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Some references

• C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Photons et atomes.
Edition du CNRS, Paris, (1988).

• C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Processus d’interaction
entre photons et atomes. Edition du CNRS, Paris, (1988).

• E. Fermi, Quantum theory of radiation, Rev. Mod. Phys., 4, 87-132, (1932).

• W. Pauli and M. Fierz, Zur Theorie der Emission langwel liger Lichtquanten, Il,
Nuovo Cimento 15, 167-188, (1938).

• H. Spohn. Dynamics of charged particles and their radiation field. Cambridge
University Press, Cambridge, (2004).
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Physical system and model

Physical System

• Non-relativistic matter : atom, ion or molecule composed of non-relativistic
quantum charged particles (electrons and nuclei)

• Interacting with the quantized electromagnetic field, i.e. the photon field

Standard model of non-relativistic QED

• Obtained by quantizing the Newton equations (for the charged particles)
minimally coupled to the Maxwell equations (for the electromagnetic field)

• Restriction : charge distributions are localized in small, compact sets.
Corresponds to introducing an ultraviolet cutoff that suppresses the
interaction between the charged particles and the high-energy photons

• Goes back to the early days of Quantum Mechanics (Fermi, Pauli-Fierz)

• Largely studied in theoretical physics (see e.g. books by Cohen-Tannoudji,
Dupont-Roc and Grynberg)
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Description of the atomic system

Simplest atomic system

• Hydrogen atom with an infinitely heavy nucleus fixed at the origin

• Spin of the electron neglected

• Units such that ~ = c = 1

Hilbert space and Hamiltonian for the electron

• Hilbert space
Hel = L2(R3)

• Hamiltonian

Hel =
p2
el

2mel
+ Vα(xel), Vα(xel) = − α

|xel|
,

where pel = −i∇xel , mel is the electron mass, and α = e2 is the fine-structure
constant (α ≈ 1/137)

• Hel is a self-adjoint operator in L2(R3) with domain

D(Hel) = D(p2
el) = H2(R3)
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Spectrum of the electronic Hamiltonian

Spectrum of Hel

• Infinite increasing sequence of negative, isolated eigenvalues of finite
multiplicities {ej}j∈N
• Semi-axis [0,∞) of absolutely continuous spectrum
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Physical picture

Bohr’s condition

• Well-known physical picture : the electron may jump from an initial state of
energy ei to a final state of lower energy ef by emitting a photon of energy
ei − ef

• Need to take into account the interaction between the electron and the
photon field in order to capture this picture mathematically

Expected mathematical results

• The ground state energy e0 is expected to remain an eigenvalue (stability of
the system)

• The excited eigenvalues ej , j ≥ 1, are expected to turn into resonances
associated with metastable states of finite lifetime

• For any initial state, the atomic system is expected to relax to its ground
state, as time goes to ∞, by emitting photons propagating freely
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Description of the photon field : Hilbert
space

n-photons space

• Hilbert space for 1 photon

h = L2(R3 × {1, 2})

• Hilbert space for n photons

F (n)
s (h) = Sn ⊗n

j=1 h,

where Sn is the orthogonal projection onto the symmetric subspace

Fock space

• Hilbert space for the photon field = symmetric Fock space over h,

Hph = Fs(h) =
+∞⊕
n=0

F (n)
s (h), F (0)

s = C

• Vacuum
Ω = (1, 0, 0, . . . )
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Faupin

The model

Atomic
system

Photon
field

Standard
model of
non-
relativistic
QED

Results

Description of the photon field : second
quantization (I)

Second quantization of an operator

Given b an operator acting on the 1-photon space h, the second quantization
of b is the operator on Hph defined by

dΓ(b)|C = 0,

dΓ(b)|F(n)
s

= b ⊗ 1⊗ · · · ⊗ 1 + 1⊗ b ⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ b

If b is self-adjoint, one verifies that dΓ(b) is essentially self-adjoint. The
closure is then denoted by the same symbol

