
Commutative algebraic groups up to isogeny

Michel Brion

Abstract

Consider the abelian category Ck of commutative algebraic groups over a field
k. By results of Serre and Oort, Ck has homological dimension 1 (resp. 2) if k is
algebraically closed of characteristic 0 (resp. positive). In this article, we explore
the abelian category of commutative algebraic groups up to isogeny, defined as
the quotient of Ck by the full subcategory Fk of finite k-group schemes. We show
that Ck/Fk has homological dimension 1, and we determine its projective objects.
We also obtain structure results for Ck/Fk, which take a simpler form in positive
characteristics.
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1 Introduction

There has been much recent progress on the structure of algebraic groups over an arbi-
trary field, with the classification of pseudo-reductive groups (see [CGP15, CP15]). Yet
commutative algebraic groups over an imperfect field remain somewhat mysterious, e.g.,
extensions with unipotent quotients are largely unknown; see [To13] for interesting results,
examples, and conjectures.

In this article, we develop a categorical approach to commutative algebraic groups
up to isogeny, which bypasses the problems raised by imperfect fields, and yields rather
simple and uniform results.

More specifically, denote by Ck the category with objects the group schemes of finite
type over the ground field k, and with morphisms, the homomorphisms of k-group schemes
(all group schemes under consideration will be assumed commutative). By a result of
Grothendieck (see [SGA3, VIA, Thm. 5.4.2]), Ck is an abelian category. We define the
category of ‘algebraic groups up to isogeny’ as the quotient category of Ck by the Serre
subcategory of finite group schemes; then Ck/Fk is obtained from Ck by inverting all
isogenies, i.e., all morphisms with finite kernel and cokernel.

It will be easier to deal with the full subcategory Ck of Ck/Fk with objects the smooth
connected algebraic groups, since these categories turn out to be equivalent, and mor-
phisms in Ck admit a simpler description.

As a motivation for considering the ‘isogeny category’ Ck, note that some natural
constructions involving algebraic groups are only exact up to isogeny; for example, the
formations of the maximal torus or of the largest abelian variety quotient, both of which
are not exact in Ck. Also, some structure theorems for algebraic groups take a simpler form
when working up to isogeny. A classical example is the Poincaré complete reducibility
theorem, which is equivalent to the semi-simplicity of the isogeny category of abelian
varieties, i.e., the full subcategory Ak of Ck with objects abelian varieties. Likewise, the
isogeny category of tori, T k, is semi-simple.

We gather our main results in the following:

Theorem. (i) The category Ck is artinian and noetherian. Its non-zero simple objects
are exactly the additive group Ga,k, the simple tori, and the simple abelian varieties.

(ii) The product functor T k × Uk → Lk yields an equivalence of categories, where Uk
(resp. Lk) denotes the isogeny category of unipotent (resp. linear) algebraic groups.

(iii) If char(k) > 0, then the product functor Sk × Uk → Ck yields an equivalence of
categories, where Sk denotes the isogeny category of semi-abelian varieties. If in
addition k is locally finite, then the product functor T k ×Ak → Sk yields an equiv-
alence of categories as well.

(iv) The base change under any purely inseparable field extension k′ of k yields an equiv-
alence of categories Ck → Ck′.

(v) The homological dimension of Ck is 1.
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We also describe the projective objects in Ck (Theorem 5.13), and obtain a structure
result for Ck in characteristic 0 (Proposition 5.12), which turns out to be more technical
than in positive characteristics.

Let us now compare the above statements with known results on Ck and its full subcat-
egories Ak (resp. Tk, Uk, Lk, Sk) of abelian varieties (resp. tori, unipotent groups, linear
groups, semi-abelian varieties).

About (i): Ck is artinian and not noetherian. Also, every algebraic group is an iterated
extension of ‘elementary’ groups; these are the simple objects of Ck and the simple finite
group schemes.

About (ii): the product functor Tk×Uk → Lk yields an equivalence of categories if k is
perfect. But over an imperfect field, there exist non-zero extensions of unipotent groups
by tori, which are only partially understood (see [To13] again).

About (iii): the first assertion follows from recent structure results for algebraic groups
(see [Br15b, §5]), together with a lifting property for extensions of such groups with finite
quotients (see [Br15a, LA15]). The second assertion is a direct consequence of the Weil-
Barsotti formula (see e.g. [Oo66, §III.18]).

About (iv): this is a weak version of a result of Chow on abelian varieties, which
asserts (in categorical language) that base change yields a fully faithful functor Ak → Ak′
for any primary field extension k′ of k (see [Ch55], and [Co06, §3] for a modern proof).

About (v), the main result of this article: recall that the homological dimension of
an abelian category D is the smallest integer, hd(D), such that ExtnD(A,B) = 0 for all
objects A,B of D and all n > hd(D); these Ext groups are defined via Yoneda extensions.
In particular, hd(D) = 0 if and only if D is semi-simple.

It follows from work of Serre (see [Se60, 10.1 Thm. 1] together with [Oo66, §I.4])
that hd(Ck) = 1 if k is algebraically closed of characteristic 0. Also, by a result of Oort
(see [Oo66, Thm. 14.1]), hd(Ck) = 2 if k is algebraically closed of positive characteristic.
Building on these results, Milne determined hd(Ck) when k is perfect (see [Mi70, Thm. 1]);
then the homological dimension takes arbitrary large values. In the approach of Serre
and Oort, the desired vanishing of higher extension groups is obtained by constructing
projective resolutions of all elementary groups, in the category of pro-algebraic groups.
The latter category contains Ck as a full subcategory, and has enough projectives.

In contrast, to show that hd(Ck) = 1 over an arbitrary field k, we do not need to go
to a larger category. We rather observe that tori are projective objects in Ck, and abelian
varieties are injective objects there. This yields the vanishing of all but three extension
groups between simple objects of Ck; two of the three remaining cases are handled directly,
and the third one reduces to the known vanishing of Ext2

Ck(Ga,k,Ga,k) when k is perfect.
Abelian categories of homological dimension 1 are called hereditary. The most studied

hereditary categories consist either of finite-dimensional modules over a finite-dimensional
hereditary algebra, or of coherent sheaves on a weighted projective line (see e.g. [Ha01]).
Such categories are k-linear and Hom-finite, i.e., all spaces of morphisms are finite-
dimensional vector spaces over the ground field k. But this seldom holds for the above
isogeny categories. More specifically, Ak and T k are both Q-linear and Hom-finite, but
not Ck unless k is a number field. In fact, Ck may be viewed as a mixture of k-linear
and Q-linear categories, when k has characteristic 0. This is already displayed by the full
subcategory Vk with objects the vector extensions of abelian varieties: as shown in §5.1,
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Vk has enough projectives, and these are either the unipotent groups (k-linear objects),
or the vector extensions of simple abelian varieties (Q-linear objects).

When k has characteristic p > 0, one may also consider the quotient category of
Ck by the Serre subcategory Ik of infinitesimal group schemes. This yields the abelian
category of ‘algebraic groups up to purely inseparable isogeny’, which is equivalent to
that introduced by Serre in [Se60]; as a consequence, it has homological dimension 1 if
k is algebraically closed. For any arbitrary field k, the category Ck/Ik turns out to be
unchanged by purely inseparable field extensions; its homological properties may be worth
investigating.

Notation and conventions. We will use the book [DG70] as a general reference, espe-
cially for affine algebraic groups, and the expository text [Br15b] for some further results.

Throughout this text, we fix a ground field k and an algebraic closure k̄; the charac-
teristic of k is denoted by char(k). We denote by ks the separable closure of k in k̄, and
by Γk the Galois group of ks over k. We say that k is locally finite, if it is algebraic over
Fp for some prime p; equivalently, k is either finite or the algebraic closure of a finite field.

By an algebraic k-group, we mean a commutative group scheme G of finite type over
k; we denote by G0 the neutral component of G. The group law of G will be denoted
additively: (x, y) 7→ x+ y.

By a k-subgroup of G, we mean a closed k-subgroup scheme. Morphisms are un-
derstood to be homomorphisms of k-group schemes. The (scheme-theoretic) image of a
morphism f : G → H will be denoted by Im(f) or f(G), and the (scheme-theoretic)
pull-back of a k-subgroup H ′ ⊂ H, by G×H H ′ or f−1(H ′).

Recall that a k-group scheme G is an affine algebraic k-group if and only if G is
isomorphic to a k-subgroup of the general linear group GLn,k for some n. We will thus
call affine algebraic k-groups linear. Also, we say that an algebraic k-group G is of
multiplicative type if G is isomorphic to a k-subgroup of some k-torus.

To simplify the notation, we will suppress the mention of the ground field k whenever
this yields no confusion. For example, the category Ck will be denoted by C, except when
we use base change by a field extension.

Given an algebraic group G and two subgroups G1, G2, we denote by G1 + G2 the
subgroup of G generated by G1 and G2. Thus, G1 + G2 is the image of the morphism
G1 ×G2 → G, (x1, x2) 7→ x1 + x2.

An isogeny is a morphism with finite kernel and cokernel. Two algebraic groups G1, G2

are isogenous if they can be connected by a chain of isogenies.
We say that two subgroups G1, G2 of an algebraic group G are commensurable if both

quotients G1/G1 ∩G2 and G2/G1 ∩G2 are finite; then G1 and G2 are isogenous.
Given an algebraic group G and a non-zero integer n, the multiplication by n yields a

morphism nG : G→ G. We denote its kernel by G[n], and call it the n-torsion subgroup.
We say that G is divisible if nG is an epimorphism for all n 6= 0; then nG is an isogeny
for all such n. On the other hand, when char(k) = p > 0, we say that G is a p-group if
pnG = 0 for n� 0. Examples of p-groups include the unipotent groups and the connected
finite algebraic groups, also called infinitesimal.
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2 Structure of algebraic groups

2.1 Preliminary results

We will use repeatedly the following simple observation:

Lemma 2.1. Let G be a smooth connected algebraic group.

(i) If G′ is a subgroup of G such that G/G′ is finite, then G′ = G.

(ii) Any isogeny f : H → G is an epimorphism.

Proof. (i) The quotient G/G′ is smooth, connected and finite, hence zero.
(ii) This follows from (i) applied to Im(f).

The following lifting result for finite quotients will also be frequently used:

Lemma 2.2. Let G be an algebraic group, and H a subgroup such that G/H is finite.

(i) There exists a finite subgroup F ⊂ G such that G = H + F .

(ii) If G/H is infinitesimal (resp. a finite p-group), then F may be chosen infinitesimal
(resp. a finite p-group) as well.

Proof. (i) This is a special case of [Br15a, Thm. 1.1].
(ii) Assume G/H infinitesimal. Then the quotient G/H + F 0 is infinitesimal (as a

quotient of G/H) and étale (as a quotient of F/F 0), hence zero. Thus, we may replace
F with F 0, an infinitesimal subgroup.

Next, assume that G/H is a finite p-group. Denote by F [p∞] the largest p-subgroup
of F . Then the quotient G/H + F [p∞] is a finite p-group and is killed by the order of
F/F [p∞]. Since the latter order is prime to p, G/H +F [p∞] must be zero. Thus, we may
replace F with F [p∞].

