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Automorphism, contraction groups

@ G - locally compact totally disconnected group, that is, G has
arbitrarily small compact open subgroups.
@ By an automorphisms « of G, we mean a continuous
automorphism.
For an automorphism « of G we consider the following two
subgroups:
o Uy ={x€ G |limpsoa’(x)=e} - known as the
contraction group of «
o Uy-1={x€ G |lim,,_a"(x) = e}
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Remarks about U, and U,-:

We recall the following facts about the contraction groups.

@ In general, neither U, nor U,-1 is closed;
e U, is closed if and only if U,-1 is closed ([BaWi-04]);

o If G is a p-adic Lie group, U, is closed, in fact an unipotent
algebraic group ([Wa-84]).
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Expansive automorphism

« will denote an automorphisms of a totally disconnected locally
compact group G.

« is called expansive if there is a compact open subgroup K of G
such that Npeza”(K) = {e}.

Aim: Study the structure of groups that admit expansive
automorphisms

The following are easy to observe:

@ Automorphisms on discrete groups are expansive.

@ If « restricted to an open subgroup is expansive, then « is
expansive.

@ Equicontinuous automorphisms on a non-discrete group is not
expansive. For instance a € GL,(Zy) is not expansive on Q.
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Examples - Contraction

@ scalar multiplication on QQ, by p is expansive. In this case,
Ua = Qp.

Automorphisms for which U, = G, are called contractive and
groups admitting contractive automorphisms are called contraction
groups.

@ Any contractive automorphism is expansive.
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Expansive but not contractive

Let G = {(x,y,z+Zp) | x,y,z € Qp} with multiplication given by
(v, z+Zp) X,y 2 +Zp) = (x+ X,y +y.z+ 2 +xy' + Zp)
and a: G — G be given by

alx,y,z+ Z,) = (x/p,py,z + ZLp).

Then « is an expansive automorphism but G does not admit any
contractive automorphism as the commutator of G is discrete.
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Tidy subgroup

Let « be an automorphism of G. For a compact open subgroup V/,
consider the following:

Vi = Mnsoa™(V), Vo = Nneoa™(V)
Vo=V NV, Vi, = Unzoan(V+), V__ = Ungoan(v_)

In general neither of V,, V__ is closed. However,

Theorem [Wi-94]

There is a compact open subgroup V such that V., and V__ are
closed and V = V, V_: such a subgroup is called a tidy subgroup
for a.
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We define the Levi factor M, = {x € G | {a"(x)} is compact }
and we have

e M, is a a-invariant closed subgroup ([Wi-94]).
we observe that
Proposition (GIR)

« is expansive if and only if « restricted to M, is expansive.
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Consequences of expansiveness

Assuming « is expansive on G, we observe the following:

G is metrizable;

Vo is trivial for some compact open subgroup V and
V=V.V

U, could be given a locally compact group topology 7 so that
« is contraction on (U,,7) and the canonical injection
(Ua, 7) — G is continuous (also proved in [Si-88]).

o U,U,-1 is open and the converse holds if U, is closed. In
general, the converse need not be true.
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Counter-example

Take G = KZ where K is any compact group and « to be the
right shift.

In this situation, U,U,-1 = G.
It can be shown that « is expansive iff K is finite.

Here « is never contractive since U, as well as U,-1 is a proper
subgroup.
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Normal series

Assume « is expansive on G.

Theorem (GIR)

There exists a-stable subnormal series of closed subgroups
G=Gy2 Gy DD G,={e} of G such that

(1) every a-stable closed normal subgroup of G;_1/G;j is discrete or
open and (2) each of the quotient groups Gj_1/G; is discrete,
abelian or topologically perfect.

@ We first find an upper bound for number of j in any
subnormal series G = Gy O G; 2 --- O G, = {e} for which
Gj—1/G;j is not discrete.

@ We choose a series that has maximum such j, hence
subfactors of such a series satisfy (1).

@ For each such j we introduce (Gj_1 2)M; O N;j(2 G;j) so that
the conclusion are valid for the subfactors.
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A basic property

Theorem (GIR)

If « is expansive on G and H is a closed normal a-stable subgroup
of G, then the factor of « is expansive on G/H.

The result was known for compact groups (see [Sch-95], [Wi-15]).

We restrict to the Levi factor and prove the expansiveness of the
factor automorphism.
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The following are abelian groups with expansive automorphisms:
(1) Qp for some n € N, together with a linear automorphism
B: Qp — Qp such that 8 or 71 is contracting.
Let No = NU {0}.
Let C, be the cyclic group of order p and C,(,_N) be the restricted
direct product.
(2) ¢ x Cho with the right-shift;
(3) ¢S x Co with the left-shift;
(4) CpZ with the right-shift.

Theorem (GIR)

Let A be an abelian, totally disconnected, locally compact group
and a: A — A be an expansive automorphism.
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Let A be an abelian, totally disconnected, locally compact group
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The following are abelian groups with expansive automorphisms:
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Lie groups over local fields

Proposition (GIR)

An automorphism « of a Lie group over a local field is expansive if
and only if the differential da has no eigenvalue of absolute value
one.

