Limits of Limit Sets

Mahan Mj, School of Mathematics, Tata Institute of Fundamental Research.

Mahan Mj Cannon-Thurston Maps

イロト イポト イヨト イヨト

= Discrete subgroup G of $PSL_2(\mathbb{C})$

= Discrete subgroup G of group of Isometries: $Isom(\mathbb{H}^3)$ i.e. Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$.

 $S^2 = \widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 .

Boundary = ideal end-points of geodesic rays.

ヘロン 人間 とくほ とくほ とう

= Discrete subgroup G of $PSL_2(\mathbb{C})$

= Discrete subgroup *G* of group of Isometries: $Isom(\mathbb{H}^3)$ i.e. Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$. $S^2 = \widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 .

Boundary = ideal end-points of geodesic rays.

ヘロト 人間 とくほ とくほ とう

= Discrete subgroup G of $PSL_2(\mathbb{C})$

= Discrete subgroup *G* of group of Isometries: $Isom(\mathbb{H}^3)$ i.e. Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$. $S^2 = \widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 .

Boundary = ideal end-points of geodesic rays.

ヘロト 人間 とくほ とくほ とう

- = Discrete subgroup G of $PSL_2(\mathbb{C})$
- = Discrete subgroup G of group of Isometries: $Isom(\mathbb{H}^3)$ i.e.

Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$. $S^2 = \widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 . Boundary = ideal end-points of geodesic rays.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- = Discrete subgroup G of $PSL_2(\mathbb{C})$
- = Discrete subgroup *G* of group of Isometries: $Isom(\mathbb{H}^3)$ i.e. Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$.

 $S^2 = \widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 . Boundary = ideal end-points of geodesic rays.

イロト 不得 とくほ とくほ とう

- = Discrete subgroup G of $PSL_2(\mathbb{C})$
- = Discrete subgroup G of group of Isometries: $Isom(\mathbb{H}^3)$ i.e.
- Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$.
- $S^2 = \widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 .

Boundary = ideal end-points of geodesic rays.

ヘロト 人間 とくほとくほとう

- = Discrete subgroup G of $PSL_2(\mathbb{C})$
- = Discrete subgroup G of group of Isometries: $Isom(\mathbb{H}^3)$ i.e.
- Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$.
- $S^2 = \widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 .

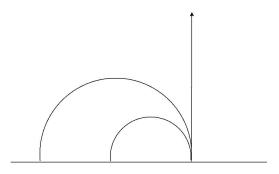
Boundary = ideal end-points of geodesic rays.

ヘロン ヘアン ヘビン ヘビン

- = Discrete subgroup G of $PSL_2(\mathbb{C})$
- = Discrete subgroup G of group of Isometries: $Isom(\mathbb{H}^3)$ i.e.
- Fundamental group of a hyperbolic manifold $M^3 = \mathbb{H}^3/G$.
- $S^2 = \widehat{\mathbb{C}}$ is the 'ideal' boundary of \mathbb{H}^3 .

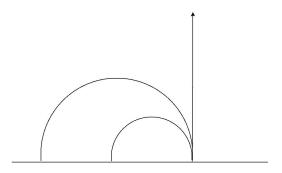
Boundary = ideal end-points of geodesic rays.

ヘロン ヘアン ヘビン ヘビン

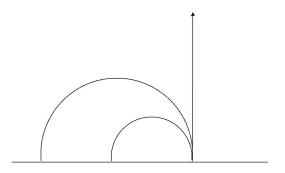


Topology/metric d_{ν} = angle subtended at $\nu \in \mathbb{H}^3$.

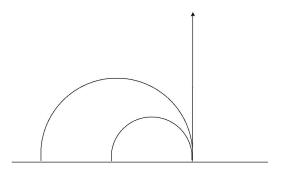
Geodesics are semicircles meeting the boundary at right angles.



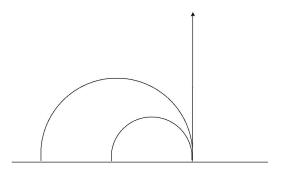
Topology/metric d_v = angle subtended at $v \in \mathbb{H}^3$. Geodesics are semicircles meeting the boundary at right angles.



Topology/metric d_v = angle subtended at $v \in \mathbb{H}^3$. Geodesics are semicircles meeting the boundary at right angles.

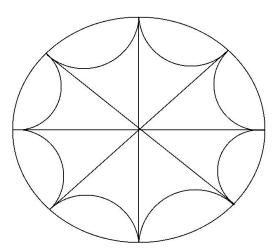


Topology/metric d_v = angle subtended at $v \in \mathbb{H}^3$. Geodesics are semicircles meeting the boundary at right angles.

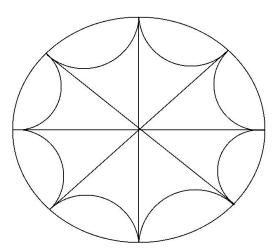


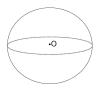
Topology/metric d_v = angle subtended at $v \in \mathbb{H}^3$. Geodesics are semicircles meeting the boundary at right angles.

Example



Example



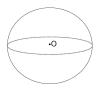


Limit set $\Lambda_G =$ Set of accumulation points in $\widehat{\mathbb{C}}$ of G.o for some (any) $o \in \mathbb{H}^3$.

Hence for a Fuchsian group (subgroup of $PSL_2(\mathbb{R})$), limit set = round equatorial circle.

Example of an infinite covolume Kleinian group.

くロト (過) (目) (日)

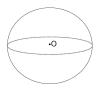


Limit set Λ_G = Set of accumulation points in $\widehat{\mathbb{C}}$ of *G.o* for some (any) $o \in \mathbb{H}^3$.

Hence for a Fuchsian group (subgroup of $PSL_2(\mathbb{R})$), limit set = round equatorial circle.

Example of an infinite covolume Kleinian group.

イロト イポト イヨト イヨト

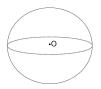


Limit set Λ_G = Set of accumulation points in $\widehat{\mathbb{C}}$ of *G.o* for some (any) $o \in \mathbb{H}^3$.

Hence for a Fuchsian group (subgroup of $PSL_2(\mathbb{R})$), limit set = round equatorial circle.

Example of an infinite covolume Kleinian group.

ヘロト 人間 ト ヘヨト ヘヨト

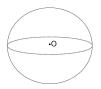


Limit set Λ_G = Set of accumulation points in $\widehat{\mathbb{C}}$ of *G.o* for some (any) $o \in \mathbb{H}^3$.

Hence for a Fuchsian group (subgroup of $PSL_2(\mathbb{R})$), limit set = round equatorial circle.

Example of an infinite covolume Kleinian group.

ヘロト ヘアト ヘビト ヘビト

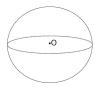


Limit set Λ_G = Set of accumulation points in $\widehat{\mathbb{C}}$ of *G.o* for some (any) $o \in \mathbb{H}^3$.

Hence for a Fuchsian group (subgroup of $PSL_2(\mathbb{R})$), limit set = round equatorial circle.

Example of an infinite covolume Kleinian group.

ヘロト ヘアト ヘビト ヘビト

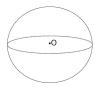


Limit set Λ_G = Set of accumulation points in $\widehat{\mathbb{C}}$ of *G.o* for some (any) $o \in \mathbb{H}^3$.

Hence for a Fuchsian group (subgroup of $PSL_2(\mathbb{R})$), limit set = round equatorial circle.

Example of an infinite covolume Kleinian group.

