> Jérémy Faupin

The mode

Results

On spectral and scattering theories of non-relativistic QED

Jérémy Faupin

Université de Lorraine

January 2016 IMSc Chennai, Indo-French Conference

Jérémy Faupin

The model

Results

The model Atomic system Photon field Standard model of non-relativistic QED

- Results
 - Spectral results Scattering results

Outline of the talk

> Jérémy Faupin

The model

Atomic system Photon field Standard model of nonrelativistic OFD

Results

Part I

The model

Some references

Faupin The model

Spectral RG and resonances

Jérémy

Atomic system Photon field Standard model of nonrelativistic QED

Results

- C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Photons et atomes. Edition du CNRS, Paris, (1988).
- C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg. Processus d'interaction entre photons et atomes. Edition du CNRS, Paris, (1988).
- E. Fermi, Quantum theory of radiation, Rev. Mod. Phys., 4, 87-132, (1932).
- W. Pauli and M. Fierz, Zur Theorie der Emission langwel liger Lichtquanten, II, Nuovo Cimento 15, 167-188, (1938).
- H. Spohn. Dynamics of charged particles and their radiation field. Cambridge University Press, Cambridge, (2004).

Jérémy Faupin

The model

Atomic system Photon field Standard model of nonrelativistic QED

Results

Physical system and model

Physical System

• Non-relativistic matter : atom, ion or molecule composed of non-relativistic quantum charged particles (electrons and nuclei)

• Interacting with the quantized electromagnetic field, i.e. the photon field

Standard model of non-relativistic QED

• Obtained by quantizing the Newton equations (for the charged particles) minimally coupled to the Maxwell equations (for the electromagnetic field)

• Restriction : charge distributions are localized in small, compact sets. Corresponds to introducing an ultraviolet cutoff that suppresses the interaction between the charged particles and the high-energy photons

- Goes back to the early days of Quantum Mechanics (Fermi, Pauli-Fierz)
- Largely studied in theoretical physics (see e.g. books by Cohen-Tannoudji, Dupont-Roc and Grynberg)

Jérémy Faupin

The model

Atomic system

- Photon field
- Standard model of nonrelativistic QED

Results

Description of the atomic system

Simplest atomic system

- Hydrogen atom with an infinitely heavy nucleus fixed at the origin
- Spin of the electron neglected
- Units such that $\hbar=c=1$

Hilbert space and Hamiltonian for the electron

• Hilbert space

$$\mathcal{H}_{\mathrm{el}} = \mathrm{L}^2(\mathbb{R}^3)$$

• Hamiltonian

$$H_{
m el}=rac{p_{
m el}^2}{2m_{
m el}}+V_lpha(x_{
m el}), \quad V_lpha(x_{
m el})=-rac{lpha}{|x_{
m el}|},$$

where $p_{\rm el} = -i \nabla_{\rm x_{el}}$, $m_{\rm el}$ is the electron mass, and $\alpha = e^2$ is the fine-structure constant ($\alpha \approx 1/137$)

• H_{el} is a self-adjoint operator in $\mathrm{L}^2(\mathbb{R}^3)$ with domain

$$\mathcal{D}(\mathcal{H}_{ ext{el}}) = \mathcal{D}(p_{ ext{el}}^2) = ext{H}^2(\mathbb{R}^3)$$

Jérémy Faupin

The model

Atomic system

Photon field

Standard model of nonrelativistic QED

Results

Spectrum of the electronic Hamiltonian

Spectrum of $H_{\rm el}$

- Infinite increasing sequence of negative, isolated eigenvalues of finite multiplicities $\{e_j\}_{j\in\mathbb{N}}$
- \bullet Semi-axis [0, $\infty)$ of absolutely continuous spectrum

Physical picture

RG and resonances Jérémy Faupin

Spectral

The model

Atomic system

Photon field Standard model of nonrelativistic QED

Results

Bohr's condition

• Well-known physical picture : the electron may jump from an initial state of energy e_i to a final state of lower energy e_f by emitting a photon of energy $e_i - e_f$

• Need to take into account the interaction between the electron and the photon field in order to capture this picture mathematically

