Invariant manifolds and semi-conjugacy

Marc Chaperon Institut de Mathématiques de Jussieu-Paris Rive Gauche Université Paris 7

Indo-French Conference Chennai, January 13, 2016

A few references

Marc Chaperon Institut de Mathématiques de Jussieu-Paris 📃 Invariant manifolds and semi-conjugacy

《曰》 《聞》 《臣》 《臣》

æ

R. McGehee, E. A. Sander, A new proof of the stable manifold theorem, *Z. Angew. Math. Phys.* **47**, no. 4 (1996), 497–513.

A (2) > (

R. McGehee, E. A. Sander, A new proof of the stable manifold theorem, *Z. Angew. Math. Phys.* **47**, no. 4 (1996), 497–513.

M.C., Generating maps, invariant manifolds, conjugacy. *Journal of Geometry and Physics* **87** (2015), 76–85.

R. McGehee, E. A. Sander, A new proof of the stable manifold theorem, *Z. Angew. Math. Phys.* **47**, no. 4 (1996), 497–513.

M.C., Generating maps, invariant manifolds, conjugacy. *Journal of Geometry and Physics* **87** (2015), 76–85.

——, Modest proposal for preventing functional analysis from being a burden to invariant manifold theory, to appear.

・ 同 ト ・ ヨ ト ・ ヨ ト

Marc Chaperon Institut de Mathématiques de Jussieu-Paris Invariant manifolds and semi-conjugacy

▶ < 몰 ▶ < 몰 ▶</p>

æ

Introduction - Generating maps

Idea: represent the graph of a map or correspondence h between product spaces $X_0 \times Y_0$ and $X_1 \times Y_1$ in a "skewed coordinate system" (McGehee),

Introduction - Generating maps

Idea: represent the graph of a map or correspondence h between product spaces $X_0 \times Y_0$ and $X_1 \times Y_1$ in a "skewed coordinate system" (McGehee),

i.e., as the graph $x_1 = F(x_0, y_1), y_0 = G(x_0, y_1)$ of a map ("generating map") $(F, G) : X_0 \times Y_1 \rightarrow X_1 \times Y_0$.

Introduction - Generating maps

Idea: represent the graph of a map or correspondence h between product spaces $X_0 \times Y_0$ and $X_1 \times Y_1$ in a "skewed coordinate system" (McGehee),

i.e., as the graph $x_1 = F(x_0, y_1), y_0 = G(x_0, y_1)$ of a map ("generating map") $(F, G) : X_0 \times Y_1 \to X_1 \times Y_0$.

"Hyperbolic" example. $E = E_s \times E_u$ (Banach spaces), $H = (f,g) : (E,0) \rightarrow (E,0)$ local C^1 map, $DH(0) = A_s \times A_u$, A_u invertible, $|A_s| < 1 < |A_u^{-1}|^{-1}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Idea: represent the graph of a map or correspondence h between product spaces $X_0 \times Y_0$ and $X_1 \times Y_1$ in a "skewed coordinate system" (McGehee),

i.e., as the graph $x_1 = F(x_0, y_1), y_0 = G(x_0, y_1)$ of a map ("generating map") $(F, G) : X_0 \times Y_1 \to X_1 \times Y_0$.

"Hyperbolic" example. $E = E_s \times E_u$ (Banach spaces), $H = (f,g) : (E,0) \rightarrow (E,0)$ local C^1 map, $DH(0) = A_s \times A_u$, A_u invertible, $|A_s| < 1 < |A_u^{-1}|^{-1}$.

Invert the second component with respect to the second variable: $(x, y) \mapsto (x, g(x, y))$ local diffeomorphism, local inverse $(x, y') \mapsto (x, G(x, y'))$.

Idea: represent the graph of a map or correspondence h between product spaces $X_0 \times Y_0$ and $X_1 \times Y_1$ in a "skewed coordinate system" (McGehee),

i.e., as the graph $x_1 = F(x_0, y_1), y_0 = G(x_0, y_1)$ of a map ("generating map") $(F, G) : X_0 \times Y_1 \to X_1 \times Y_0$.

"Hyperbolic" example. $E = E_s \times E_u$ (Banach spaces), $H = (f,g) : (E,0) \rightarrow (E,0)$ local C^1 map, $DH(0) = A_s \times A_u$, A_u invertible, $|A_s| < 1 < |A_u^{-1}|^{-1}$. Invert the second component with respect to the second variable: $(x, y) \mapsto (x, g(x, y))$ local diffeomorphism, local inverse $(x, y') \mapsto (x, G(x, y'))$. If F(x, y') := f(x, G(x, y')) then, near 0, graph $H = \{(x, y, x', y') : x' = F(x, y'), y = G(x, y')\}$.

(D) (A) (A) (A)

Idea: represent the graph of a map or correspondence h between product spaces $X_0 \times Y_0$ and $X_1 \times Y_1$ in a "skewed coordinate system" (McGehee),

i.e., as the graph $x_1 = F(x_0, y_1), y_0 = G(x_0, y_1)$ of a map ("generating map") $(F, G) : X_0 \times Y_1 \to X_1 \times Y_0$.

"Hyperbolic" example. $E = E_s \times E_u$ (Banach spaces), $H = (f, g) : (E, 0) \rightarrow (E, 0)$ local C^1 map, $DH(0) = A_s \times A_u$, A_u invertible, $|A_s| < 1 < |A_u^{-1}|^{-1}$. Invert the second component with respect to the second variable: $(x, y) \mapsto (x, g(x, y))$ local diffeomorphism, local inverse $(x, y') \mapsto (x, G(x, y'))$. If F(x, y') := f(x, G(x, y')) then, near 0, graph $H = \{(x, y, x', y') : x' = F(x, y'), y = G(x, y')\}$. ?

