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Physical system and model

Physical System

e Non-relativistic matter : atom, ion or molecule composed of non-relativistic
quantum charged particles (electrons and nuclei)

e Interacting with the quantized electromagnetic field, i.e. the photon field

Standard model of non-relativistic QED

e Obtained by quantizing the Newton equations (for the charged particles)
minimally coupled to the Maxwell equations (for the electromagnetic field)
e Restriction : charge distributions are localized in small, compact sets.
Corresponds to introducing an ultraviolet cutoff that suppresses the
interaction between the charged particles and the high-energy photons

e Goes back to the early days of Quantum Mechanics (Fermi, Pauli-Fierz)

e Largely studied in theoretical physics (see e.g. books by Cohen-Tannoudji,
Dupont-Roc and Grynberg)
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Description of the atomic system

Simplest atomic system

e Hydrogen atom with an infinitely heavy nucleus fixed at the origin
e Spin of the electron neglected

e Units such that hi=c =1

Hilbert space and Hamiltonian for the electron

e Hilbert space
Ha = L*(R?)

e Hamiltonian

2
Pel o
Hel = 7—— + Va(x Va(Xel) = ——
el 2!1701 ()/( el)> @ ( el) ‘Xcl‘ )
where pe = —iVx_, M is the electron mass, and o = € is the fine-structure

constant (o & 1/137)
e H, is a self-adjoint operator in L*(R3) with domain

D(Ha) = D(pd) = H*(R?)
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Results Spectrum of Hy

e Infinite increasing sequence of negative, isolated eigenvalues of finite
multiplicities {ej}jen

e Semi-axis [0, c0) of absolutely continuous spectrum




Spectral
RG and
resonances
Jérémy
Faupin

The model

Atomic
system

Results

Physical picture

Bohr's condition

e Well-known physical picture : the electron may jump from an initial state of
energy €; to a final state of lower energy er by emitting a photon of energy

e — éfr

e Need to take into account the interaction between the electron and the
photon field in order to capture this picture mathematically

Expected mathematical results
e The ground state energy ep is expected to remain an eigenvalue (stability of
the system)

e The excited eigenvalues €j, j > 1, are expected to turn into resonances
associated with metastable states of finite lifetime

e For any initial state, the atomic system is expected to relax to its ground
state, as time goes to oo, by emitting photons propagating freely
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Description of the photon field : Hilbert
space

n-photons space

e Hilbert space for 1 photon

h=L*R® x {1,2})
e Hilbert space for n photons

FI(b) = Sn @1 b,

where S, is the orthogonal projection onto the symmetric subspace

Fock space

e Hilbert space for the photon field = symmetric Fock space over b,
+oo
Hon = Fo(h) = P Fb), FO=cC
n=0

e Vacuum
Q=(1,0,0,...)
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Description of the photon field : second
quantization (I)
Second quantization of an operator
Given b an operator acting on the 1-photon space h, the second quantization
of b is the operator on Hn defined by
dr(b)|c =0,
dr(b)l ;m =b®1® - @1+1@b®-- @1+ +1Q---®1®b

If b is self-adjoint, one verifies that dI'(b) is essentially self-adjoint. The
closure is then denoted by the same symbol

Energy of the free photon field

Hf = dI'(w),
where w is the multiplication operator by the relativistic dispersion relation
w(k) = ||

e Spectrum
o(Hr) =[0,00), opp(Hr) = {0}
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Description of the photon field : creation
and annihilation operators

Creation and annihilation operators

e Given h € b, the creation operator a*(h) : Hpn — Hpn is defined for
o e FI" by

a*(h)® =vn+1S,,11h® ®
e The annihilation operator a(h) is defined as the adjoint of a*(h)

e a"(h) and a(h) are closable, their closures are denoted by the same symbols

Canonical commutation relations

[a(f), 2" (&)] = [a(f), a(g)] = O,
[a(f), 2" ()] = (f, &)y

Notations

a*(f) = Z/R3 f(k, N)ax(k)dk, a(f) = Z/Ra f(k, N)ax(k)dk
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Given h € b, the field operator ®(h) is defined by

o(h) = %(a*(h) +a(h))

®(h) is essentially auto-adjoint, its closure is denoted by the same symbol
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Standard model of non-relativistic QED :
Hamiltonian

Hilbert space for the electron and the photon field

H = Hel ® Hpn = L*(R?; Hpn)

