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What are motives?

Grothendieck’s idea: universal cohomology theory for algebraic varieties,
made out of algebraic cycles.

Pure motives: for smooth projective varieties.
Mixed motives: for all varieties.
More generally: why not replace base field by base scheme. . . (not
covered in this talk).



1. Review: pure motives (Grothendieck)

Smooth projective varieties

Weil cohomology theory : cohomology theory on smooth projective k-
varieties (k a field) satisfying certain axioms: Künneth formula, Poincaré
duality. . .

Classical examples : l-adic cohomology for l 6= char k (coefficients Ql),
Betti cohomology (coefficients Q), de Rham cohomology (coefficients k) in
characteristic 0, crystalline cohomology (coefficients quotient field of Witt
vectors on k) in characteristic > 0.

Grothendieck : wants universal Weil cohomology with values in suitable
abelian category!



Algebraic cycles

X variety over field k (or more generally, any scheme): algebraic cycle overX
= linear combination of closed irreducible subsets Zα of X (with coefficients
in a ring R)

Cycle of dimension (codimension) i: all Zα are of dimension (codimen-
sion) i. Notation: Zi(X,R), Zi(X,R).
To intersect cycles, need in general to mod out by some “adequate” equiva-
lence relation ∼ (notation A∼i (X,R), Ai∼(X,R)):

Rational equivalence: parametrize cycles by lines (P1 or A1).
Algebraic equivalence: parametrize cycles by smooth curves or
smooth algebraic varieties.

Homological equivalence: take image of cycle map with value in
some cohomology theory.

Numerical equivalence (on smooth proper varieties): mod
out by kernel of intersection pairing.



Pure motives

∼ adequate equivalence relation on algebraic cycles, R commutative ring of
coefficients:
Corr∼(k,R) category of algebraic correspondences:

Objects: smooth projective varieties.
Morphisms: Hom(X, Y ) = A∼dimX(X × Y,R).
Composition of correspondences:X, Y, Z ∈ Corr∼(k,R), α ∈
Hom(X, Y ), β ∈ Hom(Y, Z):

β ◦ α = p13∗(p
∗
12α · p

∗
23β)

X × Y × Z
p12
uu

p13 ��
p23

))

X × Y X × Z Y × Z

α β ◦ α β

Graph functor : γ : Smproj(k)→ Corr∼(k,R)

X 7→ X, (f : X → Y ) 7→ Γf ∈ A∼dimX(X × Y,R) (graph of f )



Get from correspondences to motives by string of functors

Smproj(k)→ Corr∼(k,R)
\−→Meff

∼ (k,R)
L−1

−→M∼(k,R)

X 7→ X 7→ h(X) 7→ h(X)

f 7→ Γf

\: adjoin kernels to idempotents (called Karoubian envelope or idempotent
completion). \ and L−1 fully faithful.

To pass from Meff
∼ (k,R) (effective motives) to M∼(k,R) (all motives),

invert the Lefschetz motive :

⊗-structures on Smproj(k),Corr∼(k,R),Meff
∼ (k,R) induced by

(X, Y ) 7→ X × Y . Unit object in Meff
∼ (k,R): 1 = h(Spec k). Then

h(P1) = 1 ⊕ L, L the Lefschetz motive: quasi-invertible (M 7→ M ⊗ L
fully faithful).

M∼(k,R) =Meff
∼ (k,R)[L−1].



Basic results on pure motives

Theorem 1 (easy).M∼(k,A) rigid ⊗-category: every object has a dual
and every object is isomorphic to its double dual.

Dual of h(X): h(X)⊗ L− dimX .

Theorem 2 (Jannsen, 1991).Mnum(k,Q) is abelian semi-simple.

Mnum(k,Q) Grothendieck’s candidate for receptacle of a universal coho-
mology theory.



