Witnessing Nonnegative Rank

Hitesh Wankhede

The Institute of Mathematical Sciences, Chennai

30 September 2024

⁰Based on "Pavel Hrubeš, Hard Submatrices for Non-Negative Rank and Communication Complexity, CCC 2024".

Outline

- 2 Nonnegative Rank
- 3 Main result
- Proof of main result
- 5 Future directions

Consider a matrix $M \in \mathbb{R}^{m \times n}$.

Consider a matrix $M \in \mathbb{R}^{m \times n}$.

• Recall rank(*M*) = maximum order of a full-rank submatrix

Consider a matrix $M \in \mathbb{R}^{m \times n}$.

- Recall rank(*M*) = maximum order of a full-rank submatrix
- Witness to "Is rank(M) $\geq r$?":

an $r \times r$ submatrix of full-rank

Consider a matrix $M \in \mathbb{R}^{m \times n}$.

- Recall rank(*M*) = maximum order of a full-rank submatrix
- Witness to "Is rank(M) $\geq r$?":

an $r \times r$ submatrix of full-rank

• What is a witness to "Is rank(M) $\leq r$?"

Consider a matrix $M \in \mathbb{R}^{m \times n}$.

- Recall rank(M) = maximum order of a full-rank submatrix
- Witness to "Is rank(M) $\geq r$?":

an $r \times r$ submatrix of full-rank

- What is a witness to "Is rank(M) $\leq r$?"
- Suppose M = XY for some $X \in \mathbb{R}^{m \times s}$ and $Y \in \mathbb{R}^{s \times n}$.
 - Then this is a factorization of *M* with inner dimension *s*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider a matrix $M \in \mathbb{R}^{m \times n}$.

- Recall rank(M) = maximum order of a full-rank submatrix
- Witness to "Is rank(M) $\geq r$?":

an $r \times r$ submatrix of full-rank

- What is a witness to "Is rank(M) $\leq r$?"
- Suppose M = XY for some $X \in \mathbb{R}^{m \times s}$ and $Y \in \mathbb{R}^{s \times n}$.
 - Then this is a factorization of *M* with inner dimension *s*.
- $rank(M) \leq inn.$ dim. of any factorization.

Consider a matrix $M \in \mathbb{R}^{m \times n}$.

- Recall rank(M) = maximum order of a full-rank submatrix
- Witness to "Is rank(M) $\geq r$?":

an $r \times r$ submatrix of full-rank

- What is a witness to "Is rank(M) $\leq r$?"
- Suppose M = XY for some $X \in \mathbb{R}^{m \times s}$ and $Y \in \mathbb{R}^{s \times n}$.
 - Then this is a factorization of *M* with inner dimension *s*.
- $rank(M) \leq inn.$ dim. of any factorization.
- Proof:

$$M = XY \implies \operatorname{rank}(M) \le \min(\operatorname{rank}(X), \operatorname{rank}(Y)) = \operatorname{inn.} \operatorname{dim.}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Witness to "Is rank(M) $\leq r$?":

a factorization with inner dimension r

• Witness to "Is rank(M) $\leq r$?":

a factorization with inner dimension r

• \exists a factorization of *M* with inner dimension rank(*M*).

• Witness to "Is rank(M) $\leq r$?":

a factorization with inner dimension \boldsymbol{r}

- \exists a factorization of *M* with inner dimension rank(*M*).
- Proof: \exists invertible matrices *P* and *Q* such that:

$$PMQ = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$$

• Witness to "Is rank(M) $\leq r$?":

a factorization with inner dimension r

- \exists a factorization of *M* with inner dimension rank(*M*).
- Proof: \exists invertible matrices *P* and *Q* such that:

$$PMQ = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$$

$$M = P^{-1} \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix} Q^{-1}$$

• Witness to "Is rank(M) $\leq r$?":

a factorization with inner dimension r

- \exists a factorization of *M* with inner dimension rank(*M*).
- Proof: \exists invertible matrices *P* and *Q* such that:

$$PMQ = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$$

$$M = P^{-1} \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} Q^{-1} = \begin{bmatrix} X & X' \end{bmatrix} \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Y \\ Y' \end{bmatrix}$$

• Witness to "Is rank(M) $\leq r$?":

a factorization with inner dimension r

- \exists a factorization of *M* with inner dimension rank(*M*).
- Proof: \exists invertible matrices *P* and *Q* such that:

$$PMQ = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$$

$$M = P^{-1} \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} Q^{-1} = \begin{bmatrix} X & X' \end{bmatrix} \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Y \\ Y' \end{bmatrix} = XY$$

where *X* is $m \times r$ and *Y* is $r \times n$.