Pauli-Fierz Hamiltonian

1 1
Ha = 57— (per = @ A(xe1))? + Via(xa1) + Hr
Mel

where, for all x € R3,

x) Z/R3 % (ai(k)efik-x + aA(k)eik'X) dk

i.e. for all x € R?, A(x) = (A1(x), A2(x), As(x)) where A;(x) is the field
operator given by

Aj x)=¢ hj X)), hj X k,)\ = XaA(k)E)\j k =l
(9 =0, Il ) = 2 hge
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Standard model of non-relativistic QED :
coupling functions

Polarization vectors

ex(k) = (ex1(k),ex2(k), ex3(k)), for X € {1,2}, are polarization vectors
defined such that (k/|k|,e1(k),e2(k)) is an orthonormal basis of R? for all
k#0

Ultraviolet cutoff

XaA is an ultraviolet cutoff at energy scale a/ that can be chosen for instance

as
K2

Xa/\(k) - ]]-(—oo,a/\](|k‘)7 or Xa/\(k) - e_ma
where A > 0 is arbitrary large

Theorem

For any & > 0, A > 0, H, is a self-adjoint operator with domain
D(H.) = D(Ho)

[Hiroshima, Ann. Henri Poincaré, (2002)]
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Standard model of non-relativistic QED :
small coupling regime

Scaling transformation
e Fine-structure constant o = small coupling parameter
e Treat the interaction (electron)—(transverse photons) as a perturbation

e Useful to apply a scaling transformation that gives a new Hamiltonian (still
denoted by H,)

1 3
Ha = = (per — a3 A(axe1))? + V(xe1) + Hr
2me1

where, for all x € R?,

2

A =3 /R 3 XA2(|’2 ex (k) (33(K)e ™ + ar (k) ) ak,

3

and
1

|Xe1|

V(Xcl) = —
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Standard model of non-relativistic QED :
spectral problems

The non-interacting Hamiltonian Hy

e For a = 0, we obtain

2
Ho = 21::1161 + V(xe) + Hr = Ha ® L3¢, + Ly, ®@ Hr

e Spectrum : o(Ho) = o(He1) + o(Hr)

Main spectral problems

e Prove that the lowest eigenvalue ey remains an eigenvalue, i.e. that
E. = inf o(H.) is an eigenvalue of H, (existence of a ground state)

e Prove that excited eigenvalues e; turn into resonances associated to
metastable states

e Prove that the spectrum of H,, except for E, is purely absolutely continuous
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Atomic
Standard DynamICS
model of
?Qeoggvistic Any initial state o € H evolves according to the Schrodinger equation
Results iat(bt — Ha¢t7

—jtH
¢t = e " Oéd>()

Main dynamical problems
e Justify that photons propagate at the speed of light (propagation estimates)

e Prove that any initial state asymptotically relaxes to the ground state by
emitting photons that propagates freely (asymptotic completeness)
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Existence of a ground state

Theorem

For all @ > 0, A > 0, H, has a ground state, i.e. E, := info(Ha) is a (simple)
eigenvalue of H,

References

e [Bach, Frohlich, Sigal, Comm. Math. Phys., 207, (1999)] : small enough «
e [Griesemer, Lieb, Loss, Invent. Math., 145, (2001)] : any «

Previous results for (simpler) related models :

e [Spohn, Lett. Math. Phys., 44, (1998)] : Spin-Boson model

e [Gérard, Ann. I.LH.P., 1, (2000)] : Nelson model

e [Hiroshima, J. Math. Phys., 41, (2000)] : abstract model, small enough «

Ingredients of the proof
e Approximation by a family of massive Hamiltonians
e Localization in Fock space

e Compact Sobolev embedding in Fock space
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Resonances (1) : Complex dilatations

Unitary scaling transformation

Recall # = L2(R®) ® Hpn. For 6 € R, let Uy be the unitary dilatations
operator that implements the transformations

0 —0
Xel > € Xel, ke "k

Dilated Hamiltonian
e Write H,, = He + Hf + W,
e For 0 € R, let Ha(0) = UpHo U, . This gives
Jo)

2
Ho(0) = Ho(0) + e °He + Wo(6), Ha(d) = e*z‘)ﬁ + V(e’xa)
el

e Using assumptions on the coupling function, we can define Hn(0) by the
same expression, for § € D(0,6) C C, 6y sufficiently small. The family
0 — Ha/(0) is then analytic of type (A) in the sense of Kato