ヘロト ヘアト ヘビト ヘビト



Limit set Λ_G = Set of accumulation points in $\widehat{\mathbb{C}}$ of *G.o* for some (any) $o \in \mathbb{H}^3$.

Hence for a Fuchsian group (subgroup of $PSL_2(\mathbb{R})$), limit set = round equatorial circle.

Example of an infinite covolume Kleinian group.

ヘロト ヘアト ヘビト ヘビト

Limit set is the *locus of chaotic dynamics of the* Γ -*action on* S^2 . Complement: Two round open discs. On each, *G* acts freely (i.e. without fixed points) properly discontinuously, by conformal automorphisms. Hence quotient is two copies of the 'same' Riemann surface (one dimensional complex analytic manifold.) $\widehat{\mathbb{C}} \setminus \Lambda_G = \Omega_G$ is called the *domain of discontinuity* D_G of *G*.

イロト イポト イヨト イヨト

Limit set is the *locus of chaotic dynamics of the* Γ -*action on* S^2 . Complement: Two round open discs. On each, *G* acts freely (i.e. without fixed points) properly discontinuously, by conformal automorphisms. Hence quotient is two copies of the 'same' Riemann surface (one dimensional complex analytic manifold.) $\widehat{\mathbb{C}} \setminus \Lambda_G = \Omega_G$ is called the *domain of discontinuity* D_G of *G*.

ヘロト 人間 とくほとくほとう

Limit set is the *locus of chaotic dynamics of the* Γ *–action on* S^2 . Complement: Two round open discs.

On each, *G* acts freely (i.e. without fixed points) properly discontinuously, by conformal automorphisms. Hence quotient is two copies of the 'same' Riemann surface (one dimensional complex analytic manifold.) $\widehat{\mathbb{C}} \setminus \Lambda_G = \Omega_G$ is called the *domain of discontinuity* D_G of *G*.

ヘロト 人間 とくほとくほとう

Limit set is the *locus of chaotic dynamics of the* Γ -*action on* S^2 . Complement: Two round open discs. On each, *G* acts freely (i.e. without fixed points) properly discontinuously, by conformal automorphisms. Hence quotient is two copies of the 'same' Riemann surface (one dimensional complex analytic manifold.) $\widehat{C} \setminus \Lambda_G = \Omega_G$ is called the *domain of discontinuity* D_G of *G*.

<ロ> (四) (四) (三) (三) (三)

Limit set is the *locus of chaotic dynamics of the* Γ -*action on* S^2 . Complement: Two round open discs. On each, *G* acts freely (i.e. without fixed points) properly discontinuously, by conformal automorphisms. Hence quotient is two copies of the 'same' Riemann surface (one dimensional complex analytic manifold.) $\mathbb{C} \setminus \Lambda_G = \Omega_G$ is called the *domain of discontinuity* D_G of *G*.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Limit set is the *locus of chaotic dynamics of the* Γ -*action on* S^2 . Complement: Two round open discs. On each, *G* acts freely (i.e. without fixed points) properly discontinuously, by conformal automorphisms. Hence quotient is two copies of the 'same' Riemann surface

(one dimensional complex analytic manifold.)

 $\widehat{\mathbb{C}} \setminus \Lambda_G = \Omega_G$ is called the *domain of discontinuity* D_G of G.

イロト 不得 とくほと くほとう

э.

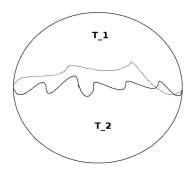
Limit set is the *locus of chaotic dynamics of the* Γ -*action on* S^2 . Complement: Two round open discs. On each, *G* acts freely (i.e. without fixed points) properly discontinuously, by conformal automorphisms. Hence quotient is two copies of the 'same' Riemann surface

(one dimensional complex analytic manifold.)

 $\widehat{\mathbb{C}} \setminus \Lambda_G = \Omega_G$ is called the *domain of discontinuity* D_G of G.

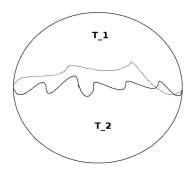
イロト 不得 とくほと くほとう

э.



Quasi Fuchsian groups –quasiconformal deformations. Ahlfors-Bers Simultaneous Uniformization. Limit set is the image under a quasiconformal map of the ro circle.

・ロト ・ 理 ト ・ ヨ ト ・

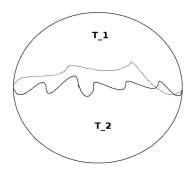


Quasi Fuchsian groups –quasiconformal deformations.

Ahlfors-Bers Simultaneous Uniformization.

Limit set is the image under a quasiconformal map of the round circle.

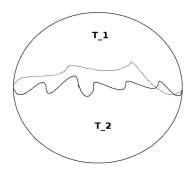
・ロト ・ 理 ト ・ ヨ ト ・



Quasi Fuchsian groups –quasiconformal deformations.

Ahlfors-Bers Simultaneous Uniformization. Limit set is the image under a quasiconformal map of the round circle.

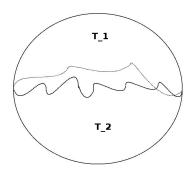
・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト



Quasi Fuchsian groups –quasiconformal deformations. Ahlfors-Bers Simultaneous Uniformization.

Limit set is the image under a quasiconformal map of the round circle.

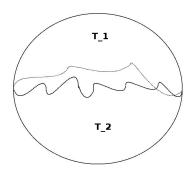
・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト



Quasi Fuchsian groups –quasiconformal deformations. Ahlfors-Bers Simultaneous Uniformization.

Limit set is the image under a quasiconformal map of the round circle.

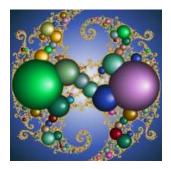
・ロト ・ 理 ト ・ ヨ ト ・



Quasi Fuchsian groups –quasiconformal deformations. Ahlfors-Bers Simultaneous Uniformization.

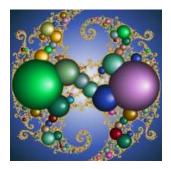
Limit set is the image under a quasiconformal map of the round circle.

・ロト ・ 理 ト ・ ヨ ト ・



Limits of quasiFuchsian groups: Thickness of Convex core CC(M) tends to infinity. 2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 . i.e. $I \rightarrow [0, \infty)$ (simply degenerate) OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).

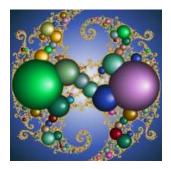
ヘロト ヘワト ヘビト ヘビト



Limits of quasiFuchsian groups:

Thickness of Convex core CC(M) tends to infinity. 2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 . i.e. $I \rightarrow [0, \infty)$ (simply degenerate) OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).

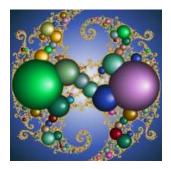
・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・



Limits of quasiFuchsian groups: Thickness of Convex core CC(M) tends to infinity.

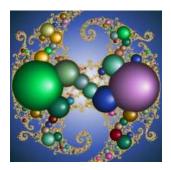
2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 . i.e. $I \rightarrow [0, \infty)$ (simply degenerate) OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).

ヘロア 人間 アメヨア 人口 ア



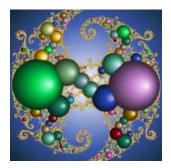
Limits of quasiFuchsian groups: Thickness of Convex core CC(M) tends to infinity. 2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 . i.e. $I \rightarrow [0, \infty)$ (simply degenerate) OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).

・ロット (雪) () () () ()

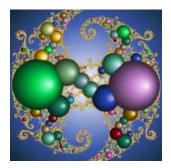


Limits of quasiFuchsian groups: Thickness of Convex core CC(M) tends to infinity. 2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 . i.e. $I \rightarrow [0, \infty)$ (simply degenerate) OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).