• Witness to "Is rank(M) $\leq r$?":

a factorization with inner dimension r

- \exists a factorization of *M* with inner dimension rank(*M*).
- Proof: \exists invertible matrices *P* and *Q* such that:

$$PMQ = \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$$

$$M = P^{-1} \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} Q^{-1} = \begin{bmatrix} X & X' \end{bmatrix} \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Y \\ Y' \end{bmatrix} = XY$$

where *X* is $m \times r$ and *Y* is $r \times n$.

rank(M) := minimum inner dimension of any such factorization

Consider $M \in \mathbb{R}_{\geq 0}^{m \times n}$.

Consider $M \in \mathbb{R}_{>0}^{m \times n}$.

- Suppose M = LR for some $L \in \mathbb{R}_{>0}^{m \times s}$, $R \in \mathbb{R}_{>0}^{s \times n}$.
 - Then this is a nonnegative factorization of \overline{M} with inn. dim. s.

Consider $M \in \mathbb{R}_{>0}^{m \times n}$.

- Suppose M = LR for some $L \in \mathbb{R}_{\geq 0}^{m \times s}$, $R \in \mathbb{R}_{\geq 0}^{s \times n}$.
 - Then this is a nonnegative factorization of \overline{M} with inn. dim. s.

nnr(M) := minimum inner dimension of any nonnegative factorization.

Consider $M \in \mathbb{R}_{>0}^{m \times n}$.

- Suppose M = LR for some $L \in \mathbb{R}_{>0}^{m \times s}$, $R \in \mathbb{R}_{>0}^{s \times n}$.
 - Then this is a nonnegative factorization of \overline{M} with inn. dim. s.

nnr(M) := minimum inner dimension of any nonnegative factorization.

Some properties:

• $\operatorname{rank}(M) \leq \operatorname{nnr}(M) \leq \min(m, n)$.

Consider $M \in \mathbb{R}_{>0}^{m \times n}$.

- Suppose M = LR for some $L \in \mathbb{R}_{>0}^{m \times s}$, $R \in \mathbb{R}_{>0}^{s \times n}$.
 - Then this is a nonnegative factorization of \overline{M} with inn. dim. s.

nnr(M) := minimum inner dimension of any nonnegative factorization.

- $\operatorname{rank}(M) \leq \operatorname{nnr}(M) \leq \min(m, n)$.
- Monotonicity: If M' is a submatrix of M, then $nnr(M') \le nnr(M)$.

Consider $M \in \mathbb{R}_{>0}^{m \times n}$.

- Suppose M = LR for some $L \in \mathbb{R}_{>0}^{m \times s}$, $R \in \mathbb{R}_{>0}^{s \times n}$.
 - Then this is a nonnegative factorization of \overline{M} with inn. dim. s.

nnr(M) := minimum inner dimension of any nonnegative factorization.

- $\operatorname{rank}(M) \leq \operatorname{nnr}(M) \leq \min(m, n)$.
- Monotonicity: If M' is a submatrix of M, then $nnr(M') \leq nnr(M)$.
- Proof:

$$M = \begin{bmatrix} M' & * \\ * & * \end{bmatrix}$$

Consider $M \in \mathbb{R}_{>0}^{m \times n}$.

- Suppose M = LR for some $L \in \mathbb{R}_{>0}^{m \times s}$, $R \in \mathbb{R}_{>0}^{s \times n}$.
 - Then this is a nonnegative factorization of \overline{M} with inn. dim. s.

nnr(M) := minimum inner dimension of any nonnegative factorization.

- $\operatorname{rank}(M) \leq \operatorname{nnr}(M) \leq \min(m, n)$.
- Monotonicity: If M' is a submatrix of M, then $nnr(M') \le nnr(M)$.
- Proof:

$$M = \begin{bmatrix} M' & * \\ * & * \end{bmatrix} = XY$$

Consider $M \in \mathbb{R}_{>0}^{m \times n}$.

