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What are motives?

Grothendieck’s idea: universal cohomology theory for algebraic varieties,
made out of algebraic cycles.

Pure motives: for smooth projective varieties.

Mixed motives: for all varieties.

More generally: why not replace base field by base scheme... (not
covered in this talk).



1. REVIEW: PURE MOTIVES (GROTHENDIECK )

Smooth projective varieties

Weil cohomology theory: cohomology theory on smooth projective k-
varieties (k a field) satisfying certain axioms: Kiinneth formula, Poincaré
duality:. . .

Classical examples: l-adic cohomology for | # char k (coefficients Q),
Betti cohomology (coefficients @), de Rham cohomology (coefficients k) in
characteristic 0, crystalline cohomology (coefficients quotient field of Witt
vectors on k) in characteristic > 0.

Grothendieck: wants universal Weil cohomology with values in suitable
abelian category!



Algebraic cycles

X variety over field k (or more generally, any scheme): algebraic cycle over X
= linear combination of closed irreducible subsets Z,, of X (with coefficients
in a ring R)

Cycle of dimension (codimension) i: all Z, are of dimension (codimen-
sion) 4. Notation: Z;(X, R), Z'(X, R).

To intersect cycles, need in general to mod out by some “adequate” equiva-
lence relation ~ (notation A>(X, R), AL(X, R)):

Rational equivalence: parametrize cycles by lines (P or Ab).

Algebraic equivalence: parametrize cycles by smooth curves or
smooth algebraic varieties.

Homological equivalence: take image of cycle map with value in
some cohomology theory.

Numerical equivalence (on smooth proper varieties): mod
out by kernel of intersection pairing.



Pure motives

~ adequate equivalence relation on algebraic cycles, R commutative ring of
coefficients:
Corr~.(k, R) category of algebraic correspondences:

Objects: smooth projective varieties.
Morphisms: Hom(X,Y) = AT (X x Y, R).
Composition of correspondences: X,Y, 7 € Corr~(k,R), a €
Hom(X,Y), 8 € Hom(Y, Z2):
B o a = p13«(pac - p3p)

X XY X Z

P12 pi3| %
X XY X X/ Y x 7

o boa« I5;
Graph functor: v : SmP™ (k) — Corr~(k, R)
X=X, ([ X=2Y)=Tre Ay, x(X XY, R) (graph of f)



Get from correspondences to motives by string of functors

. —1
SmP (k) — Corr(k, R) —» Mk, R) Y M_(k, R)
X=X — h(X) — h(X)
f —> Ff

1. adjoin kernels to idempotents (called Karoubian envelope or idempotent
completion). i and L~ fully faithful.

To pass from M (k, R) (effective motives) to M~(k, R) (all motives),
invert the Lefschetz motive:

®-structures  on  SmP™(k), Corr~(k, R), MY (k, R) induced by
(X,Y) — X x Y. Unit object in M (k R): 1 = h(Speck). Then
h(P') = 1 @ L, L the Lefschetz motive: quasi-invertible (M — M @ L
fully faithful).

M~ (k,R) = MUk, R)IL™Y.



Basic results on pure motives

Theorem 1 (easy). M~ (k, A) rigid ®-category: every object has a dual
and every object is isomorphic to its double dual.

Dual of h(X): h(X) @ L~ dmX,

Theorem 2 (Jannsen, 1991). Muyum(k, Q) is abelian semi-simple.

Mupum(k, Q) Grothendieck’s candidate for receptacle of a universal coho-
mology theory:.



The problem

H Weil cohomology theory with coefficients in K:

Mgk, Q) —I{*—> VecT,

l

Mnum<ka Q)

VecT finite-dimensional graded K-vector spaces; horizontal functor faithful,
vertical functor full. If want H* to factor through Mpum(k, Q), need vertical
functor to be an equivalence of categories:

Homological equivalence = numerical equivalence

The main standard conjecture of Grothendieck: still open after almost 50
years!

(Then grander vision: motivic Galois group. .. )



2. MIXED MOTIVES?

Grothendieck: no construction but a vision: there should be an abelian rigid
®-category MM(k, Q) of “mixed motives” such that (at least)

e The socle (semi-simple part) of MM (k, Q) is Mpyum(k, Q); every object
is of finite length.

e Any k-variety X has cohomology objects h'(X) € MM(k,Q) and
cohomology objects with compact supports h4(X) € MMk, Q), which
are “universal” for suitable cohomology theories.



No construction of MM(k, Q) yet (apart from 1-motives), but two ideas
to get towards it:

(1) (Deligne, Jannsen, André, Nori; Bloch-Kriz): add a few homomorphisms
which are not (known to be) algebraic.