The problem

H Weil cohomology theory with coefficients in K:

MH(k,Q)
H∗−−→ Vec∗Ky

Mnum(k,Q)

Vec∗K finite-dimensional graded K-vector spaces; horizontal functor faithful,
vertical functor full. If wantH∗ to factor throughMnum(k,Q), need vertical
functor to be an equivalence of categories:

Homological equivalence = numerical equivalence

The main standard conjecture of Grothendieck: still open after almost 50
years!

(Then grander vision: motivic Galois group. . . )



2. Mixed motives?

Grothendieck: no construction but a vision: there should be an abelian rigid
⊗-categoryMM(k,Q) of “mixed motives” such that (at least)

• The socle (semi-simple part) ofMM(k,Q) isMnum(k,Q); every object
is of finite length.
•Any k-variety X has cohomology objects hi(X) ∈ MM(k,Q) and

cohomology objects with compact supports hic(X) ∈MM(k,Q), which
are “universal” for suitable cohomology theories.



No construction of MM(k,Q) yet (apart from 1-motives), but two ideas
to get towards it:

(1) (Deligne, Jannsen, André, Nori; Bloch-Kriz): add a few homomorphisms
which are not (known to be) algebraic.

(2) (suggested by Deligne and Beilinson; Hanamura, Levine, Voevodsky):
might be easier to construct a triangulated category out of algebraic
cycles, and to look for a “motivic t-structure” with heartMM(k,Q).



3. What is K2?

Steinberg: k field,

K2(k) = k∗ ⊗Z k
∗/〈x⊗ (1− x) | x 6= 0, 1〉.

Conceptual definition?



First answer: Tate (1970es) for K2/n:

K2/n = (Gm ⊗Gm)/n + transfers + projection formula.

How about K2 itself?
Two answers: Suslin, Kato (1980es).

Suslin:

K2 = Gm⊗Gm+ transfers + projection formula + homotopy invariance.

−→ Suslin-Voevodsky’s motivic cohomology, Voevodsky’s homotopy invari-
ant motives.

Kato:

K2 = Gm ⊗Gm + transfers + projection formula + Weil reciprocity .

−→ reciprocity sheaves and motives with modulus.



4. Review: Voevodsky’s triangulated categories of
motives (over a field)

k base field
Goal: two ⊗-triangulated categories DMeff

gm ↪−→ DMeff

X ∈ Sm(k) 7→M(X) ∈ DMeff
gm (covariant) with

Mayer-Vietoris:X = U ∪ V open cover 7→ exact triangle

M(U ∩ V )→M(U)⊕M(V )→M(X)
+1−→

Homotopy invariance:M(X ×A1)
∼−→M(X).

DMeff “large” category allowing to compute Hom groups via Nisnevich
hypercohomology.



Construction:

Cor additive ⊗-category:

Objects: Smooth varieties
Morphisms: finite correspondences

Cor(X, Y ) = Z[Z ⊂ X × Y | Z integral,

Z → X finite and surjective over a component of X ].

Graph functor Sm→ Cor.
DMeff

gm = pseudo-abelian envelope of

Kb(Cor)/〈MV + HI〉

(MV = Mayer-Vietoris, HI = homotopy invariance as on previous page).

Any X ∈ Sm has a motive M(X) ∈ DMeff
gm; M(Spec k) =: Z, M(P1) =

Z⊕ Z(1)[2], Z(1) Tate (or Lefschetz) object.

Product of varieties induces ⊗-structure on Sm,Cor,DMeff
gm: get DMgm

from DMeff
gm by ⊗-inverting Z(1).



Similar to construction of effective motives:

Smproj −→ Corrrat
\−→ Meff

rat
L−1

−−−→ Mraty y y
Sm −→ Cor −→ Kb(Cor)

〈MV + HI〉
\−→ DMeff

gm
Z(1)−1

−−−−→ DMgm

(Z(1)−1 and vertical functors fully faithful if k perfect!)



To define DMeff:
PST = Mod – Cor = {additive contravariant functors Cor→ Ab}
NST = {F ∈ PST | F is a Nisnevich sheaf}
Cor 3 X 7→ Ztr(X) ∈ PST the presheaf with transfers represented by X :
it belongs to NST.