Shut yourself in a small box Z: r > 0 small,

Marc Chaperon Institut de Mathématiques de Jussieu-Paris Invariant manifolds and semi-conjugacy

• • = • • = •

Shut yourself in a small box Z: r > 0 small, $Z = X \times Y = \{(x, y) \in E_s \times E_u : \max\{|x|, |y|\} \le r\}.$

• • = • • = •

Shut yourself in a small box Z: r > 0 small, $Z = X \times Y = \{(x, y) \in E_s \times E_u : \max\{|x|, |y|\} \le r\}.$ $\lambda := \operatorname{Lip} F|_Z(\simeq |A_s|) < 1, \ \mu := \operatorname{Lip} G|_Z(\simeq |A_u^{-1}|) < 1$ $\Rightarrow (F, G)(Z) \subset Z.$

Shut yourself in a small box Z: r > 0 small, $Z = X \times Y = \{(x, y) \in E_s \times E_u : \max\{|x|, |y|\} \le r\}.$ $\lambda := \operatorname{Lip} F|_Z(\simeq |A_s|) < 1, \ \mu := \operatorname{Lip} G|_Z(\simeq |A_u^{-1}|) < 1$ $\Rightarrow (F, G)(Z) \subset Z.$

 $(F, G): Z \to Z$ generating map of $H|_{Z \cap h^{-1}(Z)}$ viewed as the correspondence h of Z into itself (map $Z \to \mathcal{P}(Z)$)

$$h(z) := \begin{cases} \{H(z)\} & \text{if } H(z) \in Z, \\ \emptyset & \text{otherwise:} \end{cases}$$

Shut yourself in a small box Z: r > 0 small, $Z = X \times Y = \{(x, y) \in E_s \times E_u : \max\{|x|, |y|\} \le r\}.$ $\lambda := \operatorname{Lip} F|_Z(\simeq |A_s|) < 1, \ \mu := \operatorname{Lip} G|_Z(\simeq |A_u^{-1}|) < 1$ $\Rightarrow (F, G)(Z) \subset Z.$

 $(F, G) : Z \to Z$ generating map of $H|_{Z \cap h^{-1}(Z)}$ viewed as the correspondence h of Z into itself (map $Z \to \mathcal{P}(Z)$)

$$h(z) := \begin{cases} \{H(z)\} & \text{if } H(z) \in Z, \\ \emptyset & \text{otherwise:} \end{cases}$$

graph $h = \{(x, y, x', y') \in Z^2 : x' = F(x, y'), y = G(x, y')\}.$

伺 ト イヨト イヨト

Shut yourself in a small box Z: r > 0 small, $Z = X \times Y = \{(x, y) \in E_s \times E_u : \max\{|x|, |y|\} \le r\}.$ $\lambda := \operatorname{Lip} F|_Z(\simeq |A_s|) < 1, \ \mu := \operatorname{Lip} G|_Z(\simeq |A_u^{-1}|) < 1$ $\Rightarrow (F, G)(Z) \subset Z.$

 $(F, G): Z \to Z$ generating map of $H|_{Z \cap h^{-1}(Z)}$ viewed as the correspondence h of Z into itself (map $Z \to \mathcal{P}(Z)$)

$$h(z) := \begin{cases} \{H(z)\} & \text{if } H(z) \in Z, \\ \emptyset & \text{otherwise:} \end{cases}$$

graph $h = \{(x, y, x', y') \in Z^2 : x' = F(x, y'), y = G(x, y')\}.$

Orbit of length ℓ of h: $(z_0, \ldots, z_\ell) \in Z^{\ell+1}$ with $z_{j+1} \in h(z_j)$.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Shut yourself in a small box Z: r > 0 small, $Z = X \times Y = \{(x, y) \in E_s \times E_u : \max\{|x|, |y|\} \le r\}.$ $\lambda := \operatorname{Lip} F|_Z(\simeq |A_s|) < 1, \ \mu := \operatorname{Lip} G|_Z(\simeq |A_u^{-1}|) < 1$ $\Rightarrow (F, G)(Z) \subset Z.$

 $(F, G): Z \to Z$ generating map of $H|_{Z \cap h^{-1}(Z)}$ viewed as the correspondence h of Z into itself (map $Z \to \mathcal{P}(Z)$)

$$h(z) := \begin{cases} \{H(z)\} & \text{if } H(z) \in Z, \\ \emptyset & \text{otherwise:} \end{cases}$$

graph $h = \{(x, y, x', y') \in Z^2 : x' = F(x, y'), y = G(x, y')\}.$ Orbit of length ℓ of h: $(z_0, \ldots, z_\ell) \in Z^{\ell+1}$ with $z_{j+1} \in h(z_j).$ ℓ^{th} iterate of h: correspondence h^ℓ of Z into itself: $h^\ell(z)$ set of endpoints z_ℓ of orbits (z_0, \ldots, z_ℓ) with $z_0 = z$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Shut yourself in a small box Z: r > 0 small, $Z = X \times Y = \{(x, y) \in E_s \times E_u : \max\{|x|, |y|\} \le r\}.$ $\lambda := \operatorname{Lip} F|_Z(\simeq |A_s|) < 1, \ \mu := \operatorname{Lip} G|_Z(\simeq |A_u^{-1}|) < 1$ $\Rightarrow (F, G)(Z) \subset Z.$

 $(F, G): Z \to Z$ generating map of $H|_{Z \cap h^{-1}(Z)}$ viewed as the correspondence h of Z into itself (map $Z \to \mathcal{P}(Z)$)

$$h(z) := \begin{cases} \{H(z)\} & \text{if } H(z) \in Z, \\ \emptyset & \text{otherwise:} \end{cases}$$

graph $h = \{(x, y, x', y') \in Z^2 : x' = F(x, y'), y = G(x, y')\}.$

Orbit of length ℓ of h: $(z_0, \ldots, z_\ell) \in Z^{\ell+1}$ with $z_{j+1} \in h(z_j)$.

 ℓ^{th} iterate of h: correspondence h^{ℓ} of Z into itself: $h^{\ell}(z)$ set of endpoints z_{ℓ} of orbits (z_0, \ldots, z_{ℓ}) with $z_0 = z$.

Here,
$$h^{\ell}(z) := \begin{cases} \{H^{\ell}(z)\} & \text{if } H^{j}(z) \in Z \text{ for } 0 \leq j \leq \ell \\ \emptyset & \text{otherwise.} \end{cases}$$

Marc Chaperon Institut de Mathématiques de Jussieu-Paris Invariant manifolds and semi-conjugacy

▶ ★ 문 ▶ ★ 문 ▶

臣

Every h^{ℓ} has a generating map $(F_{\ell}, G_{\ell}) : Z \to Z$, and $|F_{\ell}(x, y) - F_{\ell}(x', y')| \leq \max\{\lambda^{\ell}|x - x'|, \lambda|y - y'|\}$ (1) $|G_{\ell}(x, y) - G_{\ell}(x', y')| \leq \max\{\mu|x - x'|, \mu^{\ell}|y - y'|\},$ (2) written for short $(\lambda^{\ell}, \lambda) \in \operatorname{Lip}_{2} F_{\ell}, (\mu, \mu^{\ell}) \in \operatorname{Lip}_{2} G_{\ell}.$