Spectral
RG and
resonances
Jérémy
Faupin

The model

Results

Spectral
results

Resonances (1)

Theorem

Let e < 0 be a simple eigenvalue of He;. Let A > 0. There exists ac > 0 such
that, for all 0 < a < a., there exists a non-degenerate eigenvalue ¢ o, of
H. () such that ej o does not depend on @ (for 6 suitably chosen) and

€,a — €
a—0

The eigenvalue €j,o of Ha(0) is called a resonance of H,

References

e [Bach, Frohlich, Sigal, Adv. Math., 137, (1998)] : confined particles
e [Sigal, J. Stat. Phys., (2009)]
e [Bach, Ballesteros, Pizzo, preprint]

Ingredients of the proof
e Bach-Frohlich-Sigal spectral renormalization group

e Refined version : iterative application of isospectral Feshbach-Schur maps
[Ballesteros, F., Frohlich, Schubnel, Comm. Math. Phys., (2015)]
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Lifetime of metastable states

Theorem

Let A > 0. Let ¢f < 0 be a simple eigenvalue of He and let ¢; be a normalized
eigenstate of H.; associated to e;. There exists ac > 0 such that for all
0<a<acand t >0,

‘<(,DJ ® Q7 e*"tHoe ©j ® Q>) _ eft[nl(ejva) + O(Oﬁ)

References

e [Abou Salem, F., Frohlich, Sigal, Adv. Appl. Math., 9, (2009)]
e [Hasler, Herbst, Huber, Ann. Henri Poincaré, 43, (2009)]

Ingredients of the proof
e Stone's formula
e Approximation by infrared cutoff Hamiltonians

e Cauchy's theorem
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lonization threshold
Definition

>, = lim inf , Hop),
R—WOSPGDR»H‘PH:l(SO 2

with Dg = {¢ € D(Ha); ¢(xe1) =0 if [xa1| < R}

Theorem
Let o >0, A > 0. For all 6,¢ € R such that & + 6% < X,

€77 8o g (Ha) || < 00

References

e [Bach, Frohlich, Sigal, Comm. Math. Phys., 207, (1999)]
e [Griesemer, J. Funct. Anal., 2, (2004)]
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Maximal velocity of photons

Theorem

Let >0, A > 0. Let x € C5°((—o0, X)) and ¢ > 1. For all
Yo € X(Ha)D(AT((iV))"/?),

[ar (1 sce(1iva) Fe= o S €IV R)) + 1) ool

for some v > 0 depending on ¢

References

e [Bony, F., Sigal, Adv. Math., 5, (2012)]

Ingredients of the proof
o Generalized Pauli-Fierz transformation

e Method of propagation estimates adapted to Fock space
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Asymptotic completeness (1)

Theorem

Let A > 0. Let A C (—00,0). There exists ac > 0 such that for all
0 < a < ag, if Fermi's Golden Rule holds in A and if one of the following
hypotheses hold

(i) For all x € C3°(A) and ty € x(Ho)D(dI(1)Y/?),
ldr(L)2 e ™| < [|dr(L)2 ol + [lvoll

(i") For all 1o in some set D dense in Ran1a(Ha),

1 _

ldr (&I ™12 e~ ]| < C(3o)

then asymptotic completeness holds in Ran1a(H.) : for all 1o € Rana(Ha)
and € > 0, there exists f. € Hpn with a finite number of photons, such that

lim sup HeiitHo‘ll}o — e g, @, ef"tHffEH <eg,
t—o0

where @, is a ground state of H,
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Asymptotic completeness (Il)

References

o [F., Sigal, Comm. Math. Phys., 3, (2014)]

Previous results for infrared cutoff or massive Hamiltonians :
e [Spohn, J. Math. Phys., 38, (1997)]

o [Dereziniski, Gérard, Rev. Math. Phys., 11, (1999)]
e [Frohlich, Griesemer, Schlein, Ann. Henri Poincaré, 3, (2002)]

Remark

Hypothesis (i’) holds for the spin-boson model (and therefore asymptotic
completeness holds in this case)

o [De Roeck, Kupiainen, Ann. Henri Poincaré, (2012)]

o [De Roeck, Griesemer, Kupiainen, Adv. Math., 68, (2015)]

Ingredients of the proof
e Derezinski-Gérard asymptotic partition of unity in Fock space
e Existence of the Deift-Simon wave operators

e Propagation estimates for photons (minimal velocity estimates)
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