Next, we recall a version of a theorem of Chevalley:

Theorem 2.3. (i) Every algebraic group G contains a linear subgroup L such that G/L
is an abelian variety. Moreover, L is unique up to commensurability in G, and G/L
is unique up to isogeny.

(ii) If G is connected, then there exists a smallest such subgroup, L = L(G), and this
subgroup is connected.

(iii) If in addition G is smooth, then every morphism from G to an abelian variety factors
uniquely through the quotient map G→ G/L(G).

Proof. The assertion (ii) follows from [Ra70, Lem. IX 2.7] (see also [BLR90, 9.2 Thm. 1]).
To prove (i), note that G contains a finite subgroup F such that G/F is connected

(as follows from Lemma 2.2). Then we may take for L the pull-back of a linear subgroup
of G/F with quotient an abelian variety. If L′ is another linear subgroup of G such that
G/L′ is an abelian variety, then L + L′ is linear, as a quotient of L × L′. Moreover, the
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natural map q : G/L → G/L + L′ is the quotient by L + L′/L, a linear subgroup of
the abelian variety G/L. It follows that L + L′/L is finite. Thus, q is an isogeny and
L′/L ∩ L′ is finite. Likewise, q′ : G/L′ → G/L + L′ is an isogeny and L/L ∩ L′ is finite;
this completes the proof of (i).

Finally, the assertion (iii) is a consequence of [Br15b, Thm. 4.3.4].

The linear algebraic groups may be described as follows (see [DG70, Thm. IV.3.3.1]):

Theorem 2.4. Let G be a linear algebraic group. Then G has a largest subgroup of
multiplicative type, M ; moreover, G/M is unipotent. If k is perfect, then G = M × U ,
where U denotes the largest unipotent subgroup of G.

Also, note the following orthogonality relations:

Proposition 2.5. (i) Let M be a group of multiplicative type, and U a unipotent group.
Then HomC(M,U) = 0 = HomC(U,M).

(ii) Let L be a linear algebraic group, and A an abelian variety. Then HomC(A,L) = 0,
and every morphism from L to A has finite image. Moreover, HomC(L,A) is n-
torsion for some positive integer n.

Proof. (i) This follows from [DG70, IV.2.2.4].
(ii) The image of a morphism from A to L is proper, smooth, connected and affine,

hence zero. Likewise, the image of a morphism from L to A is affine and proper, hence
finite.

To show the final assertion, we may replace k with any field extension, and hence
assume that k is perfect. Then the reduced neutral component L0

red is a smooth con-
nected subgroup of L, the quotient L/L0

red is finite, and HomC(L
0
red, A) = 0 by the above

argument. Thus, HomC(L,A) = HomC(L/L
0
red, A) is killed by the order of L/L0

red.

Next, we obtain a key preliminary result. To state it, recall that a unipotent group G
is split if it admits a finite increasing sequence of subgroups 0 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G
such that Gi/Gi−1

∼= Ga for i = 1, . . . , n.

Proposition 2.6. Let G be an algebraic group.

(i) There exists a finite subgroup F ⊂ G such that G/F is smooth and connected.

(ii) If G is unipotent, then we may choose F such that G/F is split.

Proof. (i) By Lemma 2.2, we have G = G0 + F for some finite subgroup F ⊂ G. Thus,
G/F ∼= G0/F ∩G0 is connected; this completes the proof when char(k) = 0.

When char(k) = p > 0, we may assume G connected by the above step. Consider the
relative Frobenius morphism FG/k : G → G(p) and its iterates F n

G/k : G → G(pn), where

n ≥ 1. Then Ker(F n
G/k) is finite for all n; moreover, G/Ker(F n

G/k) is smooth for n � 0

(see [SGA3, VIIA, Prop. 8.3]), and still connected.
(ii) We argue by induction on the dimension of G. The statement is obvious if

dim(G) = 0. In the case where dim(G) = 1, we may assume that G is smooth and
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connected in view of Lemma 2.2 again; then G is a k-form of Ga. By [Ru70, Thm. 2.1],
there is an exact sequence

0 −→ G −→ G2
a

f−→ Ga −→ 0,

where f ∈ O(G2
a)
∼= k[x, y] satisfies f(x, y) = yp

n − a0 x − a1 x
p − · · · − am xp

m
for some

integers m,n ≥ 0 and some a0, . . . , am ∈ k with a0 6= 0. Thus, the projection

p1 : G −→ Ga, (x, y) 7−→ x

lies in an exact sequence

0 −→ αpn −→ G
p1−→ Ga −→ 0,

where αpn denotes the kernel of the endomorphism x 7→ xp
n

of Ga. This yields the
assertion in this case.

If dim(G) ≥ 2, then we may choose a subgroup G1 ⊂ G such that 0 < dim(G1) <
dim(G) (as follows from [DG70, Prop. IV.2.2.5]). By the induction assumption for G/G1,
there exists a subgroup G2 ⊂ G such that G1 ⊂ G2, G2/G1 is finite, and G/G2 is split.
Next, the induction assumption for G2 yields a finite subgroup F ⊂ G2 such that G2/F
is split. Then G/F is split as well.

Remark 2.7. By Proposition 2.6, every algebraic group G admits an isogeny u : G→ H,
where H is smooth and connected. If k is perfect, then there also exists an isogeny
v : K → G, where K is smooth and connected: just take v to be the inclusion of the
reduced neutral component G0

red. But this fails over any imperfect field k. Indeed, if such
an isogeny v exists, then its image must be G0

red. On the other hand, by [SGA3, VIA,
Ex. 1.3.2], there exists a connected algebraic group G such that Gred is not a subgroup.

By combining Lemma 2.2, Theorems 2.3 and 2.4, and Proposition 2.6, we obtain
readily:

Proposition 2.8. Every algebraic group G admits a finite increasing sequence of sub-
groups 0 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G such that each Gi/Gi−1, i = 1, . . . , n, is finite or
isomorphic to Ga, a simple torus, or a simple abelian variety. Moreover, G is linear if
and only if no abelian variety occurs.

2.2 Characteristic zero

In this subsection, we assume that char(k) = 0. Recall that every unipotent group is
isomorphic to the additive group of its Lie algebra, via the exponential map; this yields
an equivalence between the category U of unipotent groups and the category of finite-
dimensional k-vector spaces (see [DG70, Prop. IV.2.4.2]).

Next, consider a connected algebraic group G. By Theorem 2.3, there is a unique
exact sequence 0→ L→ G→ A→ 0, where A is an abelian variety, and L is connected
and linear. Moreover, in view of Theorem 2.4, we have L = T × U , where T is a torus
and U is the unipotent radical, Ru(G).

We now extend this result to possibly non-connected groups:
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Theorem 2.9. (i) Every algebraic group G lies in an exact sequence

0 −→M × U −→ G −→ A −→ 0,

where M is of multiplicative type, U is unipotent, and A is an abelian variety.
Moreover, U = Ru(G) is unique, M is unique up to commensurability in G, and A
is unique up to isogeny.

(ii) The formation of the unipotent radical commutes with base change under field ex-
tensions, and yields an exact functor

Ru : C −→ U ,

right adjoint to the inclusion U → C.

(iii) The projective objects of C are exactly the unipotent groups.

Proof. (i) By Theorem 2.3, there exists an exact sequence

0 −→ L −→ G −→ A −→ 0,

where L is linear (possibly non-connected), and A is an abelian variety. By Theorem 2.4,
we have L = M × U , where M is of multiplicative type and U is unipotent.

Since M and A have no non-trivial unipotent subgroups, we have U = Ru(G); in
particular, U is unique. Given another exact sequence

0 −→M ′ × U −→ G −→ A′ −→ 0

satisfying the same assumptions, the image of M ′ in A ∼= G/(M ×U) is finite by Proposi-
tion 2.5. In other words, the quotient M ′/(M×U)∩M ′ is finite. Likewise, M/M∩(M ′×U)
is finite as well. Since (M × U) ∩M ′ = M ∩M ′ = M ∩ (M ′ × U), we see that M,M ′ are
commensurable in G. Then A = G/M × U and A′ = G/M ′ × U are both quotients of
G/(M ∩M ′)× U by finite subgroups, and hence are isogenous.

(ii) In view of (i), G/Ru(G) is an extension of an abelian variety by a group of multi-
plicative type. Since these two classes of algebraic groups are stable under base change by
any field extension k′ of k, it follows that (G/Ru(G))k′ has zero unipotent radical. Thus,
Ru(G)k′ = Ru(Gk′).

Next, note that every morphism f : G→ H sends Ru(G) to Ru(H). Moreover, every
exact sequence

0 −→ G1 −→ G2 −→ G3 −→ 0

induces an exact sequence

0→ Ru(G1)→ Ru(G2)→ Ru(G3)→ G1/Ru(G1)→ G2/Ru(G2)→ G3/Ru(G3)→ 0

by the snake lemma. Since G1/Ru(G1) has trivial unipotent radical, the sequence

0 −→ Ru(G1) −→ Ru(G2) −→ Ru(G3) −→ 0

is exact as well.
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The assertion about adjointness follows from the fact that every morphism U → G,
where U is unipotent and G arbitrary, factors through a unique morphism U → Ru(G).

(iii) Consider an epimorphism ϕ : G → H, a unipotent group U , and a morphism
ψ : U → H. Then ψ factors through Ru(H). Also, by (ii), ϕ restricts to an epimorphism
Ru(G) → Ru(H), which admits a section as unipotent groups are just vector spaces.
Thus, ψ lifts to a morphism U → G. This shows that U is projective in C.

Conversely, let G be a projective object in C. By Theorem 2.3, there exists an exact
sequence

0 −→ L −→ G −→ A −→ 0,

where L is linear, and A is an abelian variety. Let n be a positive integer; then the exact
sequence

0 −→ A[n] −→ A
nA−→ A −→ 0

yields an exact sequence

0 −→ HomC(G,A[n]) −→ HomC(G,A)
×n−→ HomC(G,A) −→ 0,

since G is projective. Thus, the (abstract) group HomC(G,A) is divisible. But there is
an exact sequence

0 −→ EndC(A) −→ HomC(G,A) −→ HomC(L,A),

where the abelian group EndC(A) is free of finite rank, and HomC(L,A) is killed by some
positive integer (Proposition 2.5). It follows that EndC(A) is zero, and hence so is A.
Thus, G is linear, and hence G = M × U as above. Since U is projective, so is M . Thus,
we may assume that G is of multiplicative type, i.e., contained in some torus T . By
the above argument, the group HomC(G, T ) is divisible; since this group is also finitely
generated, it must be zero. Thus, T = 0 = G.

Remark 2.10. With the notation of the above theorem, we have a natural map

G −→ G/M ×A G/U,

which is a morphism of M × U -torsors over A, and hence an isomorphism. Moreover,
G/M is an extension of an abelian variety by a unipotent group; such ‘vector extensions’
will be studied in detail in §5.1. Also, G/U is an extension of an abelian variety by a
group of multiplicative type, and hence of a semi-abelian variety by a finite group. The
semi-abelian varieties will be considered in §5.2.

2.3 Positive characteristics

In this subsection, we assume that char(k) = p > 0. We obtain a variant of [Br15b,
Thm. 5.6.3]:

Theorem 2.11. Let G be an algebraic group.