Every h^{ℓ} has a generating map $(F_{\ell}, G_{\ell}) : Z \to Z$, and $|F_{\ell}(x,y) - F_{\ell}(x',y')| \leq \max\{\lambda^{\ell}|x-x'|,\lambda|y-y'|\}$ (1) $|G_{\ell}(x,y) - G_{\ell}(x',y')| \leq \max\{\mu | x - x'|, \mu^{\ell} | y - y'|\}, (2)$ written for short $(\lambda^{\ell}, \lambda) \in \operatorname{Lip}_2 F_{\ell}, (\mu, \mu^{\ell}) \in \operatorname{Lip}_2 G_{\ell}.$ dom $h^{\ell} = \{z \in Z : h^{\ell}(z) \neq \emptyset\} = \{(x, G_{\ell}(x, y)) : (x, y) \in Z\}$ satisfies diam{ $G_{\ell}(x, y) : y \in Y$ } $\leq 2r\mu^{\ell}$ for each $x \in X$. Therefore, the inclusion dom $h^{\ell} \supset \text{dom } h^m$ for $\ell \leq m$ implies $\bigcap \operatorname{dom} h^{\ell} = \operatorname{graph} \varphi$ and $\lim_{\ell \to \infty} G_{\ell}(x, y_{\ell}) = \varphi(x)$ uniformly with respect to $x \in X$ and $(y_{\ell})_{\ell \in \mathbb{N}}$ in Y, hence $\operatorname{Lip} \varphi \leq \mu$ by (2).

Every h^{ℓ} has a generating map $(F_{\ell}, G_{\ell}) : Z \to Z$, and $|F_{\ell}(x,y) - F_{\ell}(x',y')| \leq \max\{\lambda^{\ell}|x-x'|,\lambda|y-y'|\}$ (1) $|G_{\ell}(x,y) - G_{\ell}(x',y')| \leq \max\{\mu | x - x'|, \mu^{\ell} | y - y'|\}, (2)$ written for short $(\lambda^{\ell}, \lambda) \in \operatorname{Lip}_2 F_{\ell}, (\mu, \mu^{\ell}) \in \operatorname{Lip}_2 G_{\ell}.$ dom $h^{\ell} = \{z \in Z : h^{\ell}(z) \neq \emptyset\} = \{(x, G_{\ell}(x, y)) : (x, y) \in Z\}$ satisfies diam{ $G_{\ell}(x, y) : y \in Y$ } $\leq 2r\mu^{\ell}$ for each $x \in X$. Therefore, the inclusion dom $h^{\ell} \supset \text{dom } h^m$ for $\ell \leq m$ implies $\bigcap \operatorname{dom} h^{\ell} = \operatorname{graph} \varphi$ and $\lim_{\ell \to \infty} G_{\ell}(x, y_{\ell}) = \varphi(x)$ uniformly with respect to $x \in X$ and $(y_{\ell})_{\ell \in \mathbb{N}}$ in Y, hence $\operatorname{Lip} \varphi \leq \mu$ by (2). Im $h^{\ell} := \bigcup_{z \in Z} h^{\ell}(z) = \{ (F_{\ell}(x, y), y) : (x, y) \in Z \}$ satisfies diam{ $F_{\ell}(x, y) : x \in X$ } $\leq 2r\lambda^{\ell}$; as Im $h^{\ell} \supset \text{Im } h^{m}$ for $\ell \leq m$, this yields $\bigcap \operatorname{Im} h^{\ell} = \{(\psi(y), y) : y \in Y\}$ and lim $F_\ell(x_\ell, y) = \psi(y)$ uniformly with respect to $y \in Y$ and $\ell \rightarrow \infty$ $(x_{\ell})_{\ell \in \mathbb{N}}$ in X, hence $\operatorname{Lip} \psi \leq \lambda$ by (1).

 $\lim_{\ell \to \infty} (F_{\ell}, G_{\ell})(x, y) = (\psi(y), \varphi(x))$ uniformly.

We shall see soon that:

• • = • • = •

 $\lim_{\ell \to \infty} (F_\ell, G_\ell)(x, y) = (\psi(y), \varphi(x))$ uniformly.

We shall see soon that:

 $W_s := \operatorname{graph} \varphi$ is the set of all z such that there exists an infinite orbit $(z_\ell)_{\ell \ge 0}$ of h with $z_0 = z$ (orbit $(z_\ell)_{\ell \ge 0}$ of H in Z with $z_0 = z$), therefore invariant under h in the sense that $h^{-1}(W_s) = W_s$;

 $\lim_{\ell \to \infty} (F_\ell, G_\ell)(x, y) = (\psi(y), \varphi(x))$ uniformly.

We shall see soon that:

 $W_s := \operatorname{graph} \varphi$ is the set of all z such that there exists an infinite orbit $(z_\ell)_{\ell \ge 0}$ of h with $z_0 = z$ (orbit $(z_\ell)_{\ell \ge 0}$ of H in Z with $z_0 = z$), therefore invariant under h in the sense that $h^{-1}(W_s) = W_s$;

 W_s is the stable manifold of h at 0, as $|z_\ell| \le \lambda^\ell |z|$;

 $\lim_{\ell o \infty} (F_\ell, G_\ell)(x, y) = (\psi(y), \varphi(x))$ uniformly.

We shall see soon that:

 $W_s := \operatorname{graph} \varphi$ is the set of all z such that there exists an infinite orbit $(z_\ell)_{\ell \ge 0}$ of h with $z_0 = z$ (orbit $(z_\ell)_{\ell \ge 0}$ of H in Z with $z_0 = z$), therefore invariant under h in the sense that $h^{-1}(W_s) = W_s$;

 W_s is the stable manifold of h at 0, as $|z_\ell| \leq \lambda^\ell |z|$;

 $W_u := \{ (\psi(y'), y') : y' \in Y \}$ is the set of those z such that there exists an infinite orbit $(z_\ell)_{\ell \leq 0}$ of h with $z_0 = z$ (in other words an infinite orbit $(z_\ell)_{\ell \leq 0}$ of H in Z such that $z_0 = z$), therefore invariant under h^{-1} in the sense that $h(W_u) = W_u$;

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

 $\lim_{\ell \to \infty} (F_\ell, G_\ell)(x, y) = (\psi(y), \varphi(x))$ uniformly.