- Suppose M = LR for some $L \in \mathbb{R}_{>0}^{m \times s}$, $R \in \mathbb{R}_{>0}^{s \times n}$.
 - Then this is a nonnegative factorization of \overline{M} with inn. dim. s.

nnr(M) := minimum inner dimension of any nonnegative factorization.

Some properties:

- $\operatorname{rank}(M) \leq \operatorname{nnr}(M) \leq \min(m, n)$.
- Monotonicity: If M' is a submatrix of M, then $nnr(M') \leq nnr(M)$.

• Proof:

$$M = \begin{bmatrix} M' & * \\ * & * \end{bmatrix} = XY = \begin{bmatrix} X' \\ * \end{bmatrix} \begin{bmatrix} Y' & * \end{bmatrix}$$

Consider $M \in \mathbb{R}_{>0}^{m \times n}$.

- Suppose M = LR for some $L \in \mathbb{R}_{>0}^{m \times s}$, $R \in \mathbb{R}_{>0}^{s \times n}$.
 - Then this is a nonnegative factorization of \overline{M} with inn. dim. s.

nnr(M) := minimum inner dimension of any nonnegative factorization.

- $\operatorname{rank}(M) \leq \operatorname{nnr}(M) \leq \min(m, n)$.
- Monotonicity: If M' is a submatrix of M, then $nnr(M') \le nnr(M)$.
- Proof:

$$M = \begin{bmatrix} M' & * \\ * & * \end{bmatrix} = XY = \begin{bmatrix} X' \\ * \end{bmatrix} \begin{bmatrix} Y' & * \end{bmatrix} = \begin{bmatrix} X'Y' & * \\ * & * \end{bmatrix}$$

Consider $M \in \mathbb{R}_{>0}^{m \times n}$.

- Suppose M = LR for some $L \in \mathbb{R}_{>0}^{m \times s}$, $R \in \mathbb{R}_{>0}^{s \times n}$.
 - Then this is a nonnegative factorization of \overline{M} with inn. dim. s.

nnr(M) := minimum inner dimension of any nonnegative factorization.

Some properties:

- $\operatorname{rank}(M) \leq \operatorname{nnr}(M) \leq \min(m, n)$.
- Monotonicity: If M' is a submatrix of M, then $nnr(M') \le nnr(M)$.
- Proof:

$$M = \begin{bmatrix} M' & * \\ * & * \end{bmatrix} = XY = \begin{bmatrix} X' \\ * \end{bmatrix} \begin{bmatrix} Y' & * \end{bmatrix} = \begin{bmatrix} X'Y' & * \\ * & * \end{bmatrix}$$

• For $A \subseteq [n]$, let M_A = submatrix obtained by keeping only cols indexed by A.

Consider $M \in \mathbb{R}_{>0}^{m \times n}$.

- Suppose M = LR for some $L \in \mathbb{R}_{>0}^{m \times s}$, $R \in \mathbb{R}_{>0}^{s \times n}$.
 - Then this is a nonnegative factorization of \overline{M} with inn. dim. s.

nnr(M) := minimum inner dimension of any nonnegative factorization.

Some properties:

- $\operatorname{rank}(M) \leq \operatorname{nnr}(M) \leq \min(m, n)$.
- Monotonicity: If M' is a submatrix of M, then $nnr(M') \le nnr(M)$.
- Proof:

$$M = \begin{bmatrix} M' & * \\ * & * \end{bmatrix} = XY = \begin{bmatrix} X' \\ * \end{bmatrix} \begin{bmatrix} Y' & * \end{bmatrix} = \begin{bmatrix} X'Y' & * \\ * & * \end{bmatrix}$$

• For $A \subseteq [n]$, let M_A = submatrix obtained by keeping only cols indexed by A.

• Subadditivity: If $A = A_1 \cup A_2$, then $nnr(M_A) \le nnr(M_{A_1}) + nnr(M_{A_2})$.

Consider $M \in \mathbb{R}_{>0}^{m \times n}$.

- Suppose M = LR for some $L \in \mathbb{R}_{>0}^{m \times s}$, $R \in \mathbb{R}_{>0}^{s \times n}$.
 - Then this is a nonnegative factorization of \overline{M} with inn. dim. s.

nnr(M) := minimum inner dimension of any nonnegative factorization.