(i) G has a smallest subgroup H such that U := G/H is unipotent. Moreover, H is an
extension of an abelian variety A by a group of multiplicative type M . Also, M is
unique up to commensurability in G, and A is unique up to isogeny.
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(ii) Every morphism H → U is zero; every morphism U → H has finite image.

(iii) The formation of U commutes with base change under field extensions, and yields
an exact functor

U : C −→ U ,

which is left adjoint to the inclusion of U in C.

(iv) There exists a subgroup V ⊂ G such that G = H +V and H ∩V is a finite p-group.

Proof. (i) Since the underlying topological space of G is noetherian, we may choose a
subgroup H ⊂ G such that G/H is unipotent, and H is minimal for this property. Let
H ′ ⊂ G be another subgroup such that G/H ′ is unipotent. Then so is G/H ∩H ′ in view
of the exact sequence

0 −→ G/H ∩H ′ −→ G/H ×G/H ′.

By minimality of H, it follows that H ∩H ′ = H, i.e., H ⊂ H ′. Thus, H is the smallest
subgroup with unipotent quotient.

Since the class of unipotent groups is stable under extensions, every unipotent quotient
of H is zero. Also, by the affinization theorem (see [Br15b, Thm. 1, Prop. 5.5.1]), H is an
extension of a linear algebraic group L by a semi-abelian variety S. Thus, every unipotent
quotient of L is zero, and hence L must be of multiplicative type in view of Theorem 2.4.
By [DG70, Cor. IV.1.3.9], the reduced neutral component of L is its maximal torus, T ;
the quotient L/T is a finite group of multiplicative type. Denote by S ′ the preimage of T
in H; then S ′ is an abelian variety (extension of T by S) and we have an exact sequence

0 −→ S ′ −→ H −→ L/T −→ 0.

By Lemma 2.2, there exists a finite subgroup F ⊂ H such that H = S ′+F ; equivalently,
the quotient map H → L/T restricts to an epimorphism F → L/T . Also, by Theorem
2.4 again, F has a largest subgroup of multiplicative type, MF , and the quotient F/MF

is unipotent. Since L/T is of multiplicative type, it follows that the composition MF →
F → L/T is an epimorphism as well. Thus, we may replace F with MF , and assume
that F is of multiplicative type. Let T ′ be the maximal torus of the semi-abelian variety
S ′. Then the group T ′ + F is of multiplicative type; moreover, H/T ′ + F is a quotient of
S ′/T ′, and hence is an abelian variety. This yields an exact sequence

0 −→M −→ H −→ A −→ 0,

where M is of multiplicative type, and A an abelian variety.
The uniqueness assertions may be checked as in the proof of Theorem 2.9.
(ii) This follows readily from Proposition 2.5.
(iii) The assertion on base change under field extensions follows from the stability of

the classes of unipotent groups, abelian varieties, and groups of multiplicative type, under
such base changes.

To show the exactness assertion, consider an exact sequence

0 −→ G1 −→ G2 −→ G3 −→ 0

10



Then the snake lemma yields an exact sequence

0→ H1 → H2 → H3 → U1 → U2 → U3 → 0

with an obvious notation. By Proposition 2.5 again, every morphism H3 → U1 is zero;
thus, the sequence

0 −→ U1 −→ U2 −→ U3 −→ 0

is exact as well.
Finally, the adjointness assertion may be checked as in the proof of Theorem 2.9.
(iv) Consider the subgroups Ker(pnG) ⊂ G, where n is a positive integer. Since they

form a decreasing sequence, there exists a positive integer m such that Ker(pnG) = Ker(pmG )
for all n ≥ m. Let G := G/Ker(pmG ), then Ker(pG) = Ker(pm+1

G )/Ker(pmG ) is zero, and
hence pG is an isogeny. Next, let H ⊂ G be as in (i) and put H := H/Ker(pmH), U = G/H.
Then U is unipotent (as a quotient of U) and pU has finite cokernel (since this holds for pG).
Thus, U is a finite p-group. By Lemma 2.2, there exists a finite p-subgroup F ⊂ G such
that G = H + F with an obvious notation. Thus, G = H + V , where V := Ker(pmG ) + F .
Also, H ∩Ker(pmG ) = Ker(pmH) is finite, since H is an extension of A by M , and Ker(pmA )
and Ker(pmM) are finite. As F is finite, it follows that H ∩V is finite as well. Moreover, V
is a p-group, since so are F and Ker(pmG ); we conclude that H ∩ V is a finite p-group.

Corollary 2.12. Let G be an algebraic group.

(i) There exists a finite subgroup F ⊂ G such that G/F ∼= S × U , where S is a semi-
abelian variety, and U a split unipotent group. Moreover, S and U are unique up to
isogeny.

(ii) If k is locally finite, then we may choose F so that S ∼= T × A, where T is a torus,
and A an abelian variety. Moreover, T and A are unique up to isogeny.

Proof. (i) With the notation of Theorem 2.11, we have isomorphisms

G/H ∩ V ∼= G/V ×G/H ∼= (H/H ∩ V )× U.

Also, H/H ∩ V is an extension of an abelian variety, H/(H ∩ V ) + M , by a group of
multiplicative type, M/M ∩ V . Moreover, U is an extension of a split unipotent group
by a finite group (Proposition 2.6). Thus, we may assume that G = H. Then G0

red is a
semi-abelian variety, as follows from [Br15b, Lem. 5.6.1]. Since G/G0

red is finite, applying
Lemma 2.2 yields that G is an extension of a semi-abelian variety by a finite group.

(ii) By [Br15b, Cor. 5.5.5], there exists an abelian subvariety A ⊂ S such that S =
T + A, where T ⊂ S denotes the maximal torus. Then T ∩ A is finite, and S/T ∩ A ∼=
T/T ∩ A× A/T ∩ A.

This completes the proof of the existence assertions in (i) and (ii). The uniqueness up
to isogeny follows from Proposition 2.5.

11



3 The isogeny category of algebraic groups

3.1 Definition and first properties

Recall that C denotes the category of commutative algebraic groups, and F the full
subcategory of finite groups. By [Ga62, III.1], we may form the quotient category C/F ;
it has the same objects as C, and its morphisms are defined by

HomC/F(G,H) = lim
→

HomC(G
′, H/H ′),

where the direct limit is taken over all subgroups G′ ⊂ G such that G/G′ is finite, and all
finite subgroups H ′ ⊂ H. The category C/F is abelian, and comes with an exact functor

Q : C −→ C/F ,

which is the identity on objects and the natural map

HomC(G,H) −→ lim
→

HomC(G
′, H/H ′), f 7−→ f

on morphisms. The quotient functor Q satisfies the following universal property: given
an exact functor R : C → D, where D is an abelian category, such that R(F ) = 0 for any
finite group F , there exists a unique exact functor S : C/F → D such that R = S ◦ Q
(see [Ga62, Cor. III.1.2, Cor. III.1.3]).

Alternatively, C/F may be viewed as the localization of C at the multiplicative system
of isogenies (see [GZ67, §I.2] and [SP16, §4.26] for localization of categories); this is easily
checked by arguing as in the proof of [SP16, Lem. 12.9.6.].

We now show that C/F is equivalent to a category with somewhat simpler objects and
morphisms:

Lemma 3.1. Let C be the full subcategory of C/F with objects the smooth connected
algebraic groups.

(i) The inclusion of C in C/F is an equivalence of categories.

(ii) HomC(G,H) = lim HomC(G,H/H
′), where the direct limit is taken over all finite

subgroups H ′ ⊂ H.

(iii) Let f ∈ HomC(G,H) be represented by a morphism f : G→ H/H ′ in C. Then f is
zero (resp. a monomorphism, an epimorphism, an isomorphism) if and only if f is
zero (resp. has a finite kernel, is an epimorphism, is an isogeny).

Proof. (i) This follows from Proposition 2.6.
(ii) This follows from Lemma 2.1.
(iii) By [Ga62, Lem. III.1.2], f is zero (resp. a monomorphism, an epimorphism) if

and only if Im(f) (resp. Ker(f), Coker(f)) is finite. By Lemma 2.1 again, the finiteness
of Im(f) is equivalent to f = 0, and the finiteness of Coker(f) is equivalent to f being an
epimorphism. As a consequence, f is an isomorphism if and only if f is an isogeny.
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The abelian category C will be called the isogeny category of (commutative) algebraic
groups. Every exact functor R : C → D, where D is an abelian category and R(f) is
an isomorphism for any isogeny f , factors uniquely through Q : C → C (indeed, such a
functor R must send any finite group to zero).

We may now prove the assertion (i) of the main theorem:

Proposition 3.2. (i) The category C is noetherian and artinian.

(ii) The non-zero simple objects of C are exactly Ga, the simple tori, and the simple
abelian varieties.

Proof. (i) Let G be a smooth connected algebraic group, and (Gn)n≥0 an increasing se-
quence of subobjects of G in C, i.e., each Gn is smooth, connected, and equipped with a
C-morphism

ϕn : Gn −→ G/G′n,

where Ker(ϕn) and G′n are finite; moreover, we have C-morphisms

ψn : Gn −→ Gn+1/G
′′
n+1,

where Ker(ψn) and G′′n+1 are finite. Thus, dim(Gn) ≤ dim(Gn+1) ≤ dim(G). It follows
that dim(Gn) = dim(Gn+1) for n � 0, and hence ψn is an isogeny. So Gn

∼= Gn+1 in C
for n� 0. This shows that C is noetherian. One may check likewise that C is artinian.

(ii) This follows from Proposition 2.8.

Next, we relate the short exact sequences in C with those in C:

Lemma 3.3. Consider a short exact sequence in C,

ξ : 0 −→ G1
u−→ G2

v−→ G3 −→ 0,

where G1, G2, G3 are smooth and connected. Then ξ splits in C if and only if the push-out
f∗ξ splits in C for some isogeny f : G1 → H, where H is smooth and connected.

Proof. Recall that ξ splits in C if and only if there exists a C-morphism f : G2 → G1

such that f ◦ u = id in C. Equivalently, there exists a finite subgroup G′1 ⊂ G1 and a
C-morphism f : G2 → G1/G

′
1 such that f ◦ u is the quotient map q1 : G1 → G1/G

′
1.

If such a pair (G′1, f) exists, then f factors through a morphism G2/u(G′1)→ G1/G
′
1,

which splits the bottom exact sequence in the push-out diagram

0 −−−→ G1
u−−−→ G2

v−−−→ G3 −−−→ 0

q1

y q2

y id

y
0 −−−→ G1/G

′
1

u′−−−→ G2/u(G′1)
v′−−−→ G3 −−−→ 0.

Replacing G′1 by a larger finite subgroup, we may assume that G1/G
′
1 is smooth and

connected (Lemma 2.2).
Conversely, a splitting of the bottom exact sequence in the above diagram is given by

a C-morphism f ′ : G2/u(G′1) → G1/G
′
1 such that f ′ ◦ u′ = id in C. Let f : G2 → G1/G

′
1

denote the composition G2
q2−→ G2/u(G′1)

f ′−→ G1/G
′
1. Then f◦u = f ′◦q2◦u = f ′◦u′◦q1 =

q1 as desired.
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We may now produce examples of non-split exact sequences in C, thereby showing
that hd(C) ≥ 1:

Examples 3.4. (i) Consider an exact sequence

ξ : 0 −→ Ga −→ G −→ A −→ 0,

where A is an abelian variety. Then ξ, viewed as an extension of A by Ga in C, is classified
by an element η ∈ H1(A,OA) (see [Ro58] or [MM74, §1.9]).