We shall see soon that:

 $W_s := \operatorname{graph} \varphi$ is the set of all z such that there exists an infinite orbit $(z_\ell)_{\ell \ge 0}$ of h with $z_0 = z$ (orbit $(z_\ell)_{\ell \ge 0}$ of H in Z with $z_0 = z$), therefore invariant under h in the sense that $h^{-1}(W_s) = W_s$;

 W_s is the stable manifold of h at 0, as $|z_\ell| \leq \lambda^\ell |z|$;

 $W_u := \{ (\psi(y'), y') : y' \in Y \} \text{ is the set of those } z \text{ such that} \\ \text{there exists an infinite orbit } (z_\ell)_{\ell \leq 0} \text{ of } h \text{ with } z_0 = z \text{ (in other} \\ \text{words an infinite orbit } (z_\ell)_{\ell \leq 0} \text{ of } H \text{ in } Z \text{ such that } z_0 = z \text{),} \\ \text{therefore invariant under } h^{-1} \text{ in the sense that } h(W_u) = W_u; \\ W_u \text{ is the unstable manifold of } h \text{ at } 0, \text{ as } |z_\ell| \leq \mu^{-\ell} |y|. \end{cases}$

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Smoothness The generating maps (F_{ℓ}, G_{ℓ}) are constructed via the ordinary implicit function theorem (no functional analysis involved) and therefore as smooth as H.

Smoothness The generating maps (F_{ℓ}, G_{ℓ}) are constructed via the ordinary implicit function theorem (no functional analysis involved) and therefore as smooth as H. In particular, they are holomorphic when H is; in that case $\varphi: X \mapsto Y$ is holomorphic (inside X), being the uniform limit of the holomorphic functions $x \mapsto G_{\ell}(x, y)$ for any $y \in Y$, hence so is W_s ; same for W_u .

Smoothness The generating maps (F_{ℓ}, G_{ℓ}) are constructed via the ordinary implicit function theorem (no functional analysis involved) and therefore as smooth as H. In particular, they are holomorphic when H is; in that case $\varphi : X \mapsto Y$ is holomorphic (inside X), being the uniform limit of the holomorphic functions $x \mapsto G_{\ell}(x, y)$ for any $y \in Y$, hence so is W_s ; same for W_u . (complexification) W_s and W_u are real analytic when H is. Still without functional analysis, one can see that:

Smoothness The generating maps (F_{ℓ}, G_{ℓ}) are constructed via the ordinary implicit function theorem (no functional analysis involved) and therefore as smooth as H. In particular, they are holomorphic when H is; in that case $\varphi : X \mapsto Y$ is holomorphic (inside X), being the uniform limit of the holomorphic functions $x \mapsto G_{\ell}(x, y)$ for any $y \in Y$, hence so is W_s ; same for W_u . (complexification) W_s and W_u are real analytic when H is. Still without functional analysis, one can see that: W_s and W_u are C^1 when H is;

Smoothness The generating maps (F_{ℓ}, G_{ℓ}) are constructed via the ordinary implicit function theorem (no functional analysis involved) and therefore as smooth as H. In particular, they are holomorphic when H is; in that case $\varphi: X \mapsto Y$ is holomorphic (inside X), being the uniform limit of the holomorphic functions $x \mapsto G_{\ell}(x, y)$ for any $y \in Y$, hence so is W_s ; same for W_{μ} . (complexification) W_s and W_{μ} are real analytic when H is. Still without functional analysis, one can see that: W_s and W_{μ} are C^1 when H is; they are C^k when H is for $2 \le k \le \infty$, which can be proved inductively (variant of the "Hirsch-Pugh-Shub trick"):

・ 同 ト ・ ヨ ト ・ ヨ ト

Smoothness The generating maps (F_{ℓ}, G_{ℓ}) are constructed via the ordinary implicit function theorem (no functional analysis involved) and therefore as smooth as H. In particular, they are holomorphic when H is; in that case $\varphi: X \mapsto Y$ is holomorphic (inside X), being the uniform limit of the holomorphic functions $x \mapsto G_{\ell}(x, y)$ for any $y \in Y$, hence so is W_s ; same for W_{μ} . (complexification) W_s and W_{μ} are real analytic when H is. Still without functional analysis, one can see that: W_s and W_{μ} are C^1 when H is; they are C^k when H is for $2 \le k \le \infty$, which can be proved inductively (variant of the "Hirsch-Pugh-Shub trick"): obtain the 1-jet $x \mapsto (\varphi(x), D\varphi(x))$ of φ in the same way as φ , replacing h by its natural extension to a suitable box in the jet space $J^1(X, Y) = X \times Y \times L(E_s, E_u)$;

(日) (日) (日)

Smoothness The generating maps (F_{ℓ}, G_{ℓ}) are constructed via the ordinary implicit function theorem (no functional analysis involved) and therefore as smooth as H. In particular, they are holomorphic when H is; in that case $\varphi: X \mapsto Y$ is holomorphic (inside X), being the uniform limit of the holomorphic functions $x \mapsto G_{\ell}(x, y)$ for any $y \in Y$, hence so is W_s ; same for W_{μ} . (complexification) W_s and W_u are real analytic when H is. Still without functional analysis, one can see that: W_s and W_{μ} are C^1 when H is; they are C^k when H is for $2 \le k \le \infty$, which can be proved inductively (variant of the "Hirsch-Pugh-Shub trick"): obtain the 1-jet $x \mapsto (\varphi(x), D\varphi(x))$ of φ in the same way as φ , replacing h by its natural extension to a suitable box in the iet space $J^1(X, Y) = X \times Y \times L(E_s, E_u)$; this holds for non-integer k as well.

Theorem

Let X, Y be metric spaces one of which at least is complete, and let h be a correspondence of $Z = X \times Y$ into itself admitting a Lipschitzian generating map $(F, G) : Z \to Z$ such that

$$\lambda := \operatorname{Lip} F$$
 and $\mu := \operatorname{Lip} G$ satisfy $\lambda \mu < 1$.

Then, for each $\ell \in \mathbb{N}$ and each $z = (x, y) \in Z$, there is exactly one orbit (z_0, \ldots, z_ℓ) of h such that the X-component of z_0 equals xand the Y-component of z_ℓ equals y; setting then $z_i = (F_i^{\ell}(z), G_i^{\ell}(z)), 0 \le i \le \ell$, the correspondence h^{ℓ} clearly admits the generating map $(F_{\ell}^{\ell}, G_0^{\ell})$ and one has

$$\begin{array}{rcl} (\lambda^{i},\lambda\mu^{\ell-i}) &\in & \operatorname{Lip}_{2}F_{i}^{\ell} \\ (\mu\lambda^{i},\mu^{\ell-i}) &\in & \operatorname{Lip}_{2}G_{i}^{\ell} \end{array} & \text{for} & 0 \leq i \leq \ell \end{array}$$

$$\begin{array}{rcl} \mathsf{F}_{i}^{m}(x,y) &= & \mathsf{F}_{i}^{\ell}(x,\mathsf{G}_{\ell}^{m}(x,y)) \\ \mathsf{G}_{i}^{m}(x,y) &= & \mathsf{G}_{i}^{\ell}(x,\mathsf{G}_{\ell}^{m}(x,y)) \end{array} & \text{for} & 0 \leq i \leq \ell \leq m. \end{array}$$

If, moreover, Y is complete, bounded and $\mu < 1$ then:

Marc Chaperon Institut de Mathématiques de Jussieu-Paris Invariant manifolds and semi-conjugacy

If, moreover, Y is complete, bounded and $\mu < 1$ then:

i) For each x ∈ X, there is precisely one orbit (z_i)_{i≥0} of h such that the X-component of z₀ equals x; it is given by z_i = lim_{ℓ→∞} (F^ℓ_i(x, y_ℓ), G^ℓ_i(x, y_ℓ)), limit independent of (y_ℓ)_{ℓ≥0}; in particular, z₀ = (x, lim_{ℓ→∞} G^ℓ₀(x, y_ℓ)) =: (x, φ(x)).