Expected mathematical results

- The ground state energy e_0 is expected to remain an eigenvalue (stability of the system)
- The excited eigenvalues e_j , $j \ge 1$, are expected to turn into resonances associated with metastable states of finite lifetime
- For any initial state, the atomic system is expected to relax to its ground state, as time goes to ∞ , by emitting photons propagating freely

> Jérémy Faupin

The model

Atomic system Photon

field Standard model of non-

nonrelativistic QED

Results

Description of the photon field : Hilbert space

n-photons space

• Hilbert space for 1 photon

 $\mathfrak{h} = \mathrm{L}^2(\mathbb{R}^3 \times \{1,2\})$

• Hilbert space for *n* photons

$$\mathcal{F}_{s}^{(n)}(\mathfrak{h})=S_{n}\otimes_{j=1}^{n}\mathfrak{h},$$

where S_n is the orthogonal projection onto the symmetric subspace

Fock space

 \bullet Hilbert space for the photon field = symmetric Fock space over $\mathfrak{h},$

$$\mathcal{H}_{\mathrm{ph}}=\mathcal{F}_{s}(\mathfrak{h})= igoplus_{n=0}^{+\infty}\mathcal{F}_{s}^{(n)}(\mathfrak{h}), \quad \mathcal{F}_{s}^{(0)}=\mathbb{C}$$

• Vacuum

 $\Omega = (1,0,0,\dots)$

> Jérémy Faupin

The mode

Atomic system Photon field

Standard model of nonrelativistic QED

Results

Description of the photon field : second quantization (I)

Second quantization of an operator

Given *b* an operator acting on the 1-photon space \mathfrak{h} , the second quantization of *b* is the operator on $\mathcal{H}_{\mathrm{ph}}$ defined by

 $d\Gamma(b)|_{\mathbb{C}} = 0,$ $d\Gamma(b)|_{\mathcal{F}_{s}^{(n)}} = b \otimes \mathbf{1} \otimes \cdots \otimes \mathbf{1} + \mathbf{1} \otimes b \otimes \cdots \otimes \mathbf{1} + \cdots + \mathbf{1} \otimes \cdots \otimes \mathbf{1} \otimes b$

If b is self-adjoint, one verifies that $\mathrm{d}\Gamma(b)$ is essentially self-adjoint. The closure is then denoted by the same symbol

Energy of the free photon field

٠

$$H_f = \mathrm{d} \Gamma(\omega),$$

where ω is the multiplication operator by the relativistic dispersion relation

 $\omega(k) = |k|$

• Spectrum

 $\sigma(H_f) = [0,\infty), \quad \sigma_{\mathrm{pp}}(H_f) = \{0\}$

Jérémy Faupin

The model

Atomic system

Photon field

Standard model of nonrelativistic QED

Results

Description of the photon field : creation and annihilation operators

Creation and annihilation operators

• Given $h \in \mathfrak{h}$, the creation operator $a^*(h) : \mathcal{H}_{\mathrm{ph}} \to \mathcal{H}_{\mathrm{ph}}$ is defined for $\Phi \in \mathcal{F}_s^{(n)}$ by

$$a^*(h)\Phi=\sqrt{n+1}S_{n+1}h\otimes\Phi$$

- The annihilation operator a(h) is defined as the adjoint of $a^*(h)$
- $a^*(h)$ and a(h) are closable, their closures are denoted by the same symbols

Canonical commutation relations

$$[a^*(f), a^*(g)] = [a(f), a(g)] = 0,$$

 $[a(f), a^*(g)] = \langle f, g \rangle_{\mathfrak{h}}$

Notations

$$a^*(f) = \sum_{\lambda=1}^2 \int_{\mathbb{R}^3} f(k,\lambda) a^*_{\lambda}(k) \mathrm{d}k, \quad a(f) = \sum_{\lambda=1}^2 \int_{\mathbb{R}^3} \bar{f}(k,\lambda) a_{\lambda}(k) \mathrm{d}k$$