Energy of the free photon field
•

Hf = dΓ(ω),

where ω is the multiplication operator by the relativistic dispersion relation

ω(k) = |k|

• Spectrum
σ(Hf ) = [0,∞), σpp(Hf ) = {0}
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Description of the photon field : creation
and annihilation operators

Creation and annihilation operators

• Given h ∈ h, the creation operator a∗(h) : Hph → Hph is defined for

Φ ∈ F (n)
s by

a∗(h)Φ =
√
n + 1Sn+1h ⊗ Φ

• The annihilation operator a(h) is defined as the adjoint of a∗(h)

• a∗(h) and a(h) are closable, their closures are denoted by the same symbols

Canonical commutation relations

[a∗(f ), a∗(g)] = [a(f ), a(g)] = 0,

[a(f ), a∗(g)] = 〈f , g〉h

Notations

a∗(f ) =
2∑
λ=1

∫
R3

f (k, λ)a∗λ(k)dk, a(f ) =
2∑
λ=1

∫
R3

f̄ (k, λ)aλ(k)dk
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Description of the photon field : field
operators

Field operators

Given h ∈ h, the field operator Φ(h) is defined by

Φ(h) =
1√
2

(a∗(h) + a(h))

Φ(h) is essentially auto-adjoint, its closure is denoted by the same symbol
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Faupin

The model

Atomic
system

Photon
field

Standard
model of
non-
relativistic
QED

Results

Standard model of non-relativistic QED :
Hamiltonian

Hilbert space for the electron and the photon field

H = Hel ⊗Hph = L2(R3;Hph)

Pauli-Fierz Hamiltonian

Hα =
1

2mel
(pel − α

1
2 A(xel))2 + Vα(xel) + Hf

where, for all x ∈ R3,

A(x) =
2∑
λ=1

∫
R3

χαΛ(k)√
2|k|

ελ(k)
(
a∗λ(k)e−ik·x + aλ(k)e ik·x

)
dk

i.e. for all x ∈ R3, A(x) = (A1(x),A2(x),A3(x)) where Aj(x) is the field
operator given by

Aj(x) = Φ(hj(x)), [hj(x)](k, λ) =
χαΛ(k)√
|k|

ελ,j(k)e−ik·x
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Standard model of non-relativistic QED :
coupling functions

Polarization vectors

ελ(k) = (ελ,1(k), ελ,2(k), ελ,3(k)), for λ ∈ {1, 2}, are polarization vectors
defined such that (k/|k|, ε1(k), ε2(k)) is an orthonormal basis of R3 for all
k 6= 0

Ultraviolet cutoff

χαΛ is an ultraviolet cutoff at energy scale αΛ that can be chosen for instance
as

χαΛ(k) = 1(−∞,αΛ](|k|), or χαΛ(k) = e
− k2

α2Λ2 ,

where Λ > 0 is arbitrary large

Theorem

For any α ≥ 0, Λ ≥ 0, Hα is a self-adjoint operator with domain
D(Hα) = D(H0)
[Hiroshima, Ann. Henri Poincaré, (2002)]
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Standard model of non-relativistic QED :
small coupling regime

Scaling transformation

• Fine-structure constant α = small coupling parameter

• Treat the interaction (electron)–(transverse photons) as a perturbation

• Useful to apply a scaling transformation that gives a new Hamiltonian (still
denoted by Hα)

Hα =
1

2mel
(pel − α

3
2 A(αxel))2 + V (xel) + Hf

where, for all x ∈ R3,

A(x) =
2∑
λ=1

∫
R3

χΛ(k)√
2|k|

ελ(k)
(
a∗λ(k)e−ik·x + aλ(k)e ik·x

)
dk,

and

V (xel) = − 1

|xel|
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Standard model of non-relativistic QED :
spectral problems

The non-interacting Hamiltonian H0

• For α = 0, we obtain

H0 =
p2
el

2mel
+ V (xel) + Hf = Hel ⊗ 1Hph + 1Hel ⊗ Hf

• Spectrum : σ(H0) = σ(Hel) + σ(Hf )