If, moreover, Y is complete, bounded and $\mu < 1$ then:

- i) For each x ∈ X, there is precisely one orbit (z_i)_{i≥0} of h such that the X-component of z₀ equals x; it is given by z_i = lim_{ℓ→∞} (F^ℓ_i(x, y_ℓ), G^ℓ_i(x, y_ℓ)), limit independent of (y_ℓ)_{ℓ≥0}; in particular, z₀ = (x, lim_{ℓ→∞} G^ℓ₀(x, y_ℓ)) =: (x, φ(x)).
- ii) Thus, the graph W_s of the map $\varphi : X \to Y$ so defined consists of those $z \in Z$ such that there exists an orbit $(z_i)_{i\geq 0}$ of h with $z_0 = z$; it is invariant by h and $\operatorname{Lip} \varphi \leq \mu$.

• • = • • = •

If, moreover, Y is complete, bounded and $\mu < 1$ then:

- i) For each x ∈ X, there is precisely one orbit (z_i)_{i≥0} of h such that the X-component of z₀ equals x; it is given by z_i = lim_{ℓ→∞} (F^ℓ_i(x, y_ℓ), G^ℓ_i(x, y_ℓ)), limit independent of (y_ℓ)_{ℓ≥0}; in particular, z₀ = (x, lim_{ℓ→∞} G^ℓ₀(x, y_ℓ)) =: (x, φ(x)).
- ii) Thus, the graph W_s of the map $\varphi : X \to Y$ so defined consists of those $z \in Z$ such that there exists an orbit $(z_i)_{i\geq 0}$ of h with $z_0 = z$; it is invariant by h and $\operatorname{Lip} \varphi \leq \mu$.
- iii) The correspondence $W_s \ni z \mapsto h(z) \cap W_s$ is a map $h_s : W_s \to W_s$ and therefore $h_s(x, \varphi(x)) = (f_s(x), \varphi(f_s(x)));$ thus, in i), $z_i = h_s^i(x, \varphi(x)) = (f_s^i(x), \varphi(f_s^i(x))),$ hence $f_s(x) = \lim_{\ell \to \infty} F_1^\ell(x, y_\ell)$ and $\operatorname{Lip} h_s = \operatorname{Lip} f_s \leq \lambda.$

ヘロト 人間ト くほと くほん

Under the hypotheses of the theorem, if X is complete, bounded and $\lambda < 1$ then:

Under the hypotheses of the theorem, if X is complete, bounded and $\lambda < 1$ then:

i) For each y ∈ Y, there is precisely one orbit (z_i)_{i≥0} of h⁻¹ such that the Y-component of z₀ equals y; it is given by z_i = lim_{ℓ→∞} (F^ℓ_{ℓ-i}(x_ℓ, y), G^ℓ_{ℓ-i}(x_ℓ, y)), limit independent of (x_ℓ)_{ℓ≥0}; in particular, z₀ = (lim_{ℓ→∞} F^ℓ_ℓ(x_ℓ, y), y) =: (ψ(y), y).

Under the hypotheses of the theorem, if X is complete, bounded and $\lambda < 1$ then:

- i) For each y ∈ Y, there is precisely one orbit (z_i)_{i≥0} of h⁻¹ such that the Y-component of z₀ equals y; it is given by z_i = lim_{ℓ→∞} (F^ℓ_{ℓ-i}(x_ℓ, y), G^ℓ_{ℓ-i}(x_ℓ, y)), limit independent of (x_ℓ)_{ℓ≥0}; in particular, z₀ = (lim_{ℓ→∞} F^ℓ_ℓ(x_ℓ, y), y) =: (ψ(y), y).
- ii) Thus, the "graph" $W_u = \{(\psi(y), y) : y \in Y\}$ of $\psi : Y \to X$ is the set of those $z \in Z$ such that there exists an orbit $(z_i)_{i\geq 0}$ of h^{-1} with $z_0 = z$; it is invariant by h^{-1} and $\operatorname{Lip} \psi \leq \lambda$.

Under the hypotheses of the theorem, if X is complete, bounded and $\lambda < 1$ then:

- i) For each y ∈ Y, there is precisely one orbit (z_i)_{i≥0} of h⁻¹ such that the Y-component of z₀ equals y; it is given by z_i = lim_{ℓ→∞} (F^ℓ_{ℓ-i}(x_ℓ, y), G^ℓ_{ℓ-i}(x_ℓ, y)), limit independent of (x_ℓ)_{ℓ≥0}; in particular, z₀ = (lim_{ℓ→∞} F^ℓ_ℓ(x_ℓ, y), y) =: (ψ(y), y).
- ii) Thus, the "graph" $W_u = \{(\psi(y), y) : y \in Y\}$ of $\psi : Y \to X$ is the set of those $z \in Z$ such that there exists an orbit $(z_i)_{i\geq 0}$ of h^{-1} with $z_0 = z$; it is invariant by h^{-1} and $\operatorname{Lip} \psi \leq \lambda$.
- iii) The correspondence $W_u \ni z \mapsto h^{-1}(z) \cap W_u$ is a map $h_u^-: W_u \to W_u$ and therefore writes $h_u^-(\psi(y), y) = (\psi(g_u(y)), g_u(y));$ it follows that, in i), $z_i = (h_u^-)^i(\psi(y), y) = (\psi(g_u^i(y)), g_u^i(y)),$ hence $g_u(y) = \lim_{\ell \to \infty} G_{\ell-1}^\ell(x_\ell, y)$ and $\operatorname{Lip} h_u^- = \operatorname{Lip} g_u \le \mu.$

Corollary ("hyperbolic" situation)

Assume the hypotheses of both the previous corollaries satisfied, i.e. Z bounded, complete and λ, μ less than 1. Then:

i) The correspondence h has a unique fixed point p (meaning that $p \in h(p)$) and $W_s \cap W_u = \{p\}$.