ヘロト ヘワト ヘビト ヘビト



Limits of quasiFuchsian groups: Thickness of Convex core CC(M) tends to infinity. 2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 . i.e. $I \rightarrow [0, \infty)$ (simply degenerate) OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).



Limits of quasiFuchsian groups: Thickness of Convex core CC(M) tends to infinity. 2 possibilities: Degenerate only τ_1 . Degenerate both τ_1, τ_2 . i.e. $I \rightarrow [0, \infty)$ (simply degenerate) OR $I \rightarrow (-\infty, \infty)$ (doubly degenerate).

• Thurston's Double Limit Theorem: Limits always Exist.

- Question (Thurston): What does limit set go to? In doubly degenerate case limit set of limiting group is all of C.
- Problem (Thurston): Understand these limits.

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

- Thurston's Double Limit Theorem: Limits always Exist.
- Question (Thurston): What does limit set go to? In doubly degenerate case limit set of limiting group is all of C.
- Problem (Thurston): Understand these limits.

- Thurston's Double Limit Theorem: Limits always Exist.
- Question (Thurston): What does limit set go to? In doubly degenerate case limit set of limiting group is all of C.
- Problem (Thurston): Understand these limits.

・ 回 ト ・ ヨ ト ・ ヨ ト

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ ,by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Thurston's Highly Influential Bulletin AMS 1982 paper:

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ ,by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Thurston's Highly Influential Bulletin AMS 1982 paper:

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ ,by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ , by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ , by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ , by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ , by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ ,by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ ,by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ ,by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ ,by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ ,by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- 2 J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ ,by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ ,by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Question

Qn. 14. Suppose Γ has the property that $(\mathbf{H}^3 \cup D_{\Gamma})/\Gamma$ is compact. Then is it true that the limit set of any other Kleinian group Γ' isomorphic to Γ is the continuous image of the limit set of Γ ,by a continuous map taking the fixed points of an element γ to the fixed points of the corresponding element γ' ?

First set of answers:

- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, 1985, preprint, Princeton.
- J. W. Cannon and W. P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355.

Question

14 (Part 2). There are examples to show that there is no continuous map

 $\Lambda_{\Gamma} \times$ (algebraic deformation space of Γ) \rightarrow S^2

which parametrizes the limit sets. Perhaps, though, there is a parametrization which is continuous separately in the two factors.

Question

14 (Part 2). There are examples to show that there is no continuous map

 $\Lambda_{\Gamma} \times$ (algebraic deformation space of Γ) \rightarrow S^2

which parametrizes the limit sets. Perhaps, though, there is a parametrization which is continuous separately in the two factors.

Question

14 (Part 2). There are examples to show that there is no continuous map

 $\Lambda_{\Gamma} \times$ (algebraic deformation space of Γ) \rightarrow S^2

which parametrizes the limit sets. Perhaps, though, there is a parametrization which is continuous separately in the two factors.

ヘロト ヘ回ト ヘヨト ヘヨト

Question

14 (Part 2). There are examples to show that there is no continuous map

$\Lambda_{\Gamma} \times$ (algebraic deformation space of $\Gamma) \rightarrow S^2$

which parametrizes the limit sets. Perhaps, though, there is a parametrization which is continuous separately in the two factors.

Question

14 (Part 2). There are examples to show that there is no continuous map

 $\Lambda_{\Gamma} \times$ (algebraic deformation space of $\Gamma) \rightarrow S^2$

which parametrizes the limit sets. Perhaps, though, there is a parametrization which is continuous separately in the two factors.

Question

14 (Part 2). There are examples to show that there is no continuous map

 $\Lambda_{\Gamma} \times$ (algebraic deformation space of $\Gamma) \to S^2$

which parametrizes the limit sets. Perhaps, though, there is a parametrization which is continuous separately in the two factors.

Question

14 (Part 2). There are examples to show that there is no continuous map

 $\Lambda_{\Gamma} \times$ (algebraic deformation space of $\Gamma) \rightarrow S^2$

which parametrizes the limit sets. Perhaps, though, there is a parametrization which is continuous separately in the two factors.

Theorem

(M-) There exist Cannon-Thurston maps for finitely generated (3d) Kleinian groups. i.e. if Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point $0 \in \mathbb{H}^3$) the natural map $i : \Gamma \to \mathbb{H}^3$ extends continuously to a map $\hat{i} : \widehat{\Gamma} \to \widehat{\mathbb{H}}^3$ between the compactifications (interpreted appropriately for the case with parabolics).

Theorem

(M-) Connected limit sets of f.g. (3d) Kleinian groups are locally connected.

Second follows from first using a result of Anderson-Maskit.

Theorem

(M-) There exist Cannon-Thurston maps for finitely generated (3d) Kleinian groups. i.e. if Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point $0 \in \mathbb{H}^3$) the natural map $i : \Gamma \to \mathbb{H}^3$ extends continuously to a map $\hat{i} : \widehat{\Gamma} \to \widehat{\mathbb{H}}^3$ between the compactifications (interpreted appropriately for the case with parabolics).

Theorem

(M-) Connected limit sets of f.g. (3d) Kleinian groups are locally connected.

Second follows from first using a result of Anderson-Maskit.

Theorem

(M-) There exist Cannon-Thurston maps for finitely generated (3d) Kleinian groups. i.e. if Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point $0 \in \mathbb{H}^3$) the natural map $i : \Gamma \to \mathbb{H}^3$ extends continuously to a map $\hat{i} : \widehat{\Gamma} \to \widehat{\mathbb{H}}^3$ between the compactifications (interpreted appropriately for the case with parabolics).

Theorem

(M-) Connected limit sets of f.g. (3d) Kleinian groups are locally connected.

Second follows from first using a result of Anderson-Maskit.

Theorem

(M-) There exist Cannon-Thurston maps for finitely generated (3d) Kleinian groups. i.e. if Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point $0 \in \mathbb{H}^3$) the natural map $i : \Gamma \to \mathbb{H}^3$ extends continuously to a map $\hat{i} : \widehat{\Gamma} \to \widehat{\mathbb{H}}^3$ between the compactifications (interpreted appropriately for the case with parabolics).

Theorem

(M-) Connected limit sets of f.g. (3d) Kleinian groups are locally connected.

Second follows from first using a result of Anderson-Maskit.

Theorem

(M-) There exist Cannon-Thurston maps for finitely generated (3d) Kleinian groups. i.e. if Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point $0 \in \mathbb{H}^3$) the natural map $i : \Gamma \to \mathbb{H}^3$ extends continuously to a map $\hat{i} : \Gamma \to \mathbb{H}^3$ between the compactifications (interpreted appropriately for the case with parabolics).

Theorem

(M-) Connected limit sets of f.g. (3d) Kleinian groups are locally connected.

Second follows from first using a result of Anderson-Maskit.

イロト イポト イヨト イヨト

Theorem

(M-) There exist Cannon-Thurston maps for finitely generated (3d) Kleinian groups. i.e. if Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point $0 \in \mathbb{H}^3$) the natural map $i : \Gamma \to \mathbb{H}^3$ extends continuously to a map $\hat{i} : \widehat{\Gamma} \to \widehat{\mathbb{H}}^3$ between the compactifications (interpreted appropriately for the case with parabolics).

Theorem

(M-) Connected limit sets of f.g. (3d) Kleinian groups are locally connected.

Second follows from first using a result of Anderson-Maskit.