DMeff = D(NST)/〈HI〉.

Natural functor DMeff
gm → DMeff, fully faithful if k perfect (non-trivial

theorem!)



To avoid perfectness hypothesis: strengthen Mayer-Vietoris to “Nisnevich
Mayer-Vietoris” (using elementary distinguished squares) in definition of
DMeff

gm.

7→ variant of definition of DMeff:

DMeff = D(PST)/〈MVNis + HI〉

Completely parallel to DMeff
gm!

Corrrat
\−→ Meff

raty
Cor −→ Kb(Cor)

〈MV + HI〉
\−→ DMeff

gmy y
PST −→ D(PST)

〈MV + HI〉
= DMeff



HI = {F ∈ NST | F (X)
∼−→ F (X ×A1) ∀X ∈ Sm}.

If k perfect: DMeff has a t-structure with heart HI, the homotopy t-
structure (here, not known how to avoid perfectness hypothesis).

This is not the searched-for motivic t-structure! But very useful nevertheless.



5. Rosenlicht’s theorems

(See Serre’s Groupes algébriques et corps de classes.)

C smooth projective curve over k = k̄, U ⊂ C affine open subset.

Theorem 3. f : U → G k-morphism with G commutative algebraic
group; ∃ effective divisor m with support C − U such that

f (div(g)) = 0 if g ∈ k(C)∗, g ≡ 1 (mod m).

Here, extended f to homomorphism Z0(U)→ G(k) by linearity; hypothesis
on g ⇒ support of div(g) ⊂ U .



Theorem 4. Given m and u0 ∈ U , the functor

G 7→ {f : U → G | f (u0) = 0 and f has modulus m}

from commutative algebraic groups to abelian groups is corepresentable
by the generalized Jacobian J(C,m).

If m reduced, get connected component of relative Picard group

J(C,m) = Pic0(C,C − U).

In general, extension of this by unipotent group.



6. Reciprocity sheaves

A reciprocity sheaf is a NST satisfying a reciprocity condition inspired by
Rosenlicht’s modulus condition. (Definition skipped!)

Examples 5.

•HI sheaves have reciprocity.
•G commutative algebraic group: the sheaf represented by G has reci-

procity (e.g. G = Ga).
• The modulus condition is “representable”:



Definition 6. A modulus pair is a pair M = (M,M
∞

) with

(i) M
∞ ⊂M the closed immersion of an effective Cartier divisor;

(ii) Mo := M −M∞ is smooth.

Theorem 7 (K-S-Y, 2014).M modulus pair with M proper and Mo

quasi-affine. There exists a quotient h(M) of Ztr(M
o) which represents

the functor

PST 3 F 7→ {α ∈ F (Mo) | α has modulus M}.

Moreover, h(M) has reciprocity and

h(M)(k) = CH0(M)

CH0(M) Kerz-Saito group of 0-cycles with modulus.



Rec ⊂ PST full subcategory of reciprocity PST:

• closed under subobjects and quotients (in particular abelian)
• not clearly closed under extensions
• inclusion functor does not have a left adjoint (it has a right adjoint)

So-so category. . .

Idea: take modulus pairs seriously, try and make a triangulated category
out of them.



7. Motives with modulus

7.1. Categories of modulus pairs.

Definition 8. MCor:

Objects: Modulus pairs M .
Morphisms:

MCor(M,N) = 〈Z ∈ Cor(Mo, No) | Z integral, p∗M∞ ≥ q∗N∞,

p, q projections Z
N → Z →M,Z

N → Z → N ;Z →M proper〉

Z closure of Z in M × N , Z
N

normalisation of Z. Properness on M
necessary for composition!

MCor: full subcategory of MCor where M is proper (proper modulus
pairs).



Tensor structure on MCor and MCor:

(M,M∞)⊗ (N,N∞) = (M ×N,M∞ ×N + M ×N∞).