If char(k) = 0, then every isogeny f : Ga → H, where H is connected, may be
identified with the multiplication by some t ∈ k∗, viewed as an endomorphism of Ga; then
the push-out f∗ξ is classified by tη. In view of Lemma 3.3, it follows that ξ is non-split
in C whenever η 6= 0.

In contrast, if char(k) = p > 0, then ξ splits in C, as the multiplication map pA yields
an isomorphism in C, and pGa = 0.

(ii) Assume that char(k) = p > 0 and consider the algebraic group W2 of Witt vectors
of length 2. This group comes with an exact sequence

ξ : 0 −→ Ga −→ W2 −→ Ga −→ 0,

see e.g. [DG70, §V.1.1.6]. Every isogeny f : Ga → H, where H is smooth and connected,
may be identified with a non-zero endomorphism of Ga. In view of [DG70, Cor. V.1.5.2],
it follows that the push-forward f∗ξ is non-split. Thus, ξ does not split in C.

Proposition 3.5. Consider an exact sequence

0 −→ G1
u−→ G2

v−→ G3 −→ 0

in C. Then there exists an exact sequence

0 −→ H1
u′−→ H2

v′−→ H3 −→ 0

in C, and epimorphisms with finite kernels fi : Gi → Hi (i = 1, 2, 3), such that the diagram

0 −−−→ G1
u−−−→ G2

v−−−→ G3 −−−→ 0

f
1

y f
2

y f
3

y
0 −−−→ H1

u′−−−→ H2
v′−−−→ H3 −−−→ 0

commutes in C.

Proof. The C-morphism v is represented by an epimorphism v : G2 → G3/G
′
3 in C, where

G′3 is a finite subgroup of G3. We may thus replace G3 with G3/G
′
3, and assume that v is

an epimorphism in C.
Next, u is represented by a morphism u : G1 → G2/G

′
2 with finite kernel, where

G′2 is a finite subgroup of G2. We may thus replace G1 (resp. G2, G3) with G1/Ker(u)
(resp. G2/G

′
2, G3/v(G′2)) and assume that u is a monomorphism in C. Then v ◦ u has

finite image, and hence is zero since G1 is smooth and connected.
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We now have a complex in C

0 −→ G1
u−→ G2

v−→ G3 −→ 0,

where u is a monomorphism, v an epimorphism, and Ker(v)/Im(u) is finite. By Lemma
2.2, we may choose a finite subgroup F ⊂ Ker(v) such that Ker(v) = Im(u) + F . This
yields a commutative diagram in C

0 −−−→ G1
u−−−→ G2

v−−−→ G3 −−−→ 0

q1

y q2

y id

y
0 −−−→ G1/u

−1(F )
u′−−−→ G2/F

v′−−−→ G3 −−−→ 0,

where q1, q2 denote the quotient maps. Clearly, u′ is a monomorphism, and v′ an epimor-
phism. Also, v′◦u′ = 0, since q1 is an epimorphism. Finally, q2 restricts to an epimorphism
Ker(v)→ Ker(v′), and hence Ker(v′) = Im(u′). This completes the proof.

3.2 Divisible groups

Given a divisible algebraic group G and a positive integer n, the morphism nG : G → G

factors through an isomorphism G/G[n]
∼=−→ G. We denote the inverse isomorphism by

un : G
∼=−→ G/G[n].

By construction, we have a commutative triangle

G

nG

��

q

##
G

un// G/G[n],

where q denotes the quotient morphism. Since q yields the identity morphism in C, we see
that un yields the inverse of the C-automorphism nG of G. As a consequence, EndC(G) is
a Q-algebra.

More generally, we have the following:

Proposition 3.6. Let G,H be smooth connected algebraic groups, and assume that H is
divisible.

(i) Every extension group ExtnC(G,H) is a Q-vector space.

(ii) The natural map Q : HomC(G,H) → HomC(G,H) is injective and induces an iso-
morphism

γ : Q⊗Z HomC(G,H) −→ HomC(G,H).

(iii) If G is divisible as well, then the natural map Q1 : Ext1
C(G,H) → Ext1

C(G,H)
induces an isomorphism

γ1 : Q⊗Z Ext1
C(G,H) −→ Ext1

C(G,H).
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Proof. (i) Just note that ExtnC(G,H) is a module over the Q-algebra EndC(H).

(ii) Let f ∈ HomC(G,H), and n a positive integer. If γ( 1
n
⊗ f) = 0, then of course

γ(f) = 0, i.e., f = 0. Thus, f = 0 by Lemma 3.1. This shows the injectivity of f .
For the surjectivity, consider a C-morphism f : G→ H represented by a C-morphism

f : G → H/H ′, where H ′ is a finite subgroup of H. Then H ′ ⊂ H[n] for some positive
integer n, which we may take to be the order of H ′. Thus, we may assume that H ′ = H[n].
Then the C-morphism ϕ := u−1

n ◦ f : G→ H satisfies f = un ◦ ϕ, i.e., f = γ( 1
n
⊗ ϕ).

(iv) Consider η ∈ Ext1
C(G,H) such that γ1( 1

n
⊗ η) = 0 for some positive integer n.

Then of course γ1(η) = 0, i.e., η is represented by an exact sequence in C

0 −→ H
u−→ E

v−→ G −→ 0,

which splits in C. By Lemma 3.3 and the divisibility of H, it follows that the push-out
by mH of the above extension splits in C for some m > 0. But (mH)∗η = mη (see e.g.
[Oo66, Lem. I.3.1]), and hence mη = 0. This shows the injectivity of γ1.

For the surjectivity, we adapt the argument of Proposition 3.5. Let η ∈ Ext1
C(G,H)

be represented by an exact sequence in C

0 −→ H
u−→ E

v−→ G −→ 0.

Since G is divisible, v is represented by a C-morphism v : E → G/G[m] for some positive
integer m. Replacing η with its pull-back u∗mη = (m∗G)−1η = γ1( 1

m
⊗ η), we may thus

assume that v is represented by a C-epimorphism v : E → G.
Likewise, since H is divisible, u is represented by some C-morphism u : H → E/E[n].

Then η is represented by the exact sequence in C

0 −→ H
u−→ E/E[n]

vn−→ G −→ 0,

where vn : E/E[n] → G/G[n] is the C-epimorphism induced by v. So we may further
assume that u is represented by a C-morphism u : H → E. By Lemma 3.1, we then
have v ◦ u = 0; moreover, Ker(u) and Ker(v)/Im(u) are finite. In view of Lemma 2.2, we
have Ker(v) = Im(u) + E ′ for some finite subgroup E ′ ⊂ E. This yields a commutative
diagram in C

0 −−−→ H
u−−−→ E

v−−−→ G −−−→ 0y y id

y
0 −−−→ H/u−1(E ′)

u1−−−→ E/E ′
v1−−−→ G −−−→ 0,

where the bottom sequence is exact, and u−1(E ′) is finite.
We may thus choose a positive integer r such that u−1(E ′) ⊂ H[r]. Taking the push-

out by the quotient map H/u−1(E ′)→ H/H[r] yields a commutative diagram in C

0 −−−→ H
u−−−→ E

v−−−→ G −−−→ 0y y id

y
0 −−−→ H/H[r]

u2−−−→ E/E ′ + u(H[r])
v2−−−→ G −−−→ 0,

where the bottom sequence is exact again. Thus, rη = (rH)∗η is represented by an exact
sequence in C.
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Remarks 3.7. (i) Given two divisible groups G,H, the map

Q1 : Ext1
C(G,H) −→ Ext1

C(G,H)

is not necessarily injective. Indeed, the group Ext1
C(A,Gm) has non-zero torsion for any

non-zero abelian variety A over (say) a separably closed field.
(ii) We may also consider the natural maps Qn : ExtnC(G,H)→ ExtnC(G,H) for n ≥ 2.

But these maps turn out to be zero for any algebraic groups G,H, since ExtnC(G,H) = 0
(Lemma 4.10) and ExtnC(G,H) is torsion (Remark 4.11).

As a first application of Proposition 3.6, we obtain:

Proposition 3.8. Assume that char(k) = 0.

(i) The composition of the inclusion U → C with the quotient functor Q : C → C
identifies U with a full subcategory of C.

(ii) The unipotent radical functor yields an exact functor

Ru : C −→ U ,

which is right adjoint to the inclusion. Moreover, Ru commutes with base change
under field extensions.

(iii) Every unipotent group is a projective object in C.

Proof. (i) Recall that a morphism of unipotent groups is just a linear map of the associated
k-vector spaces. In view of Proposition 3.6, it follows that the natural map HomC(U, V )→
HomC(U, V ) is an isomorphism for any unipotent groups U, V .

(ii) The functor Ru : C → U is exact by Theorem 2.9, and sends every finite group to
0. By the universal property of Q, there exists a unique exact functor S : C/F → U such
that Ru = S ◦Q. Since Ru commutes with base change under field extensions (Theorem
2.9 again), so does S by uniqueness. Thus, composing S with the inclusion C → C/F
yields the desired functor.

For any unipotent group U and any algebraic group G, the natural map

HomU(U,Ru(G)) −→ HomC(U,G)

is an isomorphism. By Proposition 3.6 again, the natural map

Q : HomC(U,G) −→ HomC(U,G)

is an isomorphism as well. It follows that Ru is right adjoint to the inclusion.
(iii) Let U be a unipotent group. Then the functor on C defined by

G 7−→ HomU(U,Ru(G))

is exact, since the unipotent radical functor is exact and the category U is semi-simple.
Thus, G 7→ HomC(U,G) is exact as well; this yields the assertion.
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3.3 Field extensions

Let k′ be a field extension of k. Then the assignement G 7→ Gk′ := G⊗k k′ yields the base
change functor

⊗kk′ : Ck −→ Ck′ .

Clearly, this functor is faithful and exact; also, note that G is connected (resp. smooth,
finite, linear, unipotent, a torus, an abelian variety, a semi-abelian variety) if and only if
so is Gk′ .

Lemma 3.9. With the above notation, the functor ⊗kk′ yields an exact functor

⊗kk
′ : Ck −→ Ck′ .

Proof. The composite functor Qk′ ◦ ⊗kk′ : Ck → Ck′ is exact and sends every finite k-
group to 0; hence it factors through a unique exact functor Ck/Fk → Ck′ . This yields the
existence and exactness of ⊗kk

′.

Lemma 3.10. Let k′ be a purely inseparable field extension of k, and G′ a k′-group.

(i) There exists a smooth k-group G and an epimorphism f : G′ → Gk′ such that Ker(f)
is infinitesimal.

(ii) If G′ ⊂ Hk′ for some k-group H, then there exists a k-subgroup G ⊂ H such that
G′ ⊂ Gk′ and Gk′/G

′ is infinitesimal.