Proposition [Bourbaki]

If a Lie algebra has an automorphism that has no eigenvalue of
absolute value one, then the Lie algebra is nilpotent.

Corollary (GIR)

If a Lie group over a local field has an expansive automorphism,
then its Lie algebra is nilpotent.
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p-adic Lie groups

Even for a p-adic Lie group, U,U,-1 may not be a group.
However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism «. If
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p-adic Lie groups

Even for a p-adic Lie group, U,U,-1 may not be a group.
However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism «. If
G has a continuous injection into GL,(Qp), then G has a a-stable
nilpotent open subgroup. If G is a p-adic linear group, then

Uy U,-1 is an open unipotent (a-stable) algebraic subgroup of G.

Even for a p-adic linear group, U, may not normalize U,-1: recall
that U, as well as U,-1 both are closed.
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p-adic Lie groups contd.,

Let G = {(x,y,z+Zp) | x,y,z € Qp} with multiplication given by
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p-adic Lie groups contd.,

Let G = {(x,y,z+Zp) | x,y,z € Qp} with multiplication given by
(x,y,z+Zp)(x’,y',z’+Zp) = (x—l—x’,y+y',z+z'+xy'+ZP)

and
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p-adic Lie groups contd.,

Let G = {(x,y,z+Zp) | x,y,z € Qp} with multiplication given by
(v, z+Zp) X,y 2 +Zp) = (x+ X,y +y.z+Z +xy +Zp)
and a: G — G be given by

a(x,y,z+ Zp) = (x/p,py,z + ZLp).
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p-adic Lie groups contd.,

Let G = {(x,y,z+Zp) | x,y,z € Qp} with multiplication given by
(v, z+Zp) X,y 2 +Zp) = (x+ X,y +y.z+Z +xy +Zp)
and a: G — G be given by

alx,y,z+ Z,) = (x/p,py,z + ZLp).

Here Ua ={(0,y,Zp) | y € Qp} and
1 ={(x,0,Z )|X€@p}
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p-adic Lie groups contd.,

Let G = {(x,y,z+Zp) | x,y,z € Qp} with multiplication given by
(v, z+Zp) X,y 2 +Zp) = (x+ X,y +y.z+Z +xy +Zp)
and a: G — G be given by

(JZ(X,y,Z+ ZP) = (X/p’pyaZ+Zp)-
Here, Uy = {(0,y,Zp) | y € Qp} and

Up-1 = {(x,0,Zp) | x € Qp}.
Thus, UyU,-1 = {(x,y,Zp) | X,y € Qp} which is not even a

group.
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p-adic Lie groups contd.,
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p-adic Lie groups contd.,

0
Take H={1|0 | x,y,z€ Qp} and G =H x H.
0

O~ X
_ < N
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p-adic Lie groups contd.,

0
TakeH{(O )x,y,zEQP}andGHxH.
0

O~ X
_ < N

1 x z
Define 5: H—>Hbypg|0 1 y
0 01
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p-adic Lie groups contd.,

0
TakeH{(O )x,y,zEQP}andGHxH.
0

O~ X
=< N

1 x z 1 px z/p
Define g: H—Hby |0 1 y 0 1 y/p?| and take
0 01 0 0

a=8Bxp"tonG
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p-adic Lie groups contd.,

0
TakeH{(O )x,y,zEQP}andGHxH.
0

O~ X
_ < N

1 x z
Define 5: H—>Hbypg|0 1 y
0 01

a=pxB"1ton G Then

1
Ua{(o
0

O~ X
= O O
N~ —
X
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X

~
N
O O =
O = O
=< N
N~ —
=

N
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—
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p-adic Lie groups contd.,

O~ X
_ < N

0
Take H={|0
0

1 x z 1 px z/p
Define 3: H—Hby [0 1 y|=(0 1 y/p?| and take
0 01 0 0

)Xa%ZEQp}and G=HXxH.

V4
y) |y,z€ Qp} and
1

0

1

0
10 1 x 0
01 |y, z€eQp} x{[0 1 0 |xeQp}.
00 ) (0 0 1)
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p-adic Lie groups contd.,
) | x,y,z€ Qp} and G = H x H.
1 px z/p
=0 1 y/p?| and take
0 0 1
a=pBxpB"1on G Then

x 0 1 Z
Ua{( 1 O)XEQP}X{<O y)y,zer}and
0 1 0 1
V4
y
1

0
1
0
)y726(@p}x{< )XGQP}.In

this case U,U,-1 = G

0
Take H={1]0
0

O~ X
=< N

1 x z
Define 5: H—>Hbypg|0 1 y
0 01

O O
= O O

X
1
0
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p-adic Lie groups contd.,

0 z
Take H={1|0 y|Ixy,zeQp}and G=H x H.
0 1

o = X

0

1

0

1 x 0
)y,zE@,,}x{(O 1 0| |xeQp}. In

this case U, U,-1 = G but neither U, nor U,-1 normalize the
other.
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Thanks for your attention!!!
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