> Jérémy Faupin

The model

Atomic system

Photon field

Standard model of nonrelativistic QED

Results

Description of the photon field : field operators

Field operators

Given $h \in \mathfrak{h}$, the field operator $\Phi(h)$ is defined by

$$\Phi(h) = \frac{1}{\sqrt{2}}(a^*(h) + a(h))$$

 $\Phi(h)$ is essentially auto-adjoint, its closure is denoted by the same symbol

Spectral RG and

> Jérémy Faupin

The model

Atomic system Photon field

Standard model of nonrelativistic QED

Results

Standard model of non-relativistic QED : Hamiltonian

Hilbert space for the electron and the photon field

$$\mathcal{H}=\mathcal{H}_{\mathrm{el}}\otimes\mathcal{H}_{\mathrm{ph}}=\mathrm{L}^{2}(\mathbb{R}^{3};\mathcal{H}_{\mathrm{ph}})$$

Pauli-Fierz Hamiltonian

$$H_{\alpha} = \frac{1}{2m_{\rm el}}(p_{\rm el} - \alpha^{\frac{1}{2}}A(x_{\rm el}))^2 + V_{\alpha}(x_{\rm el}) + H_f$$

where, for all $x \in \mathbb{R}^3$,

$$A(x) = \sum_{\lambda=1}^{2} \int_{\mathbb{R}^{3}} \frac{\chi_{\alpha \Lambda}(k)}{\sqrt{2|k|}} \varepsilon_{\lambda}(k) \left(a_{\lambda}^{*}(k)e^{-ik \cdot x} + a_{\lambda}(k)e^{ik \cdot x}\right) \mathrm{d}k$$

i.e. for all $x \in \mathbb{R}^3$, $A(x) = (A_1(x), A_2(x), A_3(x))$ where $A_j(x)$ is the field operator given by

$$A_j(x) = \Phi(h_j(x)), \quad [h_j(x)](k,\lambda) = \frac{\chi_{\alpha\Lambda}(k)}{\sqrt{|k|}} \varepsilon_{\lambda,j}(k) e^{-ik\cdot x}$$

> Jérémy Faupin

The model

Atomic system Photon field

Standard model of nonrelativistic QED

Results

Standard model of non-relativistic QED : coupling functions

Polarization vectors

 $\varepsilon_{\lambda}(k) = (\varepsilon_{\lambda,1}(k), \varepsilon_{\lambda,2}(k), \varepsilon_{\lambda,3}(k))$, for $\lambda \in \{1, 2\}$, are polarization vectors defined such that $(k/|k|, \varepsilon_1(k), \varepsilon_2(k))$ is an orthonormal basis of \mathbb{R}^3 for all $k \neq 0$

Ultraviolet cutoff

 $\chi_{\alpha\Lambda}$ is an ultraviolet cutoff at energy scale $\alpha\Lambda$ that can be chosen for instance as

$$\chi_{lpha\Lambda}(k) = 1\!\!1_{(-\infty,lpha\Lambda]}(|k|), \quad ext{ or } \quad \chi_{lpha\Lambda}(k) = e^{-rac{k^2}{lpha^2 A^2}},$$

where $\Lambda > 0$ is arbitrary large

Theorem

For any $\alpha \geq 0$, $\Lambda \geq 0$, H_{α} is a self-adjoint operator with domain $\mathcal{D}(H_{\alpha}) = \mathcal{D}(H_0)$ [Hiroshima, Ann. Henri Poincaré, (2002)]

> Jérémy Faupin

The model

Atomic system Photon field

Standard model of nonrelativistic QED

Results

Standard model of non-relativistic QED : small coupling regime

Scaling transformation

- Fine-structure constant $\alpha = \text{small coupling parameter}$
- Treat the interaction (electron)-(transverse photons) as a perturbation
- \bullet Useful to apply a scaling transformation that gives a new Hamiltonian (still denoted by $H_{\alpha})$

$$H_{\alpha} = \frac{1}{2m_{\rm el}}(p_{\rm el} - \alpha^{\frac{3}{2}}A(\alpha x_{\rm el}))^2 + V(x_{\rm el}) + H_f$$