ヘロト ヘ戸ト ヘヨト ヘヨト

Theorem

(M-) There exist Cannon-Thurston maps for finitely generated (3d) Kleinian groups. i.e. if Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point $0 \in \mathbb{H}^3$) the natural map $i : \Gamma \to \mathbb{H}^3$ extends continuously to a map $\hat{i} : \widehat{\Gamma} \to \widehat{\mathbb{H}^3}$ between the compactifications (interpreted appropriately for the case with parabolics).

Theorem

(M-) Connected limit sets of f.g. (3d) Kleinian groups are locally connected.

Second follows from first using a result of Anderson-Maskit.

くロト (過) (目) (日)

Theorem

(M-) There exist Cannon-Thurston maps for finitely generated (3d) Kleinian groups. i.e. if Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point $0 \in \mathbb{H}^3$) the natural map $i : \Gamma \to \mathbb{H}^3$ extends continuously to a map $\hat{i} : \widehat{\Gamma} \to \widehat{\mathbb{H}^3}$ between the compactifications (interpreted appropriately for the case with parabolics).

Theorem

(M-) Connected limit sets of f.g. (3d) Kleinian groups are locally connected.

Second follows from first using a result of Anderson-Maskit.

くロト (過) (目) (日)

Theorem

(M-) There exist Cannon-Thurston maps for finitely generated (3d) Kleinian groups. i.e. if Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point $0 \in \mathbb{H}^3$) the natural map $i : \Gamma \to \mathbb{H}^3$ extends continuously to a map $\hat{i} : \widehat{\Gamma} \to \widehat{\mathbb{H}^3}$ between the compactifications (interpreted appropriately for the case with parabolics).

Theorem

(M-) Connected limit sets of f.g. (3d) Kleinian groups are locally connected.

Second follows from first using a result of Anderson-Maskit.

<ロト <回 > < 注 > < 注 > 、

Theorem

(M-) There exist Cannon-Thurston maps for finitely generated (3d) Kleinian groups. i.e. if Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point $0 \in \mathbb{H}^3$) the natural map $i : \Gamma \to \mathbb{H}^3$ extends continuously to a map $\hat{i} : \widehat{\Gamma} \to \widehat{\mathbb{H}^3}$ between the compactifications (interpreted appropriately for the case with parabolics).

Theorem

(M-) Connected limit sets of f.g. (3d) Kleinian groups are locally connected.

Second follows from first using a result of Anderson-Maskit.

<ロト <回 > < 注 > < 注 > 、

Theorem

(M-) There exist Cannon-Thurston maps for finitely generated (3d) Kleinian groups. i.e. if Γ is the Cayley graph of a f.g. Kleinian group G, then (fixing a base point $0 \in \mathbb{H}^3$) the natural map $i : \Gamma \to \mathbb{H}^3$ extends continuously to a map $\hat{i} : \widehat{\Gamma} \to \widehat{\mathbb{H}^3}$ between the compactifications (interpreted appropriately for the case with parabolics).

Theorem

(M-) Connected limit sets of f.g. (3d) Kleinian groups are locally connected.

Second follows from first using a result of Anderson-Maskit.

ヘロト 人間 ト ヘヨト ヘヨト

Scheme:

M- hyperbolic 3-manifold homotopy equivalent to a closed hyperbolic surface S. \widetilde{S} and $\widetilde{M}(= \mathbf{H}^3)$ – universal covers of S, M. $\widetilde{i}: \widetilde{S} \to \widetilde{M}$ – inclusion of universal covers. **Goal:** Given hyperbolic geodesic segment $\lambda \subset \widetilde{S}$ lying outside large ball about $o \in \widetilde{S}$, show that geodesic in \mathbf{H}^3 joining endpoints of $\widetilde{i}(\lambda)$ lies outside large ball about $\widetilde{i}(o)$ in \mathbf{H}^3 .

・ 同 ト ・ ヨ ト ・ ヨ ト

Scheme:

M- hyperbolic 3-manifold homotopy equivalent to a closed hyperbolic surface S.

 \widetilde{S} and $\widetilde{M}(= \mathbf{H}^3)$ – universal covers of S, M. $\widetilde{i}: \widetilde{S} \to \widetilde{M}$ – inclusion of universal covers. **Goal:** Given hyperbolic geodesic segment $\lambda \subset \widetilde{S}$ lying outside large ball about $o \in \widetilde{S}$, show that geodesic in \mathbf{H}^3 joining endpoints of $\widetilde{i}(\lambda)$ lies outside large ball about $\widetilde{i}(o)$ in \mathbf{H}^3 .

・ 同 ト ・ ヨ ト ・ ヨ ト

Scheme:

M- hyperbolic 3-manifold homotopy equivalent to a closed hyperbolic surface S. \widetilde{S} and $\widetilde{M}(= \mathbf{H}^3)$ – universal covers of S, M. $\widetilde{i}: \widetilde{S} \to \widetilde{M}$ – inclusion of universal covers. **Goal:** Given hyperbolic geodesic segment $\lambda \subset \widetilde{S}$ lying outside large ball about $o \in \widetilde{S}$, show that geodesic in \mathbf{H}^3 joining endpoints of $\widetilde{i}(\lambda)$ lies outside large ball about $\widetilde{i}(o)$ in \mathbf{H}^3 .

・ 回 ト ・ ヨ ト ・ ヨ ト

Scheme:

 $\begin{array}{l} M-\text{ hyperbolic 3-manifold homotopy equivalent to a closed} \\ \text{hyperbolic surface S.} \\ \widetilde{S} \text{ and } \widetilde{M}(=\mathbf{H}^3) - \text{ universal covers of } S, M. \\ \widetilde{i}:\widetilde{S} \rightarrow \widetilde{M} - \text{ inclusion of universal covers.} \\ \textbf{Goal: Given hyperbolic geodesic segment } \lambda \subset \widetilde{S} \text{ lying outside} \\ \text{large ball about } o \in \widetilde{S}, \text{ show that geodesic in } \mathbf{H}^3 \text{ joining} \\ \text{endpoints of } \widetilde{i}(\lambda) \text{ lies outside large ball about } \widetilde{i}(o) \text{ in } \mathbf{H}^3. \end{array}$

・ 回 ト ・ ヨ ト ・ ヨ ト

Scheme:

 $\begin{array}{l} M-\text{ hyperbolic 3-manifold homotopy equivalent to a closed hyperbolic surface S.}\\ \widetilde{S} \text{ and } \widetilde{M}(=\mathbf{H}^3) - \text{ universal covers of } S, M.\\ \widetilde{i}:\widetilde{S} \rightarrow \widetilde{M} - \text{ inclusion of universal covers.}\\ \textbf{Goal: Given hyperbolic geodesic segment } \lambda \subset \widetilde{S} \text{ lying outside large ball about } o \in \widetilde{S}, \text{ show that geodesic in } \mathbf{H}^3 \text{ joining endpoints of } \widetilde{i}(\lambda) \text{ lies outside large ball about } \widetilde{i}(o) \text{ in } \mathbf{H}^3. \end{array}$

イロト イポト イヨト イヨト

Scheme:

M- hyperbolic 3-manifold homotopy equivalent to a closed hyperbolic surface S. \widetilde{S} and $\widetilde{M}(= \mathbf{H}^3)$ – universal covers of S, M. $\widetilde{i}: \widetilde{S} \to \widetilde{M}$ – inclusion of universal covers. **Goal:** Given hyperbolic geodesic segment $\lambda \subset \widetilde{S}$ lying outside large ball about $o \in \widetilde{S}$, show that geodesic in \mathbf{H}^3 joining endpoints of $\widetilde{i}(\lambda)$ lies outside large ball about $\widetilde{i}(o)$ in \mathbf{H}^3 .