(2) (suggested by Deligne and Beilinson; Hanamura, Levine, Voevodsky):
might be easier to construct a triangulated category out of algebraic
cycles, and to look for a “motivic t-structure” with heart MM (k, Q).



3. WHAT 1S K97
Steinberg: k field,

Kok) =k @z Kk /[{x @ (1 —x)|xz#£0,1).

Conceptual definition?



First answer: Tate (1970es) for Ko /n:
Ko/n = (G ® Gyp)/n + transfers + projection formula.

How about K> itselt?
Two answers: Suslin, Kato (1980es).
Suslin:
Ko = G,,®Gy,+ transters + projection formula + homotopy invariance.
— duslin-Voevodsky’s motivic cohomology, Voevodsky’s homotopy invari-
ant motives.
Kato:

Ko = Gy, ® Gy, + transters + projection formula + Weail reciprocity.

— reciprocity sheaves and motives with modulus.



4. REVIEW: VOEVODSKY’S TRIANGULATED CATEGORIES OF
MOTIVES (OVER A FIELD)

k base field

Goal: two ®-triangulated categories DME?H — DM

X € Sm(k) — M(X) € DML (covariant) with
Mayer-Vietoris: X = U UV open cover — exact triangle

MUNV) = MU)® M(V) - M(X) 15

Homotopy invariance: M (X x Al = M(X).
DMt “large” category allowing to compute Hom groups via Nisnevich
hypercohomology.



Construction:

Cor additive ®-category:

Objects: Smooth varieties
Morphisms: finite correspondences

Cor(X,Y)=7%Z[Z C X xY | Z integral,
7 — X finite and surjective over a component of X].

Graph functor Sm — Cor.
Dl\/Ig?;1 — pseudo-abelian envelope of

K'(Cor)/(MV + HI)
(MV = Mayer-Vietoris, HI = homotopy invariance as on previous page).
Any X € Sm has a motive M(X) € DMgfn; M (Speck) = Z, M(Ph) =
7. ® 7(1)[2], Z(1) Tate (or Lefschetz) object.
Product of varieties induces ®-structure on Sm, Cor, DMgfn: get DM,
from Dl\/[g;fn by ®-inverting Z(1).



Similar to construction of effective motives:

] L~!

SmP'%) — Corrpgt — /\/lﬁg; — Mt

l l l

K’Cor) Z(1)~!
s DMt s DM
(MV + HI) gm &I

(Z(1)~! and vertical functors fully faithful if k& perfect!)

Sm — Cor )



To define DM
PST = Mod - Cor = {additive contravariant functors Cor — Ab}
NST = {F € PST | Fis a Nisnevich sheaf}

Cor > X +— Zt;(X) € PST the presheaf with transfers represented by X:
it belongs to NST.
DM = D(NST)/(H]I).

Natural functor DMS, — DML fully faithful if & perfect (non-trivial
theorem!)



To avoid perfectness hypothesis: strengthen Mayer-Vietoris to “Nisnevich

Mayer-Vietoris” (using elementary distinguished squares) in definition of
DM

g
— variant of definition of DM

DM = D(PST) /(M Vi + HI)
Completely parallel to DMgfn!

Corrygt l> Mmett

K’Cor)

C > > DMt

o (MV + HI) St
D(PST

PST — PST)  _ ppet




HI={F € NST | F(X) = F(X x A") VX € Sm}.

If k£ perfect: DM has a t-structure with heart HI, the homotopy t-
structure (here, not known how to avoid perfectness hypothesis).

This is not the searched-for motivic t-structure! But very useful nevertheless.



5. ROSENLICHT’S THEOREMS
(See Serre’s Groupes algébriques et corps de classes.)

C' smooth projective curve over k = k, U C C affine open subset.

Theorem 3. f : U — G k-morphism with G commutative algebraic
group, 3 effective divisor m with support C — U such that

f(div(g))=0ifge k(C)",g=1 (mod m).

Here, extended f to homomorphism Zy(U) — G(k) by linearity; hypothesis
on g = support of div(g) C U.



Theorem 4. Given m and ug € U, the functor
G—A{f:U—=G]| flug) =0 and f has modulus m}

from commutative algebraic groups to abelian groups is corepresentable
by the generalized Jacobian J(C,m).

If m reduced, get connected component of relative Picard group
J(C,m) =Pi)(C,C - U).

In general, extension of this by unipotent group.



6. RECIPROCITY SHEAVES

A reciprocity sheaf is a NST satistying a reciprocity condition inspired by
Rosenlicht’s modulus condition. (Definition skipped!)

Examples 5.

e HI sheaves have reciprocity.

e G commutative algebraic group: the sheaf represented by G has reci-
procity (e.g. G = Gg).

e The modulus condition is “representable”:



Definition 6. A modulus pair is a pair M = (M, MOO) with
(i) M~° C M the closed immersion of an effective Cartier divisor;
(ii) M°:= M — M is smooth.