Main spectral problems

• Prove that the lowest eigenvalue e0 remains an eigenvalue, i.e. that
Eα = inf σ(Hα) is an eigenvalue of Hα (existence of a ground state)

• Prove that excited eigenvalues ej turn into resonances associated to
metastable states

• Prove that the spectrum of Hα except for Eα is purely absolutely continuous
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Standard model of non-relativistic QED :
scattering problems

Dynamics

Any initial state Φ0 ∈ H evolves according to the Schrödinger equation

i∂tΦt = HαΦt ,

i.e.
Φt = e−itHαΦ0

Main dynamical problems

• Justify that photons propagate at the speed of light (propagation estimates)

• Prove that any initial state asymptotically relaxes to the ground state by
emitting photons that propagates freely (asymptotic completeness)
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Existence of a ground state

Theorem

For all α ≥ 0, Λ ≥ 0, Hα has a ground state, i.e. Eα := inf σ(Hα) is a (simple)
eigenvalue of Hα

References

• [Bach, Fröhlich, Sigal, Comm. Math. Phys., 207, (1999)] : small enough α
• [Griesemer, Lieb, Loss, Invent. Math., 145, (2001)] : any α

Previous results for (simpler) related models :
• [Spohn, Lett. Math. Phys., 44, (1998)] : Spin-Boson model
• [Gérard, Ann. I.H.P., 1, (2000)] : Nelson model
• [Hiroshima, J. Math. Phys., 41, (2000)] : abstract model, small enough α

Ingredients of the proof

• Approximation by a family of massive Hamiltonians

• Localization in Fock space

• Compact Sobolev embedding in Fock space
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Resonances (I) : Complex dilatations

Unitary scaling transformation

Recall H = L2(R3)⊗Hph. For θ ∈ R, let Uθ be the unitary dilatations
operator that implements the transformations

xel 7→ eθxel, k 7→ e−θk

Dilated Hamiltonian

• Write Hα = Hel + Hf + Wα

• For θ ∈ R, let Hα(θ) = UθHαU
−1
θ . This gives

Hα(θ) = Hel(θ) + e−θHf + Wα(θ), Hel(θ) = e−2θ p2
el

2mel
+ V (eθxel)

• Using assumptions on the coupling function, we can define Hα(θ) by the
same expression, for θ ∈ D(0, θ0) ⊂ C, θ0 sufficiently small. The family
θ 7→ Hα(θ) is then analytic of type (A) in the sense of Kato
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Resonances (II)

Theorem

Let ej < 0 be a simple eigenvalue of Hel. Let Λ ≥ 0. There exists αc > 0 such
that, for all 0 ≤ α ≤ αc , there exists a non-degenerate eigenvalue ej,α of
Hα(θ) such that ej,α does not depend on θ (for θ suitably chosen) and

ej,α →
α→0

ej

The eigenvalue ej,α of Hα(θ) is called a resonance of Hα

References

• [Bach, Fröhlich, Sigal, Adv. Math., 137, (1998)] : confined particles
• [Sigal, J. Stat. Phys., (2009)]
• [Bach, Ballesteros, Pizzo, preprint]

Ingredients of the proof

• Bach-Fröhlich-Sigal spectral renormalization group

• Refined version : iterative application of isospectral Feshbach-Schur maps
[Ballesteros, F., Fröhlich, Schubnel, Comm. Math. Phys., (2015)]



Spectral
RG and

resonances

Jérémy
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Lifetime of metastable states

Theorem

Let Λ ≥ 0. Let ej < 0 be a simple eigenvalue of Hel and let ϕj be a normalized
eigenstate of Hel associated to ej . There exists αc > 0 such that for all
0 ≤ α ≤ αc and t ≥ 0,∣∣∣〈ϕj ⊗ Ω, e−itHαϕj ⊗ Ω