・ 回 ト ・ ヨ ト ・ ヨ ト

Scheme:

 $\begin{array}{l} M-\text{ hyperbolic 3-manifold homotopy equivalent to a closed hyperbolic surface S.}\\ \widetilde{S} \text{ and } \widetilde{M}(=\mathbf{H}^3) - \text{ universal covers of } S, M.\\ \widetilde{i}:\widetilde{S}\rightarrow\widetilde{M}-\text{ inclusion of universal covers.}\\ \textbf{Goal: Given hyperbolic geodesic segment } \lambda\subset\widetilde{S} \text{ lying outside large ball about } o\in\widetilde{S}, \text{ show that geodesic in } \mathbf{H}^3 \text{ joining endpoints of } \widetilde{i}(\lambda) \text{ lies outside large ball about } \widetilde{i}(o)\text{ in } \mathbf{H}^3. \end{array}$

・ 回 ト ・ ヨ ト ・ ヨ ト

Scheme:

M- hyperbolic 3-manifold homotopy equivalent to a closed hyperbolic surface S. \widetilde{S} and $\widetilde{M}(= \mathbf{H}^3)$ – universal covers of S, M. $\widetilde{i}: \widetilde{S} \to \widetilde{M}$ – inclusion of universal covers. **Goal:** Given hyperbolic geodesic segment $\lambda \subset \widetilde{S}$ lying outside large ball about $o \in \widetilde{S}$, show that geodesic in \mathbf{H}^3 joining endpoints of $\widetilde{i}(\lambda)$ lies outside large ball about $\widetilde{i}(o)$ in \mathbf{H}^3 .

・ 戸 ・ ・ 三 ・ ・

Scheme:

 $\begin{array}{l} M-\text{ hyperbolic 3-manifold homotopy equivalent to a closed} \\ \text{hyperbolic surface S.} \\ \widetilde{S} \text{ and } \widetilde{M}(=\mathbf{H}^3) - \text{universal covers of } S, M. \\ \widetilde{i}:\widetilde{S} \rightarrow \widetilde{M} - \text{inclusion of universal covers.} \\ \textbf{Goal: Given hyperbolic geodesic segment } \lambda \subset \widetilde{S} \text{ lying outside} \\ \text{large ball about } o \in \widetilde{S}, \text{ show that geodesic in } \mathbf{H}^3 \text{ joining} \\ \text{endpoints of } \widetilde{i}(\lambda) \text{ lies outside large ball about } \widetilde{i}(o) \text{ in } \mathbb{H}^3. \end{array}$

Scheme:

M- hyperbolic 3-manifold homotopy equivalent to a closed hyperbolic surface S. \widetilde{S} and $\widetilde{M}(= \mathbf{H}^3)$ – universal covers of S, M. $\widetilde{i}: \widetilde{S} \to \widetilde{M}$ – inclusion of universal covers. **Goal:** Given hyperbolic geodesic segment $\lambda \subset \widetilde{S}$ lying outside large ball about $o \in \widetilde{S}$, show that geodesic in \mathbf{H}^3 joining endpoints of $\widetilde{i}(\lambda)$ lies outside large ball about $\widetilde{i}(o)$ in \mathbf{H}^3 .

Sequence of discrete faithful representations

 $\rho_n : G \to PSL_2(\mathbb{C}), n = 1, 2...$ converges to $\rho_\infty : G \to PSL_2(\mathbb{C})$ algebraically

 $\text{ if for all } g \in G, \, \rho_n(g) \to \rho_\infty(g). \\$

 ρ_n converges *geometrically* if $(G_n = \rho_n(G))$ converges as a sequence of closed subsets of $PSL_2(\mathbb{C})$ to $G_g \subset PSL_2(\mathbb{C})$. G_g is the *geometric limit* of (G_n) .

 (ρ_n) converges *strongly* to $\rho_{\infty}(G)$ if $\rho_{\infty}(G) = G_g$ and the convergence is both geometric and algebraic.

<ロト <回 > < 注 > < 注 > 、

Sequence of discrete faithful representations

 $\rho_n : G \to PSL_2(\mathbb{C}), n = 1, 2...$ converges to $\rho_\infty : G \to PSL_2(\mathbb{C})$ algebraically

 $\text{ if for all } g \in G, \, \rho_n(g) \to \rho_\infty(g). \\$

 ρ_n converges *geometrically* if $(G_n = \rho_n(G))$ converges as a sequence of closed subsets of $PSL_2(\mathbb{C})$ to $G_g \subset PSL_2(\mathbb{C})$. G_g is the *geometric limit* of (G_n) .

 (ρ_n) converges *strongly* to $\rho_{\infty}(G)$ if $\rho_{\infty}(G) = G_g$ and the convergence is both geometric and algebraic.

ヘロト 人間 とくほとくほとう

Sequence of discrete faithful representations

 $\rho_n: G \to PSL_2(\mathbb{C}), n = 1, 2...$ converges to $\rho_\infty: G \to PSL_2(\mathbb{C})$ algebraically

 $\text{ if for all } g \in G, \, \rho_n(g) \to \rho_\infty(g). \\$

 ρ_n converges *geometrically* if $(G_n = \rho_n(G))$ converges as a sequence of closed subsets of $PSL_2(\mathbb{C})$ to $G_g \subset PSL_2(\mathbb{C})$. G_g is the *geometric limit* of (G_n) .

 (ρ_n) converges *strongly* to $\rho_{\infty}(G)$ if $\rho_{\infty}(G) = G_g$ and the convergence is both geometric and algebraic.

<ロ> (四) (四) (三) (三) (三)

Sequence of discrete faithful representations

 $\rho_n: G \to PSL_2(\mathbb{C}), n = 1, 2...$ converges to $\rho_\infty: G \to PSL_2(\mathbb{C})$ algebraically

if for all $g \in G$, $ho_n(g)
ightarrow
ho_\infty(g)$.

 ρ_n converges *geometrically* if $(G_n = \rho_n(G))$ converges as a sequence of closed subsets of $PSL_2(\mathbb{C})$ to $G_g \subset PSL_2(\mathbb{C})$. G_g is the *geometric limit* of (G_n) .

 (ρ_n) converges *strongly* to $\rho_{\infty}(G)$ if $\rho_{\infty}(G) = G_g$ and the convergence is both geometric and algebraic.

<ロ> (四) (四) (三) (三) (三)

Sequence of discrete faithful representations

 $\rho_n: G \to PSL_2(\mathbb{C}), n = 1, 2...$ converges to $\rho_\infty: G \to PSL_2(\mathbb{C})$ algebraically

 $\text{ if for all } g\in \textit{G}, \, \rho_{\textit{n}}(g) \rightarrow \rho_{\infty}(g). \\$

 $\rho_n \text{ converges geometrically if } (G_n = \rho_n(G)) \text{ converges as a sequence of closed subsets of } PSL_2(\mathbb{C}) \text{ to } G_g \subset PSL_2(\mathbb{C}).$ $G_g \text{ is the geometric limit of } (G_n).$

 (ρ_n) converges *strongly* to $\rho_{\infty}(G)$ if $\rho_{\infty}(G) = G_g$ and the convergence is both geometric and algebraic.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Sequence of discrete faithful representations

 $\rho_n: G \to PSL_2(\mathbb{C}), n = 1, 2...$ converges to $\rho_\infty: G \to PSL_2(\mathbb{C})$ algebraically

 $\text{ if for all } g\in \textit{G}, \, \rho_{\textit{n}}(g) \rightarrow \rho_{\infty}(g). \\$

 ρ_n converges *geometrically* if $(G_n = \rho_n(G))$ converges as a sequence of closed subsets of $PSL_2(\mathbb{C})$ to $G_g \subset PSL_2(\mathbb{C})$. G_g is the *geometric limit* of (G_n) .