伺 ト イヨト イヨト

Corollary ("hyperbolic" situation)

Assume the hypotheses of both the previous corollaries satisfied, i.e. Z bounded, complete and λ, μ less than 1. Then:

- i) The correspondence h has a unique fixed point p (meaning that $p \in h(p)$) and $W_s \cap W_u = \{p\}$.
- ii) The subspace W_s is the stable subspace of p, i. e., for all $z \in W_s$ the orbit $(h_s^i(z))_{i \in \mathbb{N}}$ of h tends to p: more precisely, $d(h_s^i(z), p) \leq \lambda^i d(z, p)$.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Corollary ("hyperbolic" situation)

Assume the hypotheses of both the previous corollaries satisfied, i.e. Z bounded, complete and λ, μ less than 1. Then:

- i) The correspondence h has a unique fixed point p (meaning that $p \in h(p)$) and $W_s \cap W_u = \{p\}$.
- ii) The subspace W_s is the stable subspace of p, i. e., for all $z \in W_s$ the orbit $(h_s^i(z))_{i \in \mathbb{N}}$ of h tends to p: more precisely, $d(h_s^i(z), p) \leq \lambda^i d(z, p)$.
- iii) The subspace W_u is the unstable subspace of p in the sense that, for all $z \in W_u$, the orbit $((h_u^-)^i(z))_{i \in \mathbb{N}}$ of h^{-1} tends to p: more precisely, $d((h_u^-)^i(z), p) \le \mu^i d(z, p)$ for all $i \in \mathbb{N}$.

ヘロト 人間ト くほと くほん

Proof. The fixed points of h are those of the strict contraction (F, G). The constant sequence $z_i = p$ is an orbit of both h and h^{-1} , hence $p \in W_s \cap W_u$; now, $W_s \cap W_u$ consists of all $(x, \varphi(x))$ with $x = \psi \circ \varphi(x)$ and therefore contains only p since $\psi \circ \varphi$ is a strict contraction of X.

Here, Z is the product $Z_s \times Z_c \times Z_u$ of three complete metric spaces with $\#Z_c \ge 2$, equipped with the product space metric, and h is a correspondence of Z into itself, satisfying both

- Here, Z is the product $Z_s \times Z_c \times Z_u$ of three complete metric spaces with $\#Z_c \ge 2$, equipped with the product space metric, and h is a correspondence of Z into itself, satisfying both
 - ► the hypotheses of the first corollary for $X = Z_s \times Z_c$, $Y = Z_u$ with constants $\lambda = \lambda_s$ and $\mu = \mu_s$,

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Here, Z is the product $Z_s \times Z_c \times Z_u$ of three complete metric spaces with $\#Z_c \ge 2$, equipped with the product space metric, and h is a correspondence of Z into itself, satisfying both

► the hypotheses of the first corollary for $X = Z_s \times Z_c$, $Y = Z_u$ with constants $\lambda = \lambda_s$ and $\mu = \mu_s$,

・ 同 ト ・ ヨ ト ・ ヨ ト ・

► the hypotheses of the second corollary for $X = Z_s$, $Y = Z_c \times Z_u$ with constants $\lambda = \lambda_u$ and $\mu = \mu_u$.

・ロ・ ・聞・ ・ヨ・ ・ヨ・

æ

i) The z_0 terms of orbits $(z_n)_{n\geq 0}$ of h form the h-invariant graph W_s of a map $\varphi : Z_s \times Z_c \to Z_u$ with $\operatorname{Lip} \varphi \leq \mu_s$, and h restricts to a map h_s of W_s into itself, which writes $h_s(x, \theta, \varphi(x, \theta)) = (f_s(x, \theta), \varphi \circ f_s(x, \theta))$ with $\operatorname{Lip} f_s \leq \lambda_s$.

- i) The z₀ terms of orbits (z_n)_{n≥0} of h form the h-invariant graph W_s of a map φ : Z_s × Z_c → Z_u with Lip φ ≤ μ_s, and h restricts to a map h_s of W_s into itself, which writes h_s(x, θ, φ(x, θ)) = (f_s(x, θ), φ ∘ f_s(x, θ)) with Lip f_s ≤ λ_s.
 ii) The z₀ terms of orbits (z_n)_{n≤0} of h form the h⁻¹-invariant "graph" W_u of a map ψ : Z_c × Z_u → Z_s with Lip ψ ≤ λ_u, and h⁻¹ restricts to a map h_u⁻ of W_u into itself, which writes
 - $h_u^-(\psi(\theta, y), \theta, y) = (\psi \circ g_u(\theta, y), g_u(\theta, y))$ with $\operatorname{Lip} g_u \leq \mu_u$.

- i) The z_0 terms of orbits $(z_n)_{n\geq 0}$ of h form the h-invariant graph W_s of a map $\varphi : Z_s \times Z_c \to Z_u$ with $\operatorname{Lip} \varphi \leq \mu_s$, and h restricts to a map h_s of W_s into itself, which writes $h_s(x, \theta, \varphi(x, \theta)) = (f_s(x, \theta), \varphi \circ f_s(x, \theta))$ with $\operatorname{Lip} f_s \leq \lambda_s$.
- ii) The z_0 terms of orbits $(z_n)_{n\leq 0}$ of h form the h^{-1} -invariant "graph" W_u of a map $\psi : Z_c \times Z_u \to Z_s$ with $\operatorname{Lip} \psi \leq \lambda_u$, and h^{-1} restricts to a map h_u^- of W_u into itself, which writes $h_u^-(\psi(\theta, y), \theta, y) = (\psi \circ g_u(\theta, y), g_u(\theta, y))$ with $\operatorname{Lip} g_u \leq \mu_u$.
- iii) The subspace $W_c := W_s \cap W_u$ of all z_0 terms of orbits $(z_n)_{n \in \mathbb{Z}}$ of h is invariant by h_s and h_u^- ; the restriction $h_c : W_c \to W_c$ of h_s is bijective and h_c^{-1} is the restriction of h_u^- .