Diagram of ⊗-additive categories and ⊗-functors:

MCor

ω &&

τ // MCor

ωxx

Cor

λ 66

τ (M) = M , ω(M) = Mo, ω = ω ◦ τ , λ(X) = (X, ∅) (λ is left adjoint to
ω).

Categories of presheaves

MPST = Mod – MCor, MPST = Mod – MCor .

Diagram of ⊗-functors

MPST

ω! ''

τ! // MPST

ω!=λ
∗ww

PST

λ! 66

?! left adjoint to ?∗.

Theorem 9. ω and τ have pro-left adjoints. In particular, ω! and τ!
are exact.



7.2. Topologies. To make sense of topologies on modulus pairs, need
to use MCor (MCor not sufficient), plus some subtleties (skipped). Get
category of σ-sheaves MPSTσ, σ ∈ {Zar,Nis, ét} and pair of exact adjoint
functors:

MPSTσ

ωσ
��

PSTσ

ωσ
TT

Will use mainly σ = Nis, MNST := MPSTNis.



7.3. Voevodsky’s abstract homotopy theory. (C,⊗) ⊗-category:
an interval in C is a quintuple (I, i0, i1, p, µ):
• I ∈ C
• i0, i1 : 1→ I , p : I → 1 (1 unit object)
• µ : I ⊗ I → I

with conditions

• p ◦ i0 = p ◦ i1 = 11
• µ ◦ (1I ⊗ i0) = i0 ◦ p, µ ◦ (1I ⊗ i1) = 1I .

(C,⊗, I) ⊗-category with interval: a presheaf F on C is I-invariant if

F (X)
∼−→ F (X ⊗ I) for any X ∈ C (via the morphism 1X ⊗ p).

Main example: C = Sm, I = A1, it : Spec k → A1 inclusion of point t,
µ : A1 ×A1 → A1 multiplication map. Get A1-invariance (= homotopy
invariance).



7.4. The affine line with modulus.
Proposition 10. The object � = (P1,∞) has the structure of an in-
terval, given by the interval structure on �

o
= A1.

In fact, more convenient to “put 1 at ∞”, i.e. redefine � as (P1, 1).

Theorem 11. If F ∈MPST is �-invariant, ω!F has reciprocity.

Consequence: ⊗-structure on Rec (cf. Ivorra-Rülling: the K-groups of
reciprocity functors).



Definition 12.

MDMeff
gm = (Kb(MCor)/〈MVNis + CI〉)\.

MDMeff = D(MPST)/〈MVNis + CI〉 = D(MNST)/〈CI〉.

CI: �-invariance.

Naturally commutative diagram

Meff
rat

MΦ//MDMeff
gm

ωeff
��

Mι //MDMeff

ωeff
��

Meff
rat

Φ //DMeff
gm

ι //DMeff

ωeff

TT

ι,Mι ⊗ and fully faithful, ωeff ⊗ and localisations, ωeff right adjoint to ωeff

(hence fully faithful), Φ fully faithful if k perfect (Voevodsky).

Main theorem. X smooth proper: ωeffM(X) = M(X, ∅).



Corollary 13. a) p exponential characteristic of k: ωeff(DMeff
gm[1/p]) ⊂

MDMeff
gm[1/p].

b) k perfect: MΦ fully faithful.
c) k perfect, X smooth proper, Y = (Y ,Y∞) ∈MCor, j ∈ Z: canoni-
cal isomorphism

Hom
MDMeff

gm
(M(Y),M(X, ∅)[j]) ' H2d+j((Y − Y∞)×X,Z(d))

right hand side = Voevodsky’s motivic cohomology. In particular, van-
ishes for j > 0.



Next steps in the programme (not exhaustive):

• (In progress:) get homotopy t-structure on MDMeff ⊂MDMeff when
k perfect, by extending Voevodsky’s theorems on homotopy invariant
presheaves with transfers.
• Construct realisation functors for interesting non homotopy invariant

cohomology theories.
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