Some properties:

- $\operatorname{rank}(M) \leq \operatorname{nnr}(M) \leq \min(m, n)$.
- Monotonicity: If M' is a submatrix of M, then $nnr(M') \le nnr(M)$.

• Proof:

$$M = \begin{bmatrix} M' & * \\ * & * \end{bmatrix} = XY = \begin{bmatrix} X' \\ * \end{bmatrix} \begin{bmatrix} Y' & * \end{bmatrix} = \begin{bmatrix} X'Y' & * \\ * & * \end{bmatrix}$$

• For $A \subseteq [n]$, let M_A = submatrix obtained by keeping only cols indexed by A.

- Subadditivity: If $A = A_1 \cup A_2$, then $nnr(M_A) \le nnr(M_{A_1}) + nnr(M_{A_2})$.
- Proof: Suppose $A_1 \cap A_2 = \emptyset$.

$$M_A = \begin{bmatrix} M_{A_1} & M_{A_2} \end{bmatrix}$$

Consider $M \in \mathbb{R}_{>0}^{m \times n}$.

- Suppose M = LR for some $L \in \mathbb{R}_{>0}^{m \times s}$, $R \in \mathbb{R}_{>0}^{s \times n}$.
 - Then this is a nonnegative factorization of \overline{M} with inn. dim. s.

nnr(M) := minimum inner dimension of any nonnegative factorization.

Some properties:

- $\operatorname{rank}(M) \leq \operatorname{nnr}(M) \leq \min(m, n)$.
- Monotonicity: If M' is a submatrix of M, then $nnr(M') \le nnr(M)$.

• Proof:

$$M = \begin{bmatrix} M' & * \\ * & * \end{bmatrix} = XY = \begin{bmatrix} X' \\ * \end{bmatrix} \begin{bmatrix} Y' & * \end{bmatrix} = \begin{bmatrix} X'Y' & * \\ * & * \end{bmatrix}$$

• For $A \subseteq [n]$, let M_A = submatrix obtained by keeping only cols indexed by A.

- Subadditivity: If $A = A_1 \cup A_2$, then $nnr(M_A) \le nnr(M_{A_1}) + nnr(M_{A_2})$.
- Proof: Suppose $A_1 \cap A_2 = \emptyset$.

$$M_A = \begin{bmatrix} M_{A_1} & M_{A_2} \end{bmatrix} = \begin{bmatrix} L_1 R_1 & L_2 R_2 \end{bmatrix}$$

Consider $M \in \mathbb{R}_{>0}^{m \times n}$.

- Suppose M = LR for some $L \in \mathbb{R}_{>0}^{m \times s}$, $R \in \mathbb{R}_{>0}^{s \times n}$.
 - Then this is a nonnegative factorization of \overline{M} with inn. dim. s.

nnr(M) := minimum inner dimension of any nonnegative factorization.

Some properties:

- $\operatorname{rank}(M) \leq \operatorname{nnr}(M) \leq \min(m, n)$.
- Monotonicity: If M' is a submatrix of M, then $nnr(M') \le nnr(M)$.

• Proof:

$$M = \begin{bmatrix} M' & * \\ * & * \end{bmatrix} = XY = \begin{bmatrix} X' \\ * \end{bmatrix} \begin{bmatrix} Y' & * \end{bmatrix} = \begin{bmatrix} X'Y' & * \\ * & * \end{bmatrix}$$

• For $A \subseteq [n]$, let M_A = submatrix obtained by keeping only cols indexed by A.

- Subadditivity: If $A = A_1 \cup A_2$, then $nnr(M_A) \le nnr(M_{A_1}) + nnr(M_{A_2})$.
- Proof: Suppose $A_1 \cap A_2 = \emptyset$.

$$M_A = \begin{bmatrix} M_{A_1} & M_{A_2} \end{bmatrix} = \begin{bmatrix} L_1 R_1 & L_2 R_2 \end{bmatrix} = \begin{bmatrix} L_1 & L_2 \end{bmatrix} \begin{bmatrix} R_1 & 0 \\ 0 & R_2 \end{bmatrix}$$

• Is it true that $nnr(M) \ge r$ iff there is an $r \times r$ submatrix of nnr r?

• Is it true that $nnr(M) \ge r$ iff there is an $r \times r$ submatrix of nnr r?