Proof. (i) Let n be a positive integer and consider the nth relative Frobenius morphism

F n
G′/k′ : G′ −→ G′(p

n).

Recall that the quotient G′/Ker(F n
G′/k′) is smooth for n � 0. Since Ker(F n

G′/k′) is in-
finitesimal, we may assume that G′ is smooth. Then F n

G′/k′ is an epimorphism in view of

[SGA3, VIIA, Cor. 8.3.1].
Next, note that G′ is defined over some finite subextension k′′ of k′, i.e., there exists

a k′′-subgroup G′′ such that G′ = G′′ ⊗k′′ k′. By transitivity of base change, we may thus
assume that k′ is finite over k. Let q := [k′ : k], then q = pn, where p = char(k) and n is a
positive integer; also, k′q ⊂ k. Consider again the morphism F n

G′/k′ ; then by construction,

G′(p
n) ∼= G′ ⊗k′ k′, where k′ is sent to itself via the qth power map. Thus, G′(p

n) ∼= Gk′ ,
where G denotes the k-group G′ ⊗k′ k; here k′ is sent to k via the qth power map again.
So the induced map G′ → Gk′ is the desired morphism.

(ii) As above, we may reduce to the case where k′ is finite over k. Then the statement
follows from [Br15b, Lem. 4.3.5].

We now are in a position to prove Theorem 1 (iv):

Theorem 3.11. Let k′ be a purely inseparable field extension of k. Then the base change
functor ⊗kk

′ : Ck → Ck′ is an equivalence of categories.
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Proof. By Lemma 3.10, every k′-group G′ is isogenous to Gk′ for some smooth k-group
G. It follows that ⊗kk

′ is essentially surjective.
Next, let G,H be smooth connected k-groups, and f : G → H a Ck-morphism,

represented by a Ck-morphism f : G → H/H ′ for some finite k-subgroup H ′ ⊂ H. If
f
k′

: Gk′ → Hk′ is zero in Ck′ , then the image of fk′ : Gk′ → Hk′/H
′
k′ is finite. By Lemma

2.1, it follows that fk′ = 0. This shows that ⊗kk
′ is faithful.

Finally, we check that ⊗kk
′ is full. Let again G,H be smooth connected k-groups, and

let f ∈ HomCk′ (Gk′ , Hk′). We show that there exists a finite k-subgroup H ′ ⊂ H and a
k-morphism ϕ : G→ H/H ′ such that ϕk′ represents f . For this, we may replace H with
its quotient by any finite k-subgroup.

Choose a representative f : Gk′ → Hk′/H
′′ of f , where H ′′ ⊂ Hk′ is a finite k′-

subgroup. By Lemma 3.10, there exists a k-subgroup I ⊂ H such that H ′′ ⊂ Ik′ and
Ik′/H

′′ is finite; then Ik′ is finite as well, and hence so is I. We may thus replace H by
H/I, and f by its composition with the quotient morphism Hk′/H

′′ → Hk′/Ik′ = (H/I)k′ .
Then f is represented by a morphism f : Gk′ → Hk′ .

Consider the graph Γ(f) ⊂ Gk′ ×k′ Hk′ . By Lemma 3.9 again, there exists a k-
subgroup ∆ ⊂ G×H such that Γ(f) ⊂ ∆k′ and ∆k′/Γ(f) is finite. Then the intersection
∆k′ ∩ (eG × Hk′) is finite, since Γ(f) ∩ (eG × Hk′) is zero. Thus, ∆ ∩ (eG × H) is finite
as well; equivalently, the k-group H ′ := H ∩ (eG × id)−1(∆) is finite. Denoting by Γ the
image of ∆ in G×H/H ′, we have a cartesian square

∆ −−−→ G×Hy y
Γ −−−→ G×H/H ′,

where the horizontal arrows are closed immersions, and the left (resp. right) vertical arrow
is the quotient by ∆ ∩ (eG × H) (resp. by H ′ acting on H via addition). So Γ is a k-
subgroup of G × H/H ′, and Γ ∩ (eG × H/H ′) is zero; in other words, the projection
π : Γ → G is a closed immersion. Since G is smooth and connected, and dim(Γ) =
dim(∆) = dim Γ(f) = dim(G), it follows that π is an isomorphism. In other words, Γ
is the graph of a k-morphism ϕ : G → H/H ′. Since the above cartesian square lies in a
push-out diagram,

0 −−−→ ∆ −−−→ G×H ϕ−q−−−→ H/H ′ −−−→ 0y y id

y
0 −−−→ Γ −−−→ G×H/H ′ ϕ−id−−−→ H/H ′ −−−→ 0,

where q : H → H/H ′ denotes the quotient morphism, it follows that ∆ = ker(ϕ− q). As
Γ(f) ⊂ ∆k′ , we see that ϕk′ = qk′ ◦ f . Thus, f is represented by ϕk′ ; this completes the
proof of the fullness assertion.

Remarks 3.12. (i) Likewise, the base change functor induces equivalences of categories
Uk → Uk′ , T k → T k′ , Lk → Lk′ , and Ak → Ak′ . For tori, this follows much more
directly from the anti-equivalence of T k with the category of rational representations of
the absolute Galois group of k, see Proposition 4.1.
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(ii) In particular, the category Uk is equivalent to Uki , where ki denotes the perfect
closure of k in k̄. Recall from [DG70, §V.1.4] that the category Uki is anti-equivalent to the
category of those finitely generated modules over the Dieudonné ring Dki that are killed
by some power of the Verschiebung map V . Moreover, the category Uki is anti-equivalent
to the category of those finitely generated modules over the localization D(V ) that are
killed by some power of V ; see [DG70, §V.6.7].

By work of Schoeller, Kraft, and Takeuchi (see [Sc72, Kr75, Tak75]), the category Uk
is anti-equivalent to a category of finitely generated modules over a certain k-algebra,
which generalizes the Dieudonné ring but seems much less tractable.

4 Tori, abelian varieties, and homological dimension

4.1 Tori

Denote by M (resp. FM) the full subcategory of C with objects the groups of multi-
plicative type (resp. the finite groups of multiplicative type). Since F and FM are stable
under taking subobjects, quotients and extensions, we may form the quotient abelian
category M/FM, as in §3.1. One may readily check that M/FM is a full subcategory
of C/F .

Let T be the full subcategory of M/FM with objects the tori. Since these are the
smooth connected objects of M, one may check as in Lemma 3.1 that the inclusion of T
inM/FM is an equivalence of categories. The remaining statements of Lemma 3.1 also
adapt to this setting; note that we may replace the direct limits over all finite subgroups
with those over all n-torsion subgroups, since tori are divisible. Also, Proposition 3.6
yields natural isomorphisms

Q⊗Z HomC(T1, T2)
∼=−→ HomT (T1, T2)

for any tori T1, T2.
By assigning with each group of multiplicative type G its character group,

X(G) := Homks(Gks ,Gm,ks),

one obtains an anti-equivalence between M (resp. FM) and the category of finitely
generated (resp. finite) commutative groups equipped with a continuous action of the
Galois group Γ; see [DG70, Thm. IV.1.3.6]. Thus, the assignement

XQ : G 7−→ Q⊗Z X(G) =: X(G)Q

yields a contravariant exact functor fromM to the category RepQ(Γ) of finite-dimensional
Q-vector spaces equipped with a continuous representation of Γ; moreover, every finite
group of multiplicative type is sent to 0. This yields in turn a contravariant exact functor

XQ : T −→ RepQ(Γ).

Proposition 4.1. The functor XQ is an anti-equivalence of categories. In particular, the
category T is semi-simple, and HomT (T1, T2) is a finite-dimensional Q-vector space for
any tori T1, T2.
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Proof. Given a finite-dimensional Q-vector space V equipped with a continuous action
of Γ, there exists a finitely generated Γ-stable subgroup M ⊂ V which spans V ; thus,
V ∼= X(T )Q, where T denotes the torus with character group M . So XQ is essentially
surjective.

Given two tori T1, T2, the natural isomorphism HomM(T1, T2) ∼= HomΓ(X(T2), X(T1))
yields an isomorphism

HomT (T1, T2) ∼= HomΓ(X(T2)Q, X(T1)Q).

It follows that XQ is fully faithful.

Lemma 4.2. (i) Every algebraic group G has a unique maximal torus, T (G).

(ii) Every morphism of algebraic groups u : G→ H sends T (G) to T (H).

(iii) The formation of T (G) commutes with base change under field extensions.

Proof. (i) This follows from the fact that T1 + T2 is a torus for any subtori T1, T2 ⊂ G.
(ii) Just note that the image of a torus under any morphism is still a torus.
(iii) Consider an algebraic group G, its maximal torus T , and a field extension K of

k. If char(k) = 0, then Theorem 2.9 implies that G/T is a an extension of an abelian
variety by a product M × U , where M is finite and U unipotent. As a consequence, a
similar assertion holds for GK/TK ; it follows that GK/TK contains no nonzero torus, and
hence TK is the maximal torus of GK . On the other hand, if char(k) > 0, then G/T is a
3-step extension of a unipotent group by an abelian variety by a finite group, in view of
Theorem 2.11. It follows similarly that TK is the maximal torus of GK .

By Lemma 4.2, the assignement G 7→ T (G) yields a functor

T : C −→ T ,

the functor of maximal tori. This functor is neither left exact, nor right exact, as seen
from the exact sequence

0 −→ G[n] −→ G
nG−→ G −→ 0,

where G is a nonzero torus and n a nonzero integer. But T is exact up to finite groups,
as shown by the following:

Lemma 4.3. Every exact sequence in C

0 −→ G1
u−→ G2

v−→ G3 −→ 0

yields a complex in C

0 −→ T (G1)
T (u)−→ T (G2)

T (v)−→ T (G3) −→ 0,

where T (u) is a monomorphism, T (v) an epimorphism, and KerT (v)/ImT (u) is finite.
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Proof. Clearly, T (u) is a monomorphism. Also, the group

KerT (v)/ImT (u) = T (G2) ∩ u(G1)/u(T (G1))

is the quotient of a group of multiplicative type by its maximal torus, and hence is finite.
To show that T (v) is an epimorphism, we may replace G2 with v−1(T (G3)), and hence

assume that G3 is a torus. Next, we may replace G2 with G2/T (G2), and hence assume
that T (G2) is zero. We then have to check that G3 is zero.

If char(k) = 0, then there is an exact sequence

0 −→M × U −→ G2 −→ A −→ 0

as in Theorem 2.9, where M is finite. Thus, every morphism G2 → G3 has finite image.
Since v : G2 → G3 is an epimorphism, it follows that G3 = 0. On the other hand, if
char(k) > 0, then there are exact sequences

0 −→ H −→ G2 −→ U −→ 0, 0 −→M −→ H −→ A −→ 0

as in Theorem 2.11, where M is finite. This implies again that every morphism G2 → G3

has finite image, and hence that G3 = 0.

Proposition 4.4. (i) The functor of maximal tori yields an exact functor

T : C −→ T ,

right adjoint to the inclusion T → C. Moreover, T commutes with base change
under field extensions.

(ii) Every torus is a projective object in C.