4 同 ト 4 ヨ ト 4 ヨ ト -

- i) The z_0 terms of orbits $(z_n)_{n\geq 0}$ of h form the h-invariant graph W_s of a map $\varphi : Z_s \times Z_c \to Z_u$ with $\operatorname{Lip} \varphi \leq \mu_s$, and h restricts to a map h_s of W_s into itself, which writes $h_s(x, \theta, \varphi(x, \theta)) = (f_s(x, \theta), \varphi \circ f_s(x, \theta))$ with $\operatorname{Lip} f_s \leq \lambda_s$.
- ii) The z_0 terms of orbits $(z_n)_{n\leq 0}$ of h form the h^{-1} -invariant "graph" W_u of a map $\psi : Z_c \times Z_u \to Z_s$ with $\operatorname{Lip} \psi \leq \lambda_u$, and h^{-1} restricts to a map h_u^- of W_u into itself, which writes $h_u^-(\psi(\theta, y), \theta, y) = (\psi \circ g_u(\theta, y), g_u(\theta, y))$ with $\operatorname{Lip} g_u \leq \mu_u$.
- iii) The subspace $W_c := W_s \cap W_u$ of all z_0 terms of orbits $(z_n)_{n \in \mathbb{Z}}$ of h is invariant by h_s and h_u^- ; the restriction $h_c : W_c \to W_c$ of h_s is bijective and h_c^{-1} is the restriction of h_u^- .
- iv) The subspace W_c is the "graph" of a map $\chi : Z_c \to Z_s \times Z_u$ whose components χ_s, χ_u satisfy $\operatorname{Lip} \chi_s \leq \lambda_u$, $\operatorname{Lip} \chi_u \leq \mu_s$. Thus $h_c(\chi_s(\theta), \theta, \chi_u(\theta)) = (\chi_s \circ f_c(\theta), f_c(\theta), \chi_u \circ f_c(\theta))$ with f_c invertible, $\operatorname{Lip} f_c \leq \lambda_s$ and $\operatorname{Lip}(f_c^{-1}) \leq \mu_u$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Marc Chaperon Institut de Mathématiques de Jussieu-Paris Invariant manifolds and semi-conjugacy

Basic Lemma

Given metric spaces U_1, \ldots, U_n, E , set $U := U_1 \times \cdots \times U_n$ and assume that $\Phi : U \times E \to E$ satisfies $(c_1, \ldots, c_n, c) \in \operatorname{Lip}_{n+1} \Phi$ for nonnegative real numbers c_1, \ldots, c_n, c . If E is complete and c < 1then each $x \mapsto \Phi(u, x)$ has a unique fixed point B(u), which defines a map $B : U \to E$ with $(c_1, \ldots, c_n) \in \operatorname{Lip}_n B$.

Basic Lemma

Given metric spaces U_1, \ldots, U_n, E , set $U := U_1 \times \cdots \times U_n$ and assume that $\Phi : U \times E \to E$ satisfies $(c_1, \ldots, c_n, c) \in \operatorname{Lip}_{n+1} \Phi$ for nonnegative real numbers c_1, \ldots, c_n, c . If E is complete and c < 1then each $x \mapsto \Phi(u, x)$ has a unique fixed point B(u), which defines a map $B : U \to E$ with $(c_1, \ldots, c_n) \in \operatorname{Lip}_n B$.

Proof. Setting
$$x = B(u)$$
 and $x' = B(u')$, one has

$$d(x, x') = d(\Phi(u, x), \Phi(u', x'))$$

$$\leq \max\{c_1 d(u_1, u'_1), \dots, c_n d(u_n, u'_n), c d(x, x')\};$$

if the maximum on the right-hand side were strictly c d(x, x'), we would get the absurdity $0 < (1 - c)d(x, x') \le 0$, hence $d(B(u), B(u')) \le \max\{c_1d(u_1, u'_1), \dots, c_nd(u_n, u'_n)\}$.

Composition Lemma. Given metric spaces X_0 , Y_0 , X_1 , Y_1 , X_2 , Y_2 and, for m = 1, 2, a correspondence h_m of $X_{m-1} \times Y_{m-1}$ into $X_m \times Y_m$ having a generating map (F_m, G_{m-1}) with $(\alpha_m, \beta_m) \in \operatorname{Lip}_2 F_m$ and $(\gamma_{m-1}, \delta_{m-1}) \in \operatorname{Lip}_2 G_{m-1}$, assume Y_1 or X_1 complete and $\beta_1\gamma_1 < 1$. Then:

Composition Lemma. Given metric spaces X_0 , Y_0 , X_1 , Y_1 , X_2 , Y_2 and, for m = 1, 2, a correspondence h_m of $X_{m-1} \times Y_{m-1}$ into $X_m \times Y_m$ having a generating map (F_m, G_{m-1}) with $(\alpha_m, \beta_m) \in \operatorname{Lip}_2 F_m$ and $(\gamma_{m-1}, \delta_{m-1}) \in \operatorname{Lip}_2 G_{m-1}$, assume Y_1 or X_1 complete and $\beta_1 \gamma_1 < 1$. Then: i) $h_2 \circ h_1$ has a generating map $(\bar{F}, \bar{G}) : X_0 \times Y_2 \to X_2 \times Y_0$ with $(\alpha_2 \alpha_1, \max\{\alpha_2 \beta_1 \delta_1, \beta_2\}) \in \operatorname{Lip}_2 \bar{F}$ and $(\max\{\gamma_0, \delta_0 \gamma_1 \alpha_1\}, \delta_0 \delta_1) \in \operatorname{Lip}_2 \bar{G}$.

Composition Lemma. Given metric spaces X_0 , Y_0 , X_1 , Y_1 , X_2 , Y_2 and, for m = 1, 2, a correspondence h_m of $X_{m-1} \times Y_{m-1}$ into $X_m \times Y_m$ having a generating map (F_m, G_{m-1}) with $(\alpha_m, \beta_m) \in \operatorname{Lip}_2 F_m$ and $(\gamma_{m-1}, \delta_{m-1}) \in \operatorname{Lip}_2 G_{m-1}$, assume Y_1 or X_1 complete and $\beta_1 \gamma_1 < 1$. Then: i) $h_2 \circ h_1$ has a generating map $(\overline{F}, \overline{G}) : X_0 \times Y_2 \to X_2 \times Y_0$ with $(\alpha_2\alpha_1, \max\{\alpha_2\beta_1\delta_1, \beta_2\}) \in \operatorname{Lip}_2 F$ and $(\max\{\gamma_0, \delta_0\gamma_1\alpha_1\}, \delta_0\delta_1) \in \operatorname{Lip}_2 G.$ ii) For all $(x_0, y_2) \in X_0 \times Y_2$ there is one orbit (z_0, z_1, z_2) of (h_1, h_2) with $(x_0, y_2) = (pr_1 z_0, pr_2 z_2)$; setting $z_1 =: (A(x_0, y_2), B(x_0, y_2))$, one has $(\gamma_1 \alpha_1, \delta_1) \in Lip_2 B$ and $(\alpha_1, \beta_1 \delta_1) \in \operatorname{Lip}_2 A.$