where, for all $x \in \mathbb{R}^3$,

$$A(x) = \sum_{\lambda=1}^{2} \int_{\mathbb{R}^{3}} \frac{\chi_{\Lambda}(k)}{\sqrt{2|k|}} \varepsilon_{\lambda}(k) \left(a_{\lambda}^{*}(k)e^{-ik\cdot x} + a_{\lambda}(k)e^{ik\cdot x}\right) \mathrm{d}k,$$

and

$$V(x_{ ext{el}}) = -rac{1}{|x_{ ext{el}}|}$$

> Jérémy Faupin

The model

Atomic system Photon field

Standard model of nonrelativistic QED

Results

Standard model of non-relativistic QED : spectral problems

The non-interacting Hamiltonian H_0

• For $\alpha = 0$, we obtain

$$H_0 = \frac{p_{\rm el}^2}{2m_{\rm el}} + V(x_{\rm el}) + H_f = H_{\rm el} \otimes 1\!\!1_{\mathcal{H}_{\rm ph}} + 1\!\!1_{\mathcal{H}_{\rm el}} \otimes H_f$$

• Spectrum :
$$\sigma(H_0) = \sigma(H_{
m el}) + \sigma(H_f)$$

Main spectral problems

- Prove that the lowest eigenvalue e_0 remains an eigenvalue, i.e. that $E_{\alpha} = \inf \sigma(H_{\alpha})$ is an eigenvalue of H_{α} (existence of a ground state)
- \bullet Prove that excited eigenvalues e_j turn into resonances associated to metastable states
- Prove that the spectrum of H_{α} except for E_{α} is purely absolutely continuous

> Jérémy Faupin

The model

Atomic system Photon field

Standard model of nonrelativistic QED

Results

Standard model of non-relativistic QED : scattering problems

Dynamics

Any initial state $\Phi_0 \in \mathcal{H}$ evolves according to the Schrödinger equation

 $i\partial_t \Phi_t = H_\alpha \Phi_t,$

i.e.

$$\Phi_t = e^{-itH_\alpha} \Phi_0$$

Main dynamical problems

• Justify that photons propagate at the speed of light (propagation estimates)

• Prove that any initial state asymptotically relaxes to the ground state by emitting photons that propagates freely (asymptotic completeness)

> Jérémy Faupin

The model

Results

Spectral results Scattering results

Part II

Results

Jérémy Faupin

The model

Results

Spectral results

Scattering results

Existence of a ground state

Theorem

For all $\alpha \geq 0$, $\Lambda \geq 0$, H_{α} has a ground state, i.e. $E_{\alpha} := \inf \sigma(H_{\alpha})$ is a (simple) eigenvalue of H_{α}

References

- [Bach, Fröhlich, Sigal, Comm. Math. Phys., 207, (1999)] : small enough lpha
- ullet [Griesemer, Lieb, Loss, Invent. Math., 145, (2001)] : any α

Previous results for (simpler) related models :

- [Spohn, Lett. Math. Phys., 44, (1998)] : Spin-Boson model
- [Gérard, Ann. I.H.P., 1, (2000)] : Nelson model
- [Hiroshima, J. Math. Phys., 41, (2000)] : abstract model, small enough α

Ingredients of the proof

- Approximation by a family of massive Hamiltonians
- Localization in Fock space
- Compact Sobolev embedding in Fock space

> Jérémy Faupin

The model

Results

Spectral results Scattering

Resonances (I) : Complex dilatations

Unitary scaling transformation

Recall $\mathcal{H} = L^2(\mathbb{R}^3) \otimes \mathcal{H}_{ph}$. For $\theta \in \mathbb{R}$, let U_{θ} be the unitary dilatations operator that implements the transformations

$$x_{\rm el} \mapsto e^{\theta} x_{\rm el}, \quad k \mapsto e^{-\theta} k$$

Dilated Hamiltonian

- Write $H_{lpha} = H_{
 m el} + H_f + W_{lpha}$
- For $\theta \in \mathbb{R}$, let $H_{\alpha}(\theta) = U_{\theta}H_{\alpha}U_{\theta}^{-1}$. This gives

$$H_{lpha}(heta)=H_{
m el}(heta)+e^{- heta}H_f+W_{lpha}(heta), \quad H_{
m el}(heta)=e^{-2 heta}rac{p_{
m el}^2}{2m_{
m el}}+V(e^{ heta}x_{
m el})$$