Proof. (i) Composing T with the functor T → T induced by the quotient functor Q, we
obtain an exact functor C → T (Lemma 4.3), which sends every finite group to 0. So this
functor factors through an exact functor T : C → T . The adjointness assertion follows
from the natural isomorphism

HomC(T,G) ∼= HomT (T, T (G))

for any torus T and any algebraic group G, which yields a natural isomorphism

HomC(T,G) ∼= HomT (T, T (G))

by using Lemmas 3.1 and 4.3. Finally, the assertion on field extensions is a direct conse-
quence of Lemma 4.2.

(ii) This follows by arguing as in the proof of Proposition 3.8 (iii).
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4.2 Abelian varieties

Denote by P the full subcategory of C with objects the proper groups (i.e., those algebraic
groups G such that the structure map G → Spec(k) is proper). Clearly, P is stable by
subobjects, quotients and extensions; it also contains the category F of finite groups. We
may thus form the quotient abelian category P/F , which is a full subcategory of C/F .

Next, let A be the full subcategory of P/F with objects the abelian varieties. As
in §4.1, the inclusion of A in P/F is an equivalence of categories, and the remaining
statements of Lemma 3.1 adapt to this setting. Also, Proposition 3.6 yields natural
isomorphisms

Q⊗Z HomC(A1, A2)
∼=−→ HomA(A1, A2)

for any abelian varieties A1, A2. As a consequence, HomA(A1, A2) is a finite-dimensional
Q-vector space. Moreover, the category A is semi-simple, in view of the Poincaré complete
reducibility theorem (which holds over an arbitrary field, see [Co06, Cor. 3.20] or [Br15b,
Cor. 4.2.6]).

Lemma 4.5. (i) Every smooth connected algebraic group G has a largest abelian variety
quotient,

α = αG : G −→ A(G).

(ii) Every morphism u : G → H, where H is smooth and connected, induces a unique
morphism A(u) : A(G)→ A(H) such that the square

G
u−−−→ H

αG

y αH

y
A(G)

A(u)−−−→ A(H)

commutes.

(iii) For any field extension K of k, the natural morphism A(GK) → A(G)K is an
isomorphism if char(k) = 0, and an isogeny if char(k) > 0.

Proof. (i) and (ii) Both assertions are obtained by standard arguments, already used at
the beginning of the proof of Theorem 2.11.

(iii) By Theorem 2.3, we have an exact sequence

0 −→ L(G) −→ G
α−→ A(G) −→ 0,

where L(G) is linear and connected. This yields an exact sequence

0 −→ L(G)K −→ GK −→ A(G)K −→ 0.

Thus, L(GK) ⊂ L(G)K and we obtain an exact sequence

0 −→ L(G)K/L(GK) −→ A(GK) −→ A(G)K −→ 0.

Sinc L(G)K is linear, the quotient L(G)K/L(GK) must be finite; this yields the assertion
when char(k) > 0.

When char(k) = 0, we may characterize L(G) as the largest connected linear subgroup

of G. It follows that L(G)K ⊂ L(GK); hence equality holds, and A(GK)
∼=→ A(G)K .
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In view of Lemma 4.5, the assignement G 7→ A(G) yields a functor

A : C −→ A,

the Albanese functor. Like the functor of maximal tori, A is neither left exact nor right
exact, but it is exact up to finite groups:

Lemma 4.6. Let 0 → G1 → G2 → G3 → 0 be an exact sequence in C, where G1, G2, G3

are smooth and connected. Then we have a commutative diagram in C

0 −−−→ G1
u−−−→ G2

v−−−→ G3 −−−→ 0

α1

y α2

y α3

y
0 −−−→ A(G1)

A(u)−−−→ A(G2)
A(v)−−−→ A(G3) −−−→ 0,

where A(v) is an epimorphism, and KerA(u), KerA(v)/ImA(u) are finite.

Proof. Clearly, A(v) is an epimorphism. Let Li := Ker(αi) for i = 1, 2, 3; then each Li
is connected and linear by Theorem 2.3. We have isomorphisms KerA(u) ∼= u−1(L2)/L1,
ImA(u) ∼= u(G1)/u(G1) ∩ L2 and KerA(v) ∼= v−1(L3)/L2. Since u−1(L2) is linear,
KerA(u) is linear as well; it is also proper, and hence finite. Also,

KerA(v)/ImA(u) ∼= v−1(L3)/L2 + u(G1)

is a quotient of v−1(L3)/u(G1) ∼= L3. It follows similarly that KerA(v)/ImA(u) is finite.

We may now state a dual version of Proposition 4.4 for the Albanese functor:

Proposition 4.7. (i) The Albanese functor yields an exact functor

A : C −→ A,

which is left adjoint to the inclusion A → C. Moreover, A commutes with base
change under field extensions.

(ii) Every abelian variety is an injective object in C.

The proof is entirely similar to that of Proposition 4.4, and will be omitted.

Remarks 4.8. (i) Denote by Â the dual of an abelian variety A. Then the assignement

A 7→ Â yields a contravariant endofunctor of A, which is involutive and preserves isogenies
and finite products. As an easy consequence, we obtain a contravariant endofunctor of
A, which is involutive and exact. Note that each abelian variety is (non-canonically)
A-isomorphic to its dual, via the choice of a polarization.

(ii) Let K be a field extension of k. Then the assignement

A 7−→ Q⊗Z A(K) =: A(K)Q

yields a functor from A to the category of Q-vector spaces (possibly of infinite dimension),
which preserves finite products. Moreover, each isogeny f : A→ B yields an isomorphism

A(K)Q
∼=→ B(K)Q, since this holds for the multiplication maps nA. Thus, we obtain an

exact functor from A to the category of Q-vector spaces.
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4.3 Vanishing of extension groups

In this subsection, we prove the assertion (v) of Theorem 1. We first collect general
vanishing results for extension groups in C:

Lemma 4.9. Let G be a smooth connected algebraic group, U a smooth connected unipo-
tent group, A an abelian variety, and T a torus.

(i) ExtnC(T,G) = 0 = ExtnC(G,A) = 0 for all n ≥ 1.

(ii) If char(k) = 0, then ExtnC(U,G) = 0 for all n ≥ 1.

(iii) If char(k) > 0 and G is divisible, then ExtnC(U,G) = 0 = ExtnC(G,U) for all n ≥ 0.

(iv) If G is linear, then ExtnC(G, T ) = 0 for all n ≥ 1. If in addition char(k) = 0, then
ExtnC(G,U) = 0 for all n ≥ 1 as well.

Proof. (i) Just recall that T is projective in C (Proposition 4.4), and A is injective in C
(Proposition 4.7).

(ii) Likewise, U is projective in C by Proposition 3.8.
(iii) Since U is unipotent, there exists a positive integer m such that pmG = 0. It

follows that both groups ExtmC (U,G) and ExtmC (G,U) are pm-torsion (see e.g. [Oo66,
Lem. I.3.1]). But these groups are also modules over EndC(G), and hence Q-vector spaces
by Proposition 3.6. This yields the assertion.

(iv) By Proposition 2.8 and the long exact sequence for Ext groups, we may assume
that G is unipotent or a torus. In the latter case, both assertions follows from (i); in the
former case, the first assertion follows from (ii) and (iii), and the second assertion, from
the fact that unipotent groups are just vector spaces.

Next, recall that hd(C) ≥ 1 (Examples 3.4). So, to complete the proof of the assertion
(v) of Theorem 1, it suffices to show the following:

Lemma 4.10. For any smooth connected algebraic groups G,H and any integer n ≥ 2,
we have ExtnC(G,H) = 0.

Proof. Let η ∈ ExtnC(G,H), where n ≥ 3. Then η is represented by an exact sequence

0 −→ H −→ G1 −→ · · · −→ Gn −→ G −→ 0,

which we may cut into two exact sequences

0 −→ H −→ G1 −→ G2 −→ K −→ 0, 0 −→ K −→ G3 −→ · · · −→ Gn −→ G −→ 0.

Thus, η can be written as a Yoneda product η1 ∪ η2, where η1 ∈ Ext2(G,K) and η2 ∈
Extn−2(K,H). So it suffices to show the assertion when n = 2.

Using the long exact sequences for Ext groups, we may further reduce to the case
where G,H are simple objects in C, i.e., Ga, simple tori T , or simple abelian varieties A
(Proposition 3.2). In view of Lemma 4.9, it suffices in turn to check that

(i) Ext2
C(A, T ) = 0,
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(ii) Ext2
C(A,Ga) = 0 when char(k) = 0,

(iii) Ext2
C(Ga,Ga) = 0 when char(k) > 0.

For (i), we adapt the argument of [Oo66, Prop. II.12.3]. Let η ∈ Ext2
C(A, T ) be

represented by an exact sequence in C

0 −→ T −→ G1 −→ G2 −→ A −→ 0.

As above, η = η1 ∪ η2, where η1 denotes the class of the extension

0 −→ T −→ G1 −→ K −→ 0,

and η2 that of the extension

0 −→ K −→ G2 −→ A→ 0.

Since K is smooth and connected (as a quotient of G1), Theorem 2.3 yields an exact
sequence in C

0 −→ L −→ K −→ B → 0,

where B is an abelian variety, and L is connected and linear (but not necessarily smooth).
Using Proposition 2.6, we obtain a surjective morphism with finite kernel L→ L1, where
L1 is smooth, connected and linear. This yields an exact sequence in C

0 −→ L1 −→ K −→ B → 0.

As Ext1
C(A,B) = 0, the natural map Ext1

C(A,L1)→ Ext1
C(A,K) is surjective. Thus, there

exists a push-out diagram of exact sequences in C

0 −−−→ L1 −−−→ H2 −−−→ A −−−→ 0y y id

y
0 −−−→ K −−−→ G2 −−−→ A −−−→ 0.

Consider the pull-back diagram of exact sequences in C

0 −−−→ T −−−→ H1 −−−→ L1 −−−→ 0

id

y y y
0 −−−→ T −−−→ G1 −−−→ K −−−→ 0.

This yields a commutative diagram of exact sequences in C

0 −−−→ T −−−→ H1 −−−→ H2 −−−→ A −−−→ 0

id

y y y id

y
0 −−−→ T −−−→ G1 −−−→ G2 −−−→ A −−−→ 0.

Thus, we have η = κ1 ∪ κ2 in Ext2
C(A, T ), where κ1 denotes the class of the extension

0 −→ T −→ H1 −→ L1 −→ 0,

26



and κ2, that of the extension

0 −→ L1 −→ H2 −→ A −→ 0.

But κ1 = 0 in view of Lemma 4.9. Thus, η = 0; this completes the proof of (i).
For (ii), we adapt the above argument: just replace T with Ga and use the vanishing

of Ext1
C(L,Ga) for L linear (Lemma 4.9).

Finally, for (iii), it suffices to show that Ext2
U(Ga,Ga) = 0. Also, we may assume that

k is perfect, in view of Theorem 3.11. Then we conclude by the vanishing of Ext2
U(Ga,Ga)

(see [DG70, V.1.5.1, V.1.5.2]).