4 同 ト 4 三 ト 4 三 ト -

Composition Lemma. Given metric spaces X_0 , Y_0 , X_1 , Y_1 , X_2 , Y_2 and, for m = 1, 2, a correspondence h_m of $X_{m-1} \times Y_{m-1}$ into $X_m \times Y_m$ having a generating map (F_m, G_{m-1}) with $(\alpha_m, \beta_m) \in \operatorname{Lip}_2 F_m$ and $(\gamma_{m-1}, \delta_{m-1}) \in \operatorname{Lip}_2 G_{m-1}$, assume Y_1 or X_1 complete and $\beta_1 \gamma_1 < 1$. Then: i) $h_2 \circ h_1$ has a generating map $(\overline{F}, \overline{G}) : X_0 \times Y_2 \to X_2 \times Y_0$ with $(\alpha_2\alpha_1, \max\{\alpha_2\beta_1\delta_1, \beta_2\}) \in \operatorname{Lip}_2 F$ and $(\max\{\gamma_0, \delta_0\gamma_1\alpha_1\}, \delta_0\delta_1) \in \operatorname{Lip}_2 G.$ ii) For all $(x_0, y_2) \in X_0 \times Y_2$ there is one orbit (z_0, z_1, z_2) of (h_1, h_2) with $(x_0, y_2) = (pr_1 z_0, pr_2 z_2)$; setting $z_1 =: (A(x_0, y_2), B(x_0, y_2))$, one has $(\gamma_1 \alpha_1, \delta_1) \in Lip_2 B$ and $(\alpha_1, \beta_1 \delta_1) \in \operatorname{Lip}_2 A.$

Proof. $((x_0, y_0), (x_1, y_1), (x_2, y_2))$ is an orbit of (h_1, h_2) iff $x_1 = F_1(x_0, y_1), y_0 = G_0(x_0, y_1), x_2 = F_2(x_1, y_2), y_1 = G_1(x_1, y_2);$ replace the last equation by $y_1 = G_1(F_1(x_0, y_1), y_2) =: \Phi(x_0, y_2, y_1);$ as $\operatorname{Lip}_3 \Phi \ni (\gamma_1 \alpha_1, \delta_1, \gamma_1 \beta_1), \gamma_1 \beta_1 < 1$, this reads $y_1 = B(x_0, y_2)$ with $(\gamma_1 \alpha_1, \delta_1) \in \operatorname{Lip}_2 B$ when Y_1 is complete. The rest follows.

 $(\lambda^i, \lambda \mu^{\ell-i}) \in \operatorname{Lip}_2 F_i^{\ell}$ is obvious if i = 0 since $F_0^{\ell}(x, y) = x$. $(\mu \lambda^i, \mu^{\ell-i}) \in \operatorname{Lip}_2 G_i^{\ell}$ is obvious if $i = \ell$ since $G_\ell^{\ell}(x, y) = y$.

 $(\lambda^i, \lambda \mu^{\ell-i}) \in \operatorname{Lip}_2 F_i^{\ell}$ is obvious if i = 0 since $F_0^{\ell}(x, y) = x$. $(\mu \lambda^i, \mu^{\ell-i}) \in \operatorname{Lip}_2 G_i^{\ell}$ is obvious if $i = \ell$ since $G_\ell^{\ell}(x, y) = y$. For positive ℓ , we proceed by induction on ℓ :

 $(\lambda^i, \lambda \mu^{\ell-i}) \in \operatorname{Lip}_2 F_i^{\ell}$ is obvious if i = 0 since $F_0^{\ell}(x, y) = x$. $(\mu \lambda^i, \mu^{\ell-i}) \in \operatorname{Lip}_2 G_i^{\ell}$ is obvious if $i = \ell$ since $G_\ell^{\ell}(x, y) = y$. For positive ℓ , we proceed by induction on ℓ :

▶ If $\ell = 1$ then *h* has the generating map $(F_1^1, G_0^1) = (F, G)$ and $\lambda = \operatorname{Lip} F$ does imply $(\lambda, \lambda) \in \operatorname{Lip}_2 F$: same for *G*.

伺 ト イヨト イヨト

 $(\lambda^i, \lambda \mu^{\ell-i}) \in \operatorname{Lip}_2 F_i^{\ell}$ is obvious if i = 0 since $F_0^{\ell}(x, y) = x$. $(\mu \lambda^i, \mu^{\ell-i}) \in \operatorname{Lip}_2 G_i^{\ell}$ is obvious if $i = \ell$ since $G_\ell^{\ell}(x, y) = y$. For positive ℓ , we proceed by induction on ℓ :

- ▶ If $\ell = 1$ then *h* has the generating map $(F_1^1, G_0^1) = (F, G)$ and $\lambda = \operatorname{Lip} F$ does imply $(\lambda, \lambda) \in \operatorname{Lip}_2 F$: same for *G*.
- Otherwise, assume the theorem proved for all smaller values of ℓ and apply the composition lemma to h₁ = hⁱ and h₂ = h^{ℓ-i} for 0 < i < ℓ.</p>

 $(\lambda^i, \lambda \mu^{\ell-i}) \in \operatorname{Lip}_2 F_i^{\ell}$ is obvious if i = 0 since $F_0^{\ell}(x, y) = x$. $(\mu \lambda^i, \mu^{\ell-i}) \in \operatorname{Lip}_2 G_i^{\ell}$ is obvious if $i = \ell$ since $G_\ell^{\ell}(x, y) = y$. For positive ℓ , we proceed by induction on ℓ :

- ▶ If $\ell = 1$ then *h* has the generating map $(F_1^1, G_0^1) = (F, G)$ and $\lambda = \operatorname{Lip} F$ does imply $(\lambda, \lambda) \in \operatorname{Lip}_2 F$: same for *G*.
- Otherwise, assume the theorem proved for all smaller values of ℓ and apply the composition lemma to $h_1 = h^i$ and $h_2 = h^{\ell-i}$ for $0 < i < \ell$.
- Finally, the relations $F_i^m(x, y) = F_i^\ell(x, G_\ell^m(x, y))$ and $G_i^m(x, y) = G_i^\ell(x, G_\ell^m(x, y))$ reflect the fact that $(z_i)_{0 \le i \le m} := (F_i^m(x, y), G_i^m(x, y))_{0 \le i \le m}$ is the sole orbit such that the X-component of z_0 equals x and the Y-component of z_m equals y, and $(z_i)_{0 \le i \le \ell}$ is the sole orbit such that the X-component of z_0 equals x and the Y-component of z_ℓ equals $G_\ell^m(x, y)$.