• Using assumptions on the coupling function, we can define $H_{\alpha}(\theta)$ by the same expression, for $\theta \in \mathcal{D}(0, \theta_0) \subset \mathbb{C}$, θ_0 sufficiently small. The family $\theta \mapsto H_{\alpha}(\theta)$ is then analytic of type (A) in the sense of Kato

Jérémy Faupin

The model

Results Spectral results Scattering results

Resonances (II)

Theorem

Let $e_j < 0$ be a simple eigenvalue of $H_{\rm el}$. Let $\Lambda \ge 0$. There exists $\alpha_c > 0$ such that, for all $0 \le \alpha \le \alpha_c$, there exists a non-degenerate eigenvalue $e_{j,\alpha}$ of $H_{\alpha}(\theta)$ such that $e_{j,\alpha}$ does not depend on θ (for θ suitably chosen) and

$$e_{j,\alpha} \xrightarrow[\alpha \to 0]{} e_j$$

The eigenvalue $e_{j,\alpha}$ of $H_{\alpha}(\theta)$ is called a resonance of H_{α}

References

- [Bach, Fröhlich, Sigal, Adv. Math., 137, (1998)] : confined particles
- [Sigal, J. Stat. Phys., (2009)]
- [Bach, Ballesteros, Pizzo, preprint]

Ingredients of the proof

- Bach-Fröhlich-Sigal spectral renormalization group
- Refined version : iterative application of isospectral Feshbach-Schur maps [Ballesteros, F., Fröhlich, Schubnel, Comm. Math. Phys., (2015)]

Jérémy Faupin

The model

Results Spectral results Scattering

Lifetime of metastable states

Theorem

Let $\Lambda \geq 0$. Let $e_j < 0$ be a simple eigenvalue of $H_{\rm el}$ and let φ_j be a normalized eigenstate of $H_{\rm el}$ associated to e_j . There exists $\alpha_c > 0$ such that for all $0 \leq \alpha \leq \alpha_c$ and $t \geq 0$,

$$\left|\left\langle \varphi_{j}\otimes\Omega,e^{-it\mathcal{H}_{lpha}}\varphi_{j}\otimes\Omega
ight
angle
ight|=e^{-t\mathrm{Im}(e_{j,lpha})}+\mathcal{O}(lpha)$$

References

- [Abou Salem, F., Fröhlich, Sigal, Adv. Appl. Math., 9, (2009)]
- [Hasler, Herbst, Huber, Ann. Henri Poincaré, 43, (2009)]

Ingredients of the proof

- Stone's formula
- Approximation by infrared cutoff Hamiltonians
- Cauchy's theorem

Jérémy Faupin

The model

Results Spectral results

Scattering results

Ionization threshold

Definition

$$\Sigma_{\alpha} = \lim_{R \to \infty} \inf_{\varphi \in D_R, \|\varphi\| = 1} \langle \varphi, H_{\alpha} \varphi \rangle,$$

with $D_R = \{ \varphi \in \mathcal{D}(H_\alpha); \ \varphi(x_{\mathrm{el}}) = 0 \text{ if } |x_{\mathrm{el}}| < R \}$

Theorem

Let $\alpha \geq 0$, $\Lambda \geq 0$. For all $\delta, \xi \in \mathbb{R}$ such that $\xi + \delta^2 < \Sigma_{\alpha}$,

 $\left\|e^{\delta|x_{\rm el}|}\mathbf{1}_{(-\infty,\xi]}(H_{\alpha})\right\|<\infty$

References

- [Bach, Fröhlich, Sigal, Comm. Math. Phys., 207, (1999)]
- [Griesemer, J. Funct. Anal., 2, (2004)]