 (ρ_n) converges *strongly* to $\rho_{\infty}(G)$ if $\rho_{\infty}(G) = G_g$ and the convergence is both geometric and algebraic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Sequence of discrete faithful representations

 $\rho_n: G \to PSL_2(\mathbb{C}), n = 1, 2...$ converges to $\rho_\infty: G \to PSL_2(\mathbb{C})$ algebraically

 $\text{ if for all } g\in \textit{G}, \, \rho_{\textit{n}}(g) \rightarrow \rho_{\infty}(g). \\$

 ρ_n converges *geometrically* if $(G_n = \rho_n(G))$ converges as a sequence of closed subsets of $PSL_2(\mathbb{C})$ to $G_g \subset PSL_2(\mathbb{C})$. G_g is the *geometric limit* of (G_n) .

 (ρ_n) converges *strongly* to $\rho_{\infty}(G)$ if $\rho_{\infty}(G) = G_g$ and the convergence is both geometric and algebraic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Sequence of discrete faithful representations

 $\rho_n: G \to PSL_2(\mathbb{C}), n = 1, 2...$ converges to $\rho_\infty: G \to PSL_2(\mathbb{C})$ algebraically

if for all ${m g}\in {m G},\,
ho_n({m g})
ightarrow
ho_\infty({m g}).$

 ρ_n converges *geometrically* if $(G_n = \rho_n(G))$ converges as a sequence of closed subsets of $PSL_2(\mathbb{C})$ to $G_g \subset PSL_2(\mathbb{C})$. G_g is the *geometric limit* of (G_n) .

(ρ_n) converges strongly to $\rho_{\infty}(G)$ if $\rho_{\infty}(G) = G_g$ and the convergence is both geometric and algebraic.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Sequence of discrete faithful representations

 $\rho_n: G \to PSL_2(\mathbb{C}), n = 1, 2...$ converges to $\rho_\infty: G \to PSL_2(\mathbb{C})$ algebraically

if for all ${m g}\in {m G},\,
ho_n({m g})
ightarrow
ho_\infty({m g}).$

 ρ_n converges *geometrically* if $(G_n = \rho_n(G))$ converges as a sequence of closed subsets of $PSL_2(\mathbb{C})$ to $G_g \subset PSL_2(\mathbb{C})$. G_g is the *geometric limit* of (G_n) .

 (ρ_n) converges *strongly* to $\rho_{\infty}(G)$ if $\rho_{\infty}(G) = G_g$ and the convergence is both geometric and algebraic.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Reformulating Part 2 of Thurston's Question.

 Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
 Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

[M-, Series] Answer to [Q1] is 'Yes'.

Reformulating Part 2 of Thurston's Question.

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

[M-, Series] Answer to [Q1] is 'Yes'.

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

Answer to [Q1] is 'Yes'.

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

Answer to [Q1] is 'Yes'.

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

[M-, Series] Answer to [Q1] is 'Yes'.

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

[M-, Series] Answer to [Q1] is 'Yes'.

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

[M-, Series] Answer to [Q1] is 'Yes'.

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

[M-, Series] Answer to [Q1] is 'Yes'.

Let Γ be a geometrically finite Kleinian group. Let $\rho_n : \Gamma \to G_n$ be a sequence of strictly type preserving isomorphisms to geometrically finite Kleinian groups G_n , which converge strongly to a totally degenerate purely loxodromic Kleinian group $G_{\infty} = \rho_{\infty}(\Gamma)$. Then the sequence of CT-maps $\hat{i}_n : \Lambda_{\Gamma} \to \Lambda_{G_n}$ converges uniformly to $\hat{i}_{\infty} : \Lambda_{\Gamma} \to \Lambda_{G_{\infty}}$.

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

[M-, Series] Answer to [Q1] is 'Yes'.

Let Γ be a geometrically finite Kleinian group. Let $\rho_n : \Gamma \to G_n$ be a sequence of strictly type preserving isomorphisms to geometrically finite Kleinian groups G_n , which converge strongly to a totally degenerate purely loxodromic Kleinian group $G_{\infty} = \rho_{\infty}(\Gamma)$. Then the sequence of CT-maps $i_n : \Lambda_{\Gamma} \to \Lambda_{G_n}$ converges uniformly to $i_{\infty} : \Lambda_{\Gamma} \to \Lambda_{G_{\infty}}$.

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

[M-, Series] Answer to [Q1] is 'Yes'.

Let Γ be a geometrically finite Kleinian group. Let $\rho_n : \Gamma \to G_n$ be a sequence of strictly type preserving isomorphisms to geometrically finite Kleinian groups G_n , which converge strongly to a totally degenerate purely loxodromic Kleinian group $G_{\infty} = \rho_{\infty}(\Gamma)$. Then the sequence of CT-maps $i_n : \Lambda_{\Gamma} \to \Lambda_{G_n}$ converges uniformly to $i_{\infty} : \Lambda_{\Gamma} \to \Lambda_{G_{\infty}}$.

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

[M-, Series] Answer to [Q1] is 'Yes'.

Let Γ be a geometrically finite Kleinian group. Let $\rho_n : \Gamma \to G_n$ be a sequence of strictly type preserving isomorphisms to geometrically finite Kleinian groups G_n , which converge strongly to a totally degenerate purely loxodromic Kleinian group $G_{\infty} = \rho_{\infty}(\Gamma)$. Then the sequence of CT-maps $i_n : \Lambda_{\Gamma} \to \Lambda_{G_n}$ converges uniformly to $i_{\infty} : \Lambda_{\Gamma} \to \Lambda_{G_{\infty}}$.

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

[M-, Series] Answer to [Q1] is 'Yes'.

Let Γ be a geometrically finite Kleinian group. Let $\rho_n : \Gamma \to G_n$ be a sequence of strictly type preserving isomorphisms to geometrically finite Kleinian groups G_n , which converge strongly to a totally degenerate purely loxodromic Kleinian group $G_{\infty} = \rho_{\infty}(\Gamma)$. Then the sequence of CT-maps $\hat{i}_n : \Lambda_{\Gamma} \to \Lambda_{G_n}$ converges uniformly to $\hat{i}_{\infty} : \Lambda_{\Gamma} \to \Lambda_{G_{\infty}}$.

- Q1 Does strong convergence of finitely generated Kleinian groups imply uniform convergence of *CT*-maps?
- Q2 Does algebraic convergence of finitely generated Kleinian groups imply pointwise convergence of *CT*-maps?

Theorem

[M-, Series] Answer to [Q1] is 'Yes'.

Let Γ be a geometrically finite Kleinian group. Let $\rho_n : \Gamma \to G_n$ be a sequence of strictly type preserving isomorphisms to geometrically finite Kleinian groups G_n , which converge strongly to a totally degenerate purely loxodromic Kleinian group $G_{\infty} = \rho_{\infty}(\Gamma)$. Then the sequence of CT-maps $\hat{i}_n : \Lambda_{\Gamma} \to \Lambda_{G_n}$ converges uniformly to $\hat{i}_{\infty} : \Lambda_{\Gamma} \to \Lambda_{G_{\infty}}$.

Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of ($\alpha^n(X), X$). $G_n = \rho_n(\Gamma)$.

イロン イ理 とく ヨン イヨン

Sequence of quasi-Fuchsian surface groups converging

algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of ($\alpha^n(X), X$). $G_n = \rho_n(\Gamma)$.