Theorem 7 (K-S-Y, 2014). M modulus pair with M proper and M°
quasi-affine. There exists a quotient h(M) of Z:(M°) which represents
the functor

PST > F'— {a € F(M®) | « has modulus M}.
Moreover, h(M) has reciprocity and
h(M)(k) = CHo(M)
C'Ho(M) Kerz-Saito group of 0-cycles with modulus.



Rec C PST full subcategory of reciprocity PST:

e closed under subobjects and quotients (in particular abelian)
e not clearly closed under extensions
e inclusion functor does not have a left adjoint (it has a right adjoint)

S0-50 category. . .

Idea: take modulus pairs seriously, try and make a triangulated category
out of them.



7. MOTIVES WITH MODULUS

7.1. Categories of modulus pairs.

Definition 8. M Cor:

Objects: Modulus pairs M.
Morphisms:

MCor(M,N) = (Z € Cor(M°, N°) | Z integral, p" M > ¢*N*°,

p, q projections 78 75 M, 7V 57 o N:Z — M proper)

— : N .. - —
Z closure of Z in M x N, Z° normalisation of Z. Properness on M
necessary for composition!

MCor: full subcategory of MCor where M is proper (proper modulus
pairs).



Tensor structure on MCor and MCor:

(M, M®) @ (N,N®) = (M x N,M® x N+ M x N®).

Diagram of ®-additive categories and ®-functors:

MCor?” » MCor

o

Cor

T(M) =M, w(M)=M° w=wort, A(X)=(X,0) (\is left adjoint to
w).

£\

Categories of presheaves
MPST = Mod—-MCor, MPST = Mod-MCor.

Diagram of ®-functors

MPST N MPST
XPST/{'ZA*

7 left adjoint to 7*.

Theorem 9.w and 7 have pro-left adjoints. In particular, w, and T
are exact.



7.2. Topologies. To make sense of topologies on modulus pairs, need
to use MCor (MCor not sufficient), plus some subtleties (skipped). Get
category of o-sheaves MPST ., o € {Zar, Nis, ét} and pair of exact adjoint
functors:

MPST,

-

Will use mainly o = Nis, MINST := MPSTyj..



7.3. Voevodsky’s abstract homotopy theory. (C,®) ®-category:
an interval in C is a quintuple (1, 4q, 21, p, 1t):

o/ c(C

®ig,i1:1— I p:I— 1(1unit object)

o I®I—1
with conditions

epoiy=poi =1y

o po(ly®ip) =dgop, po(ly®iy) =1y
(C,®,I) ®-category with interval: a presheaf F' on C is [-invariant if
F(X) — F(X ®]I) for any X € C (via the morphism 1y ® p).
Main example: C = Sm, I = Al i; : Speck — Al inclusion of point ¢,
1 Al x AN — Al multiplication map. Get Al-invariance (= homotopy
invariance).



7.4. The affine line with modulus.
Proposition 10. The object O = (P!, 00) has the structure of an in-
terval, given by the interval structure on O = Al

In fact, more convenient to “put 1 at 0o”, i.e. redefine [J as (Pl, 1).

Theorem 11. If F € MPST is O-invariant, w\F has reciprocity.

Consequence: ®-structure on Rec (cf. Ivorra-Riilling: the K-groups of
reciprocity functors).



Definition 12.
MDM! = (KP(MCor)/(MVy, + CT))".

MDM! = D(MPST)/(MVyis + CI) = D(MNST)/(CI).

CI: U-invariance.

Naturally commutative diagram

eff MO effl My eff
Mmeft —MeNpVe M MDM

Weff Weff >weff

eff D eff L eff
Mrat - DMgm DM

v, M1 & and fully faithful, w.g ® and localisations, geﬂ: right adjoint to w.g
(hence fully faithful), ® fully faithful if & perfect (Voevodsky).

Main theorem. X smooth proper: wM(X) = M(X, ).



Corollary 13. a) p exponential characteristic of k: weﬁ(DMgﬁn[l /p|) C
MDM! [1/p].

b) k perfect: M® fully faithful. B

c) k perfect, X smooth proper, Y = (V,Y>°) € MCor, j € Z: canoni-
cal 1somorphism

HomMDMgfn(M(y), M(X, @)[]D ~ H2d+j((y _ yOO) x X, Z(d))

right hand side = Voevodsky’s motivic cohomology. In particular, van-
ishes for 7 > 0.



Next steps in the programme (not exhaustive):

e (In progress:) get homotopy t-structure on MDM®! ¢ MDM®! when
k perfect, by extending Voevodsky’s theorems on homotopy invariant
presheaves with transfers.

e Construct realisation functors for interesting non homotopy invariant
cohomology theories.
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