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Best Wishes to Kesavan

On Comple‘cing his tenure at IMSc

and startinga new leaf
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Eigenvalue statistics

The Problem s to determine how

CigéﬂVBIUCS O1C sSOmce ranclom OPCFatOFS

are distributed.
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We look at the Anderson Model
Hew A o
(V¥u)(n) = wpu(n), (Au)(n) = Z|j|:1| u(n +j)

where w, are i.i.d real random variables

distributed ac:corcling to with the

operators defined on v where

u belongs.
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When variance of T large the

| spec‘crum of H* has on|9 eigenvalues

and the corresponding eigemcunctions

are exponentia”9 clecreasing sequences.
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We also have

[

o(H*) = [~2d, 2d] + supp(u)




This shows that the eigenvalucs

are clense 18 the sPcctrum

Qur atteml:)t s to find out how

theg behave in the womtg of a Point
in the spec‘crum To be able to do this

we ha\/e to somehow separate the

elgenvalues ancl COLRt them.




It 1s |<nowr1 that when 0o1S absolute|9

continuous, the integratecl clensitg

of states measure N given bg

N = E{bo, Etre (-)00) = {6, Epre (-)6,)

s also a.c. and we denote its densitg

]:)g the sgmbol n
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Take abox Ar centered at the origjn
with the side Ieng’ch 2L 31 gy 2o
Consider the finite matrices

HY = xa, HY X,
with xa, clenoting the Projection

onto 2(ArL). Being finite matrices,

they have ﬁnitely many eigenvalues.
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" These eigenvalues come together

o as increases, sO we have to seParate
f

them to understand their local behavior.

We sel:)arate the eigenvalucs ?99 scaling
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and centering e Point in the spectrum.
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The Point is chosen so there are enough

OF these arouncl.
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namelg the Point E is chosen
such that n(E) > 0. Then we look at
He = e (Hp = 1

ancl COﬂSiClCT’ th@ ranclom mecasurces

&t,U) = #(o(HE g) N1I)

for any interval I
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An alternate exl:)ression 1S
§r.5) =Tr(Eny (1))

The question then is what is the lin

1t

O‘F tl"lC POiﬂt ranclom mecasurces BTDOVC.




Minami [1] gave the first l:):”ocnC that
ff,E(I) o Aok

where x“() is a Poisson random

measure with intensity E(x“()) =n(E)L

with £ the Lebesgue measure.

P(Xw([) T ]C) e (n(Elg'|I|)k€—n(E)|I|




A simple way to recognize the

nature 01C the ranclom variable X

is to look at the Fourier transtorm

2 (<) X is infinitely divisible it

the Levg»——Khintchine formula below

. 5D
3 (eitX) S eita—I—th—I—f(eztm—itx— ("’t;) )dv(x)

holds and vis called the Levg measure.
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For the Anderson model Minami

showed that a,b=0

ancl the measure v

s atomic 5upl:>ortecl at the Point
11}
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Write Y =@HY, + M
and S e
M, M; are some constant matrices.

Associated with these oPerators we

]COT'ITI tl"l rcC SéClUGﬂCCS O‘F PT’OCCSSCS.
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#niilr= 11 (E|AL|<H;~56—E) (I))

Er) =Tr (E|AL|<H°5—E> (—7))
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and showthatas L - 0,

lim 35 n2(1) = Bmég(I) = lim (F (7).

We have to coml:)ute the middle limit.
The first limit gives infinite clivisibility
with a bit more speciﬁes supl:)ort of

the

COr

Le\/g measure and the last limit

1Putes the mass there.
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sy = e

There are two estimates that P|.239 arole

in the calculations. The Wegner estimate

t(

and the Minami estimate

|A1L|TT (EH‘E(I)>) S C|I‘

P(ny(l)>2)—>0, as L — oo.
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It was not clear it the above result

{i extends to the Schrodinger operators

Ao Znezd Wn X A(n)
on: 1R,

The main ditference is that the operator

coeticients of w. are infinite rank hcre.;
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Peter Hislol:), MK [2] considered

{ N Znéj o b

on 2z with finite rank P,

and showed that as random variables

| fg,E(I) X

B il i 2

with the limit beinga compouncl Poisson

random variable for each 1.
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This means that there are i.i.d random

variables Y, such that

xen =YWy,

=1

with N« (I) being Poisson random

]
variables.




Theg showed that the associated

r Levy measure 1s suPPortecl in the set

1123 rank(Ey) L

In the random Sclﬁroclinger case also

theg show that it is Coml:)ouncl Poisson
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and the Levy measure sitson Z*t.




{ < Theg showed that Wegner estimate is

of eigen‘

Poisson

i 2 P s

P (ng

enough together with exponential clecag

Lunctions to get Compoumd

imit

XS Theg geﬂeralizecl Minami estimate to

(I) > k) > 0, k=rank(PR).




In all these cases itis a consequence

that the level spacing distribution
which is the distribution of the

: 1 :
distance Y — FEY between elgenvalues

of the random opcrators 1S

exponenﬁaL




i S i i i A el BN, s e i R s il i

In a series of papers [3].141.15]

Dhriti Rarjan Dolai
Anish Mallick

worked out the statistics.
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Eigen?unction statistics when p is
singular theg show that the centers of
localization of eigen?unctions are
unhcormlg distributed. Centre of
localization is the Point where the

eigen?unction attains its maximum.




o When w, is rePIacecl bﬂ anwn 0 the
model, where q, clecags Or grows
as n—oo. In this model theg
showed when the dimension is 1 that the
limit is the clock process, which is the
sum of atomic measures sul:)l:)ortecl on
a constant multiple of N. This resultis

in the region ofa.c. spectrum.




~ French Mathematicians who contributed

/

sienificantly to eigenvalue statistics for
significantly to eig

the Anderson type models are :

Jean Michael Combes

Francois Germinet

| Frederic KIOPP

among, others.
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