イロン イ理 とく ヨン イヨン

Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of ($\alpha^n(X), X$). $G_n = \rho_n(\Gamma)$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate

geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of ($\alpha^n(X), X$). $G_n = \rho_n(\Gamma)$.

・ロット (雪) () () () ()

Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of ($\alpha^n(X), X$). $G_n = \rho_n(\Gamma)$.

ヘロア 人間 アメヨア 人口 ア

Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of ($\alpha^n(X), X$). $G_n = \rho_n(\Gamma)$.

ヘロア 人間 アメヨア 人口 ア

Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of ($\alpha^n(X), X$). $G_n = \rho_n(\Gamma)$.

ヘロア 人間 アメヨア 人口 ア

Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of ($\alpha^n(X), X$). $G_n = \rho_n(\Gamma)$.

ヘロン ヘアン ヘビン ヘビン

Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of ($\alpha^n(X), X$). $G_n = \rho_n(\Gamma)$.

ヘロト 人間 とくほとくほとう

Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary

σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of ($\alpha^n(X), X$). $G_n = \rho_n(\Gamma)$.

ヘロン ヘアン ヘビン ヘビン

Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of ($\alpha^n(X), X$). $G_n = \rho_n(\Gamma)$.

ヘロン 人間 とくほ とくほ とう

Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of $(\alpha^n(X), X)$. $G_n = \rho_n(\Gamma)$.

ヘロン 人間 とくほ とくほ とう

Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of $(\alpha^n(X), X)$. $G_n = \rho_n(\Gamma)$.

ヘロン 人間 とくほ とくほ とう

Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of $(\alpha^n(X), X)$. $G_n = \rho_n(\Gamma)$.

◆□ > ◆□ > ◆豆 > ◆豆 > →

Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of ($\alpha^n(X), X$). $G_n = \rho_n(\Gamma)$.

・ロト ・四ト ・ヨト ・ヨト

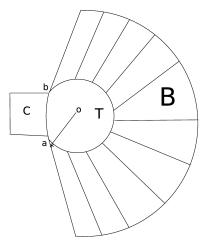
Sequence of quasi-Fuchsian surface groups converging algebraically but not strongly to a partially degenerate geometrically infinite surface group G_{∞} with an accidental parabolic.

Fix $X = \mathbb{H}^2/\Gamma$. σ - simple closed geodesic separating X into subsurfaces R and L. α – automorphism of X such that $\alpha|_L$ is the identity and $\alpha|_R = \chi$ is pseudo-Anosov fixing the boundary σ .

No Dehn twisting around σ .

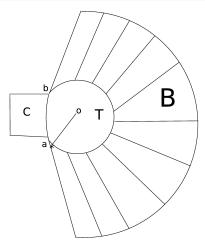
 G_n – quasi-Fuchsian group obtained by simultaneous uniformization of ($\alpha^n(X), X$). $G_n = \rho_n(\Gamma)$.

・ロト ・四ト ・ヨト ・ヨト



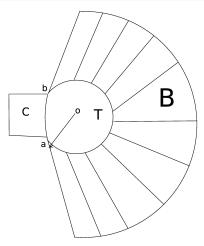
A schematic picture of *K* built up of *B*, *C* and *T*. The points *a*, *b* are the base-points $\phi_n^-(s_0) = o_n^-$ and $\phi_n^+(s_0) = o_n^+$ respectively.

・ロト ・回 ト ・ヨト ・ヨト … ヨ



A schematic picture of *K* built up of *B*, *C* and *T*. The points *a*, *b* are the base-points $\phi_n^-(s_0) = o_n^-$ and $\phi_n^+(s_0) = o_n^+$ respectively.

・ロト ・回 ト ・ヨト ・ヨト … ヨ



A schematic picture of *K* built up of *B*, *C* and *T*. The points *a*, *b* are the base-points $\phi_n^-(s_0) = o_n^-$ and $\phi_n^+(s_0) = o_n^+$ respectively.

イロン 不良 とくほう 不良 とうほ

In algebraic limit G_{∞} , tube T_n becomes a rank one cusp. Lower boundary ∂K_n^- of K_n stays fixed.

Upper boundary ∂K_n^+ develops into a partially degenerate end. L becomes a surface with a puncture.

R becomes the degenerate end E.

Geometric limit M_{∞} of $M_n = \mathbb{H}^3/G_n$ is homeomorphic to $X \times \mathbb{R} \setminus R \times \{0\}$.

イロト 不得 とくほ とくほ とう

In algebraic limit G_{∞} , tube T_n becomes a rank one cusp. Lower boundary ∂K_n^- of K_n stays fixed.

Upper boundary ∂K_n^+ develops into a partially degenerate end. L becomes a surface with a puncture.

R becomes the degenerate end *E*.

Geometric limit M_{∞} of $M_n = \mathbb{H}^3/G_n$ is homeomorphic to $X \times \mathbb{R} \setminus R \times \{0\}$.

<ロ> (四) (四) (三) (三) (三)

In algebraic limit G_{∞} , tube T_n becomes a rank one cusp. Lower boundary ∂K_n^- of K_n stays fixed.

Upper boundary ∂K_n^+ develops into a partially degenerate end.

L becomes a surface with a puncture.

R becomes the degenerate end E

Geometric limit M_{∞} of $M_n = \mathbb{H}^3/G_n$ is homeomorphic to

 $X \times \mathbb{R} \setminus R \times \{0\}.$

<ロ> (四) (四) (三) (三) (三)

In algebraic limit G_{∞} , tube T_n becomes a rank one cusp. Lower boundary ∂K_n^- of K_n stays fixed.

Upper boundary ∂K_n^+ develops into a partially degenerate end. *L* becomes a surface with a puncture.

R becomes the degenerate end *E*. Geometric limit M_{∞} of $M_n = \mathbb{H}^3/G_n$ is homeomorphic to $X \times \mathbb{R} \setminus R \times \{0\}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

In algebraic limit G_{∞} , tube T_n becomes a rank one cusp. Lower boundary ∂K_n^- of K_n stays fixed.

Upper boundary ∂K_n^+ develops into a partially degenerate end. *L* becomes a surface with a puncture.

R becomes the degenerate end E.

Geometric limit M_{∞} of $M_n = \mathbb{H}^3/G_n$ is homeomorphic to $X \times \mathbb{R} \setminus R \times \{0\}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

In algebraic limit G_{∞} , tube T_n becomes a rank one cusp. Lower boundary ∂K_n^- of K_n stays fixed.

Upper boundary ∂K_n^+ develops into a partially degenerate end. *L* becomes a surface with a puncture.

R becomes the degenerate end E.

Geometric limit M_{∞} of $M_n = \mathbb{H}^3/G_n$ is homeomorphic to $X \times \mathbb{R} \setminus R \times \{0\}.$

◆□> ◆◎> ◆注> ◆注> 二注

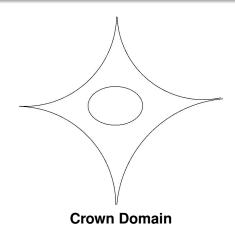
In algebraic limit G_{∞} , tube T_n becomes a rank one cusp. Lower boundary ∂K_n^- of K_n stays fixed.

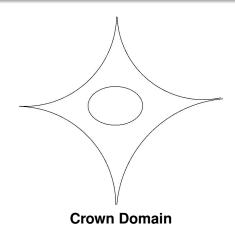
Upper boundary ∂K_n^+ develops into a partially degenerate end. *L* becomes a surface with a puncture.

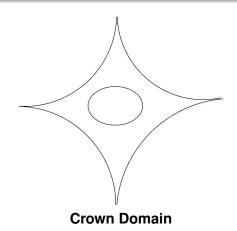
R becomes the degenerate end E.