Jérémy Faupin

The model

Results

Spectral results

Scattering results

Maximal velocity of photons

Theorem

Let $\alpha \geq 0$, $\Lambda \geq 0$. Let $\chi \in C_0^{\infty}((-\infty, \Sigma_{\alpha}))$ and c > 1. For all $\psi_0 \in \chi(\mathcal{H}_{\alpha})\mathcal{D}(d\Gamma(\langle i\nabla_k \rangle)^{1/2})$,

$$\left\|\mathrm{d} \mathsf{\Gamma}\big(\mathbf{1}_{\cdot \geq ct} \big(|i \nabla_k| \big) \big)^{\frac{1}{2}} e^{-it \mathcal{H}_{\alpha}} \psi_0 \right\| \lesssim t^{-\gamma} \| (\mathrm{d} \mathsf{\Gamma}(\langle i \nabla_k \rangle) + 1)^{\frac{1}{2}} \psi_0 \|,$$

for some $\gamma > {\rm 0}$ depending on c

References

• [Bony, F., Sigal, Adv. Math., 5, (2012)]

Ingredients of the proof

- Generalized Pauli-Fierz transformation
- Method of propagation estimates adapted to Fock space

Jérémy Faupin

The model

Results Spectral results

Scattering results

Asymptotic completeness (I)

Theorem

Let $\Lambda \geq 0$. Let $\Delta \subset (-\infty, 0)$. There exists $\alpha_c > 0$ such that for all $0 \leq \alpha \leq \alpha_c$, if Fermi's Golden Rule holds in Δ and if one of the following hypotheses hold

(i) For all $\chi \in C_0^{\infty}(\Delta)$ and $\psi_0 \in \chi(\mathcal{H}_{\alpha})\mathcal{D}(\mathrm{d}\Gamma(\mathbb{1})^{1/2})$,

 $\|\mathrm{d}\Gamma(\mathbf{1})^{\frac{1}{2}}e^{-it\mathcal{H}_{\alpha}}\psi\| \lesssim \|\mathrm{d}\Gamma(\mathbf{1})^{\frac{1}{2}}\psi_{0}\| + \|\psi_{0}\|$

(i') For all ψ_0 in some set \mathcal{D} dense in $\operatorname{Ran} \mathbb{1}_{\Delta}(\mathcal{H}_{\alpha})$,

 $\|\mathrm{d}\Gamma(|k|^{-1})^{\frac{1}{2}}e^{-itH_{\alpha}}\psi_t\|\leq C(\psi_0)$

then asymptotic completeness holds in $\operatorname{Ran} \mathbb{1}_{\Delta}(H_{\alpha})$: for all $\psi_0 \in \operatorname{Ran} \mathbb{1}_{\Delta}(H_{\alpha})$ and $\varepsilon > 0$, there exists $f_{\varepsilon} \in \mathcal{H}_{\mathrm{ph}}$ with a finite number of photons, such that

$$\limsup_{t\to\infty} \left\| e^{-itH_{\alpha}}\psi_0 - e^{-itE_{\alpha}}\Phi_{\alpha} \otimes_s e^{-itH_f}f_{\varepsilon} \right\| \leq \varepsilon,$$

where Φ_{α} is a ground state of H_{α}

Jérémy Faupin

The model

Results

Spectral results

Scattering results

Asymptotic completeness (II)

References

• [F., Sigal, Comm. Math. Phys., 3, (2014)]

Previous results for infrared cutoff or massive Hamiltonians :

- [Spohn, J. Math. Phys., 38, (1997)]
- [Dereziński, Gérard, Rev. Math. Phys., 11, (1999)]
- [Fröhlich, Griesemer, Schlein, Ann. Henri Poincaré, 3, (2002)]

Remark

Hypothesis (i') holds for the spin-boson model (and therefore asymptotic completeness holds in this case)

- [De Roeck, Kupiainen, Ann. Henri Poincaré, (2012)]
- [De Roeck, Griesemer, Kupiainen, Adv. Math., 68, (2015)]

Ingredients of the proof

- Dereziński-Gérard asymptotic partition of unity in Fock space
- Existence of the Deift-Simon wave operators
- Propagation estimates for photons (minimal velocity estimates)

> Jérémy Faupin

The model

Results

Spectral results

Scattering results

Thank you!