \{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid y, z \in \mathbb{Q}_p \}$ and
Take $H = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Q}_p \right\}$ and $G = H \times H$.

Define $\beta : H \rightarrow H$ by $\beta \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & px & z/p \\ 0 & 1 & y/p^2 \\ 0 & 0 & 1 \end{pmatrix}$ and take $\alpha = \beta \times \beta^{-1}$ on G. Then

$U_\alpha = \left\{ \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid x \in \mathbb{Q}_p \right\} \times \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid y, z \in \mathbb{Q}_p \right\}$ and

$U_{\alpha^{-1}} = \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid y, z \in \mathbb{Q}_p \right\} \times \left\{ \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid x \in \mathbb{Q}_p \right\}$.
Take $H = \{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Q}_p \}$ and $G = H \times H$.

Define $\beta : H \to H$ by $\beta \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & px & z/p \\ 0 & 1 & y/p^2 \\ 0 & 0 & 1 \end{pmatrix}$ and take

$\alpha = \beta \times \beta^{-1}$ on G then

$U_\alpha = \{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid x \in \mathbb{Q}_p \} \times \{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid y, z \in \mathbb{Q}_p \}$ and

$U_{\alpha^{-1}} = \{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid y, z \in \mathbb{Q}_p \} \times \{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid x \in \mathbb{Q}_p \}$. In this case $U_\alpha U_{\alpha^{-1}} = G$.
Take $H = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Q}_p \right\}$ and $G = H \times H$.

Define $\beta: H \to H$ by $\beta \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & px & z/p \\ 0 & 1 & y/p^2 \\ 0 & 0 & 1 \end{pmatrix}$ and take $\alpha = \beta \times \beta^{-1}$ on G.

Then $U_\alpha = \left\{ \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid x \in \mathbb{Q}_p \right\} \times \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid y, z \in \mathbb{Q}_p \right\}$ and $U_{\alpha^{-1}} = \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid y, z \in \mathbb{Q}_p \right\} \times \left\{ \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid x \in \mathbb{Q}_p \right\}$.

In this case $U_\alpha U_{\alpha^{-1}} = G$ but neither U_α nor $U_{\alpha^{-1}}$ normalize the other.
Thanks for your attention!!!