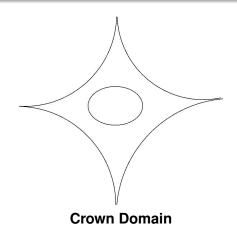
Geometric limit M_{∞} of $M_n = \mathbb{H}^3/G_n$ is homeomorphic to $X \times \mathbb{R} \setminus R \times \{0\}.$

◆□> ◆◎> ◆注> ◆注> 二注









Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L

200

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that α_{1} is the

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{I}$ is the

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{I}$ is the *identity* and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{I}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ . Let X be a hyperbolic structure on S and

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{1}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ .Let X be a hyperbolic structure on S and

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{1}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ .Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{1}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ .Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit of the sequence G_n , suitably normalized by a basepoint in the

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{1}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ . Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit of the sequence G_n , suitably normalized by a basepoint in the lift of the lower boundary X. Let $\hat{i}_n : \Lambda_{G_n} \to \Lambda_{G_n}, n \in \mathbb{N} \cup \infty$, be

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{1}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ . Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit of the sequence G_n , suitably normalized by a basepoint in the lift of the lower boundary X. Let $\hat{i}_n : \Lambda_{G_n} \to \Lambda_{G_n}, n \in \mathbb{N} \cup \infty$, be

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{1}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ . Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit of the sequence G_n , suitably normalized by a basepoint in the lift of the lower boundary X. Let $\hat{i}_n : \Lambda_{G_n} \to \Lambda_{G_n}, n \in \mathbb{N} \cup \infty$, be

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{1}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ . Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit of the sequence G_n , suitably normalized by a basepoint in the lift of the lower boundary X. Let $\hat{i}_n : \Lambda_{G_n} \to \Lambda_{G_n}, n \in \mathbb{N} \cup \infty$, be the corresponding CT-maps and let $\xi \in \Lambda_{G_n}$. Then $\hat{i}_n(\xi)$

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{1}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ . Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit of the sequence G_n , suitably normalized by a basepoint in the lift of the lower boundary X. Let $\hat{i}_n : \Lambda_{G_n} \to \Lambda_{G_n}, n \in \mathbb{N} \cup \infty$, be the corresponding CT-maps and let $\xi \in \Lambda_{G_0}$. Then $\hat{i}_n(\xi)$

converges to $\hat{i}_{\infty}(\xi)$ if and only if ξ is **not** the endpoint of the lift to \mathbb{H}^2 of a boundary leaf, other than σ , of the crown domain of the unstable lamination of χ , viewed as a lamination on the surface R.

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{1}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ . Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit of the sequence G_n , suitably normalized by a basepoint in the lift of the lower boundary X. Let $\hat{i}_n : \Lambda_{G_n} \to \Lambda_{G_n}, n \in \mathbb{N} \cup \infty$, be the corresponding CT-maps and let $\xi \in \Lambda_{G_0}$. Then $\hat{i}_n(\xi)$ converges to $\hat{i}_{\infty}(\xi)$ if and only if ξ is **not** the endpoint of the lift

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{1}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ . Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit of the sequence G_n , suitably normalized by a basepoint in the lift of the lower boundary X. Let $\hat{i}_n : \Lambda_{G_n} \to \Lambda_{G_n}, n \in \mathbb{N} \cup \infty$, be the corresponding CT-maps and let $\xi \in \Lambda_{G_0}$. Then $\hat{i}_n(\xi)$ converges to $\hat{i}_{\infty}(\xi)$ if and only if ξ is **not** the endpoint of the lift

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{1}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ . Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit of the sequence G_n , suitably normalized by a basepoint in the lift of the lower boundary X. Let $\hat{i}_n : \Lambda_{G_n} \to \Lambda_{G_n}, n \in \mathbb{N} \cup \infty$, be the corresponding CT-maps and let $\xi \in \Lambda_{G_0}$. Then $\hat{i}_n(\xi)$ converges to $\hat{i}_{\infty}(\xi)$ if and only if ξ is **not** the endpoint of the lift to \mathbb{H}^2 of a boundary leaf, other than σ , of the crown domain of

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{I}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ . Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit of the sequence G_n , suitably normalized by a basepoint in the lift of the lower boundary X. Let $\hat{i}_n : \Lambda_{G_n} \to \Lambda_{G_n}, n \in \mathbb{N} \cup \infty$, be the corresponding CT-maps and let $\xi \in \Lambda_{G_0}$. Then $\hat{i}_n(\xi)$ converges to $\hat{i}_{\infty}(\xi)$ if and only if ξ is **not** the endpoint of the lift to \mathbb{H}^2 of a boundary leaf, other than σ , of the crown domain of

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{I}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ . Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit of the sequence G_n , suitably normalized by a basepoint in the lift of the lower boundary X. Let $\hat{i}_n : \Lambda_{G_n} \to \Lambda_{G_n}, n \in \mathbb{N} \cup \infty$, be the corresponding CT-maps and let $\xi \in \Lambda_{G_0}$. Then $\hat{i}_n(\xi)$ converges to $\hat{i}_{\infty}(\xi)$ if and only if ξ is **not** the endpoint of the lift to \mathbb{H}^2 of a boundary leaf, other than σ , of the crown domain of

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{I}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ . Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit of the sequence G_n , suitably normalized by a basepoint in the lift of the lower boundary X. Let $\hat{i}_n : \Lambda_{G_n} \to \Lambda_{G_n}, n \in \mathbb{N} \cup \infty$, be the corresponding CT-maps and let $\xi \in \Lambda_{G_0}$. Then $\hat{i}_n(\xi)$ converges to $\hat{i}_{\infty}(\xi)$ if and only if ξ is **not** the endpoint of the lift to \mathbb{H}^2 of a boundary leaf, other than σ , of the crown domain of the unstable lamination of χ , viewed as a lamination on the

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{I}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ . Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit of the sequence G_n , suitably normalized by a basepoint in the lift of the lower boundary X. Let $\hat{i}_n : \Lambda_{G_n} \to \Lambda_{G_n}, n \in \mathbb{N} \cup \infty$, be the corresponding CT-maps and let $\xi \in \Lambda_{G_0}$. Then $\hat{i}_n(\xi)$ converges to $\hat{i}_{\infty}(\xi)$ if and only if ξ is **not** the endpoint of the lift to \mathbb{H}^2 of a boundary leaf, other than σ , of the crown domain of the unstable lamination of χ , viewed as a lamination on the surface R.

Theorem (M-, Series)

Fix a closed hyperbolizable surface S together with a separating simple closed curve σ , dividing S into two pieces L and R. Let α denote an automorphism of S such that $\alpha|_{I}$ is the identity and $\alpha|_{B} = \chi$ is a pseudo-Anosov diffeomorphism of R fixing the boundary σ . Let X be a hyperbolic structure on S and let G_n be the quasi-Fuchsian group given by the simultaneous uniformization of $(\alpha^n(X), X)$. Let G_{∞} denote the algebraic limit of the sequence G_n , suitably normalized by a basepoint in the lift of the lower boundary X. Let $\hat{i}_n : \Lambda_{G_n} \to \Lambda_{G_n}, n \in \mathbb{N} \cup \infty$, be the corresponding CT-maps and let $\xi \in \Lambda_{G_0}$. Then $\hat{i}_n(\xi)$ converges to $\hat{i}_{\infty}(\xi)$ if and only if ξ is **not** the endpoint of the lift to \mathbb{H}^2 of a boundary leaf, other than σ , of the crown domain of the unstable lamination of χ , viewed as a lamination on the surface R.