Remark 4.11. When k is perfect, the groups ExtnC(G,H) are torsion for all n ≥ 2 and
all algebraic groups G,H, in view of [Mi70, Cor., p. 439]. In fact, this assertion extends
to an arbitrary field k: indeed, it clearly holds when G or H is finite, or more generally
m-torsion for some positive integer m. Using Proposition 2.8, one may thus reduce to
the case when G,H are simple objects of C. Then the assertion is obtained by combining
Proposition 3.6, Lemma 4.9, and the proof of Lemma 4.10.

5 Structure of isogeny categories

5.1 Vector extensions of abelian varieties

In this subsection, we assume that char(k) = 0. Recall that a vector extension of an
abelian variety A is an algebraic group G that lies in an extension

ξ : 0 −→ U −→ G −→ A −→ 0,

where U is unipotent. Then U = Ru(G) and A = A(G) are uniquely determined by G;
also, the extension ξ has no non-trivial automorphisms, since HomC(A,U) = 0. Thus, the
data of the algebraic group G and the extension ξ are equivalent.

We denote by V the full subcategory of C with objects the vector extensions (of all
abelian varieties). By Theorems 2.3 and 2.4, the objects of V are exactly those smooth
connected algebraic groups that admit no non-zero subtorus. In view of Lemmas 4.2 and
4.3, this implies readily:

Lemma 5.1. (i) Let 0→ G1 → G2 → G3 → 0 be an exact sequence in C, where G2 is
connected. Then G2 is an object of V if and only if so are G3 and G0

1.

(ii) Let f : G→ H be an isogeny of connected algebraic groups. Then G is an object of
V if and only if so is H.

(iii) Let K be a field extension of k, and G an algebraic k-group. Then G is an object
of Vk if and only if GK is an object of VK.

Next, recall from [Ro58] or [MM74, §1.9] that every abelian variety A has a universal
vector extension,

ξ(A) : 0 −→ U(A) −→ E(A) −→ A −→ 0,
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where U(A) is the additive group of the vector space H1(A,OA)∗; moreover, dimU(A) =
dimA. Also, E(A) is anti-affine, i.e., every morphism from E(A) to a linear algebraic
group is zero (see e.g. [Br15b, Prop. 5.5.8]).

Proposition 5.2. (i) The assignements A→ E(A), A 7→ U(A) yield exact functors

E : V −→ A, U : V −→ U ,

which commute with base change under field extensions.

(ii) For any morphism f : A→ B of abelian varieties, the map U(f) : U(A)→ U(B) is
the dual of the pull-back morphism f ∗ : H1(B,OB) → H1(A,OA). Moreover, U(f)
is zero (resp. an isomorphism) if and only if f is zero (resp. an isogeny).

(iii) E is left adjoint to the inclusion of A in V.

Proof. We prove (i) and (ii) simultaneously. Let f : A → B be a morphism of abelian
varieties. Consider the pull-back diagram of exact sequences

0 −−−→ U(B) −−−→ F −−−→ A −−−→ 0

id

y y f

y
0 −−−→ U(B) −−−→ E(B) −−−→ B −−−→ 0.

By the universal property of ξ(A), we have a commutative diagram of exact sequences

0 −−−→ U(A) −−−→ E(A) −−−→ A −−−→ 0y y id

y
0 −−−→ U(B) −−−→ F −−−→ A −−−→ 0,

and hence another such diagram,

0 −−−→ U(A) −−−→ E(A) −−−→ A −−−→ 0y y f

y
0 −−−→ U(B) −−−→ E(B) −−−→ B −−−→ 0.

This yields morphisms E(f) and U(f).
Next, let η ∈ H1(B,OB), so that we have a push-out diagram of extensions

0 −−−→ U(B) −−−→ E(B) −−−→ B −−−→ 0

η

y y id

y
0 −−−→ Ga −−−→ Eη −−−→ B −−−→ 0.

By construction, the pull-back of Eη by f is the push-out of ξ(A) by η◦U(f) : U(A)→ Ga.
Hence U(g◦f) = U(g)◦U(f), and in turn E(g◦f) = E(g)◦E(f). This yields the functors
E and U ; also, note that U(f) is the dual of f ∗ : H1(B,OB)→ H1(A,OA).
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Since the formation of the universal vector extension commutes with base change
under field extensions, the functors E and U commute with such base change as well.
We now show that these functors are exact. Clearly, they are additive. Consider an

exact sequence of abelian varieties 0 → A
f→ B

g→ C → 0. By the Poincaré complete
reducibility theorem, there exists a commutative diagram of exact sequences

0 −−−→ A
f ′−−−→ B′

g′−−−→ C ′ −−−→ 0

id

y u

y v

y
0 −−−→ A

f−−−→ B
g−−−→ C −−−→ 0,

where u, v are isogenies, and the top exact sequence splits in A. Since U(u), U(v) are
isomorphisms, this yields the exactness of U , and in turn the exactness of E, completing
the proof of (i).

To complete the proof of (ii), recall the canonical isomorphism H1(A,OA) ∼= Lie(Â),
where the right-hand side denotes the Lie algebra of the dual abelian variety. This iso-
morphism identifies f ∗ with Lie(f̂), where f̂ : B̂ → Â denotes the dual morphism of f .
As a consequence,

U(f) = 0⇔ f ∗ = 0⇔ f̂ = 0⇔ f = 0,

where the second equivalence holds since char(k) = 0, and the third one follows from
biduality of abelian varieties. Likewise, U(f) is an isomorphism if and only if f ∗ is an
isomorphism; equivalently, f̂ is an isogeny, i.e., f is an isogeny.

(iii) Given a vector extension 0 → U → G → A(G) → 0, we need to show that the
map

α : HomV(E(A), G) −→ HomA(A,A(G)), u 7−→ A(u)

is an isomorphism.
Consider a morphism u : E(A) → G such that A(u) = 0. Then u factors through a

morphism E(A)→ Ru(G), and hence u = 0 as E(A) is anti-affine.
Next, consider a morphism v : A→ A(G). By (i), we have a commutative square

E(A)
E(v)−−−→ E(A(G))y y

A
v−−−→ A(G).

Also, the universal property of ξ(A) yields a commutative square

E(A(G))
δ−−−→ Gy αG

y
A(G)

id−−−→ A(G).

Thus, w := E(v) ◦ δ ∈ HomV(E(A), G) satisfies α(v) = u.
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Denote by V the isogeny category of vector extensions, that is, the full subcategory
of C with the same objects as V . Then V is an abelian category in view of Lemma 5.1.
Also, Proposition 3.6 yields natural isomorphisms

Q⊗Z HomC(G1, G2)
∼=−→ HomV(G1, G2), Q⊗Z Ext1

C(G1, G2)
∼=−→ Ext1

V(G1, G2)

for any objects G1, G2 of V .

Corollary 5.3. (i) The functors E : A → V, U : A → U yield exact functors

E : A −→ V , U : A −→ U ,

which commute with base change under field extensions. Moreover, E is left adjoint
to the Albanese functor A : V → A.

(ii) The universal vector extension of any abelian variety is a projective object of V.

Proof. (i) This follows from Proposition 5.2.
(ii) We have canonical isomorphisms for any vector extension G:

HomV(E(A), G) ∼= Q⊗Z HomV(E(A), G) ∼= Q⊗Z HomA(A,G) ∼= HomA(A,G),

where the first and third isomorphisms follow from Proposition 3.6, and the second one
from Proposition 5.2 again. Since A is semi-simple, it follows that the functor G 7→
HomV(E(A), G) is exact.

Next, let G be an object of V . Form and label the commutative diagram of exact
sequences in C

0 −−−→ U(A)
ι−−−→ E(A) −−−→ A −−−→ 0

γ

y δ

y id

y
0 −−−→ U −−−→ G −−−→ A −−−→ 0,

where U = U(G), A = A(G), and γ = γG classifies the bottom extension. This yields an
exact sequence in C

ξ : 0 −→ U(A)
γ−ι−→ U × E(A) −→ G −→ 0.

Proposition 5.4. Keep the above notation.

(i) ξ yields a projective resolution of G in V.

(ii) For any object H of V, we have an exact sequence

0 −→ HomV(G,H)
ϕ−→ HomU(U(G), U(H))× HomA(A(G), A(H))

ψ−→ HomU(U(A(G)), U(H)) −→ Ext1
V(G,H) −→ 0,

where ϕ(f) := (U(f), A(f)), and ψ(u, v) := u ◦ γG − γH ◦ v.
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Proof. (i) This holds as U,U(A) are projective in C (Theorem 2.9), and E(A) is projective
in C (Proposition 5.2).

(ii) In view of (i), this is a direct consequence of the long exact sequence of extension
groups

0 −→ HomV(G,H) −→ HomV(U × E(A), H) −→ HomV(U,H) −→ Ext1
V(G,H) −→ 0

associated with the short exact sequence ξ.

Corollary 5.5. (i) The indecomposable projective objects of V are exactly Ga and the
universal vector extensions of simple abelian varieties.

(ii) The indecomposable injective objects of V are exactly the simple abelian varieties.

Proof. Let G be an extension of an abelian variety A by a unipotent group U .
(i) If G is projective in V , then Ext1

V(G,Ga) = 0. In view of Proposition 5.4, it follows
that the map HomU(U,Ga) → HomU(U(A),Ga), u 7→ u ◦ γ is surjective. Equivalently,
γ is injective; hence so is δ : E(A) → G. Identifying E(A) with a subgroup of G, it
follows that G = U +E(A), and U(A) ⊂ U . We may choose a complement V ⊂ U to the
subspace U(A) ⊂ U ; then G ∼= V × E(A). Conversely, every such product is projective
by Proposition 5.2. This yields the assertion.

(ii) If G is injective in V , then Ext1
V(B,G) = 0 for any abelian variety B. Choose B

non-zero and non-isogenous to A; then the natural map Ext1
V(B,U)→ Ext1

V(B,G) is an

isomorphism, since HomV(B,A) = 0 = Ext1
V(B,A). Also, Ext1

V(B,U) ∼= HomU(U(B), U)
by Proposition 5.4. It follows that U = 0, i.e., G is an abelian variety. Conversely, every
abelian variety is injective in V by Proposition 4.7.

We now describe the structure of V and V in terms of linear algebra. Let D be the
category with objects the triples (A,U, γ), where A is an abelian variety, U a unipotent
group, and γ : U(A)→ U a morphism; the D-morphisms from (A1, U1, γ1) to (A2, U2, γ2)
are those pairs of C-morphisms u : U1 → U2, v : A1 → A2 such that the square

U(A1)
U(v)−−−→ U(A2)

γ1

y γ2

y
U1

u−−−→ U2

commutes. We also introduce the ‘isogeny category’ D, by allowing v to be a C-morphism
in the above definition (this makes sense in view of Corollary 5.3). Next, define a functor

D : V −→ D

by assigning to each object G the triple (A(G), Ru(G), γ), where γ : U(A(G)) → Ru(G)
denotes the classifying map, and to each morphism f : G1 → G2, the pair (A(f), U(f)).
By Corollary 5.3 again, we may define similarly a functor

D : V −→ D.

Proposition 5.6. With the above notation, the functors D and D yield equivalences of
categories.