〉∣∣∣ = e−tIm(ej,α) +O(α)

References

• [Abou Salem, F., Fröhlich, Sigal, Adv. Appl. Math., 9, (2009)]
• [Hasler, Herbst, Huber, Ann. Henri Poincaré, 43, (2009)]

Ingredients of the proof

• Stone’s formula

• Approximation by infrared cutoff Hamiltonians

• Cauchy’s theorem
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Ionization threshold

Definition

Σα = lim
R→∞

inf
ϕ∈DR ,‖ϕ‖=1

〈ϕ,Hαϕ〉,

with DR = {ϕ ∈ D(Hα); ϕ(xel) = 0 if |xel| < R}

Theorem

Let α ≥ 0, Λ ≥ 0. For all δ, ξ ∈ R such that ξ + δ2 < Σα,∥∥eδ|xel|1(−∞,ξ](Hα)
∥∥ <∞

References

• [Bach, Fröhlich, Sigal, Comm. Math. Phys., 207, (1999)]
• [Griesemer, J. Funct. Anal., 2, (2004)]
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Faupin

The model

Results

Spectral
results

Scattering
results

Maximal velocity of photons

Theorem

Let α ≥ 0, Λ ≥ 0. Let χ ∈ C∞0 ((−∞,Σα)) and c > 1. For all
ψ0 ∈ χ(Hα)D(dΓ(〈i∇k〉)1/2),∥∥∥dΓ

(
1·≥ct(|i∇k |)

) 1
2 e−itHαψ0

∥∥∥ . t−γ‖(dΓ(〈i∇k〉) + 1)
1
2ψ0‖,

for some γ > 0 depending on c

References

• [Bony, F., Sigal, Adv. Math., 5, (2012)]

Ingredients of the proof

• Generalized Pauli-Fierz transformation

• Method of propagation estimates adapted to Fock space
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Asymptotic completeness (I)

Theorem

Let Λ ≥ 0. Let ∆ ⊂ (−∞, 0). There exists αc > 0 such that for all
0 ≤ α ≤ αc , if Fermi’s Golden Rule holds in ∆ and if one of the following
hypotheses hold

(i) For all χ ∈ C∞0 (∆) and ψ0 ∈ χ(Hα)D(dΓ(1)1/2),

‖dΓ(1)
1
2 e−itHαψ‖ . ‖dΓ(1)

1
2ψ0‖+ ‖ψ0‖

(i’) For all ψ0 in some set D dense in Ran1∆(Hα),

‖dΓ(|k|−1)
1
2 e−itHαψt‖ ≤ C(ψ0)

then asymptotic completeness holds in Ran1∆(Hα) : for all ψ0 ∈ Ran1∆(Hα)
and ε > 0, there exists fε ∈ Hph with a finite number of photons, such that

lim sup
t→∞

∥∥e−itHαψ0 − e−itEαΦα ⊗s e
−itHf fε

∥∥ ≤ ε,
where Φα is a ground state of Hα



Spectral
RG and

resonances

Jérémy
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Asymptotic completeness (II)

References

• [F., Sigal, Comm. Math. Phys., 3, (2014)]

Previous results for infrared cutoff or massive Hamiltonians :
• [Spohn, J. Math. Phys., 38, (1997)]
• [Dereziński, Gérard, Rev. Math. Phys., 11, (1999)]
• [Fröhlich, Griesemer, Schlein, Ann. Henri Poincaré, 3, (2002)]

Remark

Hypothesis (i′) holds for the spin-boson model (and therefore asymptotic
completeness holds in this case)
• [De Roeck, Kupiainen, Ann. Henri Poincaré, (2012)]
• [De Roeck, Griesemer, Kupiainen, Adv. Math., 68, (2015)]

Ingredients of the proof

• Dereziński-Gérard asymptotic partition of unity in Fock space

• Existence of the Deift-Simon wave operators

• Propagation estimates for photons (minimal velocity estimates)
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Thank you !
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