We omit the easy proof.
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5.2 Semi-abelian varieties

Recall that a semi-abelian variety is an algebraic group G that lies in an extension

ξ : 0 −→ T −→ G −→ A −→ 0,

where T is a torus, and A an abelian variety. We now adapt part of the results of
§5.1 to this setting, leaving the (easy) verifications to the motivated reader. The groups
T = T (G) and A = A(G) are uniquely determined by G, and the extension ξ has no
non-trivial automorphisms. Thus, the data of G and of the extension ξ are equivalent.
Moreover, recall the natural isomorphism

c : Ext1
C(A, T )

∼=−→ HomΓ(X(T ), Â(ks)),

which arises from the Weil-Barsotti isomorphism

Ext1
Cks (Aks ,Gm,ks)

∼=−→ Â(ks)

together with the pairing Ext1
C(A, T ) ×X(T ) → Ext1

Cks (Aks ,Gm,ks) given by push-out of
extensions via characters of T .

Denote by S the full subcategory of C with objects the semi-abelian varieties. Then
the analogue of Lemma 5.1 holds in view of [Br15b, §5.4] (but there is no analogue of
the universal vector extension in this setting). Thus, the isogeny category of semi-abelian
varieties, S, is an abelian category. As for vector extensions of abelian varieties, we have
natural isomorphisms

Q⊗Z HomC(G1, G2)
∼=−→ HomS(G1, G2), Q⊗Z Ext1

C(G1, G2)
∼=−→ Ext1

S(G1, G2)

for any objects G1, G2 of S. This yields e.g. natural isomorphisms

Ext1
C(A, T )

∼=−→ HomΓ(X(T )Q, Â(ks)Q).

Note that the assignement A 7→ Â(ks)Q yields an exact functor from A to the category
of Q-vector spaces equipped with a continuous representation of Γ, as follows e.g. from
Remarks 4.8.

Next, we obtain a description of S in terms of linear algebra. Let E be the category
with objects the triples (A,M, c), where A is an abelian variety, M a finite-dimensional Q-

vector space equipped with a continuous action of Γ, and c : M → Â(ks)Q a Γ-equivariant
linear map; the E-morphisms from (A1,M1, c1) to (A2,M2, c2) are those pairs (u, v), where
u : A1 → A2 is a A-morphism and v : M2 → M1 a Γ-equivariant linear map, such that
the square

M2
c2−−−→ Â2(ks)Q

v

y û

y
M1

c1−−−→ Â1(ks)Q

commutes. Then one may check that the assignement G 7→ (A(G), X(T (G))Q, c(G)Q)
yields an equivalence of categories S → E . Moreover, the sequence

0 −→ HomS(G1, G2)
ϕ−→ HomΓ(M2,M1)× HomA(A1, A2)
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ψ−→ HomΓ(M2, Â1(ks)Q) −→ Ext1
S(G1, G2) −→ 0

turns out to be exact for any semi-abelian varieties G1, G2, where E(Gi) := (Ai,Mi, ci)
for i = 1, 2, ϕ(f) := (XQ ◦ T )(f), A(f)), and ψ(u, v) := c1 ◦ u− v̂ ◦ c2.

Yet there are important differences between the isogeny categories of vector extensions
and semi-abelian varieties. For example, the latter does not have enough projectives in
general:

Proposition 5.7. (i) If k is not locally finite, then the projective objects of S are ex-
actly the tori.

(ii) If k is locally finite, then the product functor T × A → S yields an equivalence of
categories.

Proof. (i) Let G be a semi-abelian variety, extension of an abelian variety A by a torus

T ; denote by c = c(G) : X(T )→ Â(ks) the classifying map. If G is projective in C, then
Ext1

C(G, T
′) = 0 for any torus T ′. Thus, we have an exact sequence

0 −→ HomC(A, T
′) −→ HomC(G, T

′) −→ HomC(T, T
′)

∂−→ Ext1
C(A, T

′) −→ 0.

Moreover, the boundary map ∂ may be identified with the map

HomΓ(X(T ′)Q, X(T )Q) −→ HomΓ(X(T ′)Q, Â(ks)Q). f 7−→ c ◦ f.

Since ∂ is surjective, and X(T ′)Q may be chosen arbitrarily among finite-dimensional
Q-vector spaces equipped with a continuous representation of Γ, the map

cQ : X(T )Q −→ Â(ks)Q

is surjective as well. In particular, the abelian group Â(ks) has finite rank. In view of
[FJ74, Thm. 9.1], this forces A to be zero, i.e., G is a torus.

(ii) This follows readily from Proposition 2.5 and Corollary 2.12.

5.3 Product decompositions

In this subsection, we first prove the remaining assertions (ii) and (iii) of Theorem 1.
Then we describe the isogeny category C in characteristic 0, and its projective objects in
arbitrary characteristics.

Proposition 5.8. (i) If k is perfect, then the product functor T × U → L yields an
equivalence of categories.

(ii) For any field k, the product functor T × U → L yields an equivalence of categories.

Proof. (i) This follows readily from Theorem 2.4 and Proposition 2.5.
(ii) This is a consequence of (i) in view of Theorem 3.11. (Alternatively, the assertion

follows from Theorem 2.11 by arguing as in the proof of our next result).
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Proposition 5.9. If char(k) > 0, then the product functor S × U → C yields an equiva-
lence of categories.

Proof. Let G be a smooth connected algebraic group. Recall from Theorem 2.11 that G
lies in a unique extension

0 −→ H −→ G −→ U −→ 0,

where U is smooth, connected and unipotent, and H is an extension of an abelian variety
by a group of multiplicative type; moreover, this extension splits after pull-back under
a surjective morphism with finite kernel V → U . Thus, G ∼= H × U in C. Also, H/F
is smooth and connected for some finite subgroup F ⊂ H (Lemma 2.2), and hence is a
semi-abelian variety. Thus, the product functor Π is essentially surjective.

Next, let S1, S2 be semi-abelian varieties, and U1, U2 smooth connected unipotent
groups. We check that Π induces an isomorphism

HomC(S1, S2)× HomC(U1, U2) −→ HomC(S1 × U1, S2 × U2), (ϕ, ψ) 7−→ ϕ× ψ.

Assume that ϕ × ψ = 0. Choose representatives ϕ : S1 → S2/S
′
2, ψ : U1 → U2/U

′
2,

where S ′2, U
′
2 are finite. Then ϕ×ψ : S1×U1 → (S2×U2)/(S ′2×U ′2) has finite image, and

hence is zero by Lemma 2.1. So ϕ = ψ = 0.
Let γ ∈ HomC(S1 × U1, S2 × U2) be represented by γ : S1 × U1 → (S2 × U2)/F , where

F is finite. Then F ⊂ S ′2×U ′2 for some finite subgroups S ′2 ⊂ S2, U ′2 ⊂ U2. Thus, we may
assume that F = S ′2 × U ′2. Then the composite morphisms

S1 −→ S1 × U1
γ−→ S2/S

′
2 × U2/U

′
2 −→ U2/U

′
2,

U1 −→ S1 × U1
γ−→ S2/S

′
2 × U2/U

′
2 −→ S2/S

′
2

are zero by Lemma 2.1 and Proposition 2.5. Thus, γ = ϕ × ψ for some morphisms
ϕ : S1 → S2/S

′
2, ψ : U1 → U2/U

′
2.

Combining Propositions 5.9 and 5.7 (i), we obtain readily:

Corollary 5.10. If k is locally finite, then the product functor

T × A× U −→ C

yields an equivalence of categories.

Remarks 5.11. (i) With the notation of the above corollary, each of the categories T ,
A, U admits a description of its own. By Proposition 4.1, T is equivalent to the category
of Q-vector spaces equipped with an automorphism of finite order. Also, the isomorphism
classes of objects of A, i.e., the isogeny classes of abelian varieties over a locally finite
field, are classified by the Honda-Tate theorem (see [Ho68, Tat66]); their endomorphism
rings are investigated in [MW69, Wa69]. Finally, the structure of U has been described
in Remark 3.12.

(ii) Combining Lemma 2.2, Theorem 2.4 and Lemma 3.10, one may show that the
product functor M/IM × U/IU → L/I yields an equivalence of categories. Here I
denotes the category of infinitesimal algebraic groups, and IM (resp. IU) the full sub-
category of infinitesimal groups of multiplicative type (resp. unipotent).
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Next, assume that char(k) = 0. Then every algebraic group is isogenous to a fibered
product E ×A S, where E is a vector extension of the abelian variety A, and S is semi-
abelian with Albanese variety isomorphic to A (see e.g. Remark 2.10). This motivates
the consideration of the fibered product V ×A S: this is the category with objects the
triples (E, S, f), where E is a vector extension of an abelian variety, S a semi-abelian
variety, and f : A(E) → A(S) an A-isomorphism. The morphisms from (E1, S1, f 1

) to
(E2, S2, f 2

) are those pairs of C-morphisms u : E1 → E2, v : S1 → S2 such that the square

A(E1)
A(u)−−−→ A(E2)

f
1

y f
2

y
A(S1)

A(v)−−−→ A(S2)

commutes in A.

Proposition 5.12. If char(k) = 0, then C is equivalent to V ×A S.

The proof is similar to that of Proposition 5.9, and will be omitted. Note that the
descriptions of V and S in terms of linear algebra, obtained in §5.1 and §5.2, can also be
reformulated in terms of fibered products of categories.

Returning to an arbitrary field k, we obtain:

Theorem 5.13. The projective objects of C are exactly:

• the linear algebraic groups, if char(k) = 0.

• the semi-abelian varieties, if k is locally finite.

• the tori, if char(k) > 0 and k is not locally finite.

Proof. Let G be a smooth connected algebraic group. As a consequence of Theorem 2.9
and Proposition 5.9, we have an exact sequence in C

0 −→ U −→ G −→ S −→ 0,

where U is smooth, connected, and unipotent, and S is a semi-abelian variety.
If G is projective in C, then Ext1

C(G, T
′) = 0 for any torus T ′. Since HomC(U, T

′) = 0

(as a consequence of Proposition 2.5) and Ext1
C(U, T

′) = 0 (by Lemma 4.9), the long exact

sequence for Ext groups yields that Ext1
C(S, T

′) = 0 as well. By arguing as in the proof
of Proposition 5.7, this forces either A to be zero, or k to be locally finite.

In the former case, G is linear, and hence G ∼= T×U in C by Proposition 5.8. Moreover,
tori are projective in C by Proposition 4.4; thus, we may assume that G is unipotent. If
char(k) = 0, then G is projective, as follows e.g. from Lemma 4.9. If char(k) > 0 and
G 6= 0, then we claim that G is not projective. To check this, we may assume k perfect
by Theorem 3.11. Then G is isogenous to a direct sum of groups of the form Wn (the
group of Witt vectors of length n), by [DG70, V.3.6.11]. Moreover, the canonical exact
sequence

0 −→ Ga −→ Wn+1 −→ Wn −→ 0
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(see e.g. [DG70, V.1.1.6]) is not split in C, as follows e.g. from [DG70, V.1.5.2] together
with Lemma 3.3. Thus, Ext1

U(G,Ga) 6= 0; this yields the claim.
In the latter case, G ∼= T × A × U in C (by Corollary 5.10) and it follows as above

that U is zero. Conversely, every semi-abelian variety is projective in C, by Corollary 5.10
again.
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