Theorem (Moitra 2013)

There is an $n \times n$ nonnegative matrix with nnr 4, such that any submatrix with at most $\frac{n}{3}$ columns has nnr at most 3.

• Is it true that $nnr(M) \ge r$ iff there is an $r \times r$ submatrix of nnr r?

Theorem (Moitra 2013)

There is an $n \times n$ nonnegative matrix with nnr 4, such that any submatrix with at most $\frac{n}{3}$ columns has nnr at most 3.

• To witness nnr exactly, a submatrix with $\Omega(n)$ columns is needed!

• Is it true that $nnr(M) \ge r$ iff there is an $r \times r$ submatrix of nnr r?

Theorem (Moitra 2013)

There is an $n \times n$ nonnegative matrix with nnr 4, such that any submatrix with at most $\frac{n}{3}$ columns has nnr at most 3.

- To witness nnr exactly, a submatrix with $\Omega(n)$ columns is needed!
- How much close to the nnr can we get if $\mathcal{O}(r^c)$ columns are allowed?

Main result

• Assume *M* of size $m \times n$ and nnr *r*.

Main result

- Assume *M* of size $m \times n$ and nnr *r*.
- Fix $k \in [n]$ and consider $m \times k$ submatrices M_A for $A \in {[n] \choose k}$.
- Assume *M* of size $m \times n$ and nnr *r*.
- Fix $k \in [n]$ and consider $m \times k$ submatrices M_A for $A \in {[n] \choose k}$.
- $s_k := \text{maximum nnr}(M_A)$ over all $A \in {[n] \choose k}$.

- Assume *M* of size $m \times n$ and nnr *r*.
- Fix $k \in [n]$ and consider $m \times k$ submatrices M_A for $A \in {[n] \choose k}$.
- $s_k := \text{maximum nnr}(M_A)$ over all $A \in {[n] \choose k}$.
- approximation ratio of $(M, k) := \frac{r}{s_k}$.

- Assume *M* of size $m \times n$ and nnr *r*.
- Fix $k \in [n]$ and consider $m \times k$ submatrices M_A for $A \in {[n] \choose k}$.
- $s_k := \text{maximum nnr}(M_A) \text{ over all } A \in {[n] \choose k}$.
- approximation ratio of $(M, k) := \frac{r}{s_k}$.
- For every $k \in [n]$, there exists a submatrix with k cols and nnr s_k .

- Assume *M* of size $m \times n$ and nnr *r*.
- Fix $k \in [n]$ and consider $m \times k$ submatrices M_A for $A \in {[n] \choose k}$.
- $s_k := \text{maximum nnr}(M_A)$ over all $A \in {[n] \choose k}$.
- approximation ratio of $(M, k) := \frac{r}{s_k}$.
- For every $k \in [n]$, there exists a submatrix with k cols and nnr s_k .

Theorem (Hrubeš 2024)

Approx. ratio of (M, r^3) is $\mathcal{O}(\log n)$.

- Assume *M* of size $m \times n$ and nnr *r*.
- Fix $k \in [n]$ and consider $m \times k$ submatrices M_A for $A \in {[n] \choose k}$.
- $s_k := \text{maximum nnr}(M_A)$ over all $A \in {[n] \choose k}$.
- approximation ratio of $(M, k) := \frac{r}{s_k}$.
- For every $k \in [n]$, there exists a submatrix with k cols and nnr s_k .

Theorem (Hrubeš 2024)

Approx. ratio of (M, r^3) is $\mathcal{O}(\log n)$.

This means there is a submatrix with r^3 columns and nnr $\Omega(\frac{r}{\log n})$.

• Suppose approx. ratio of (M, r^3) is $\mathcal{O}(\log n)$ with M' as the $m \times r^3$ witness.

$$\frac{r}{\operatorname{nnr}(\mathcal{M}')} = \mathcal{O}(\log n).$$

• Suppose approx. ratio of (M, r^3) is $\mathcal{O}(\log n)$ with M' as the $m \times r^3$ witness.

$$\frac{r}{\operatorname{nnr}(M')} = \mathcal{O}(\log n).$$

• Consider M'^T (size $r^3 \times m$).

• Suppose approx. ratio of (M, r^3) is $\mathcal{O}(\log n)$ with M' as the $m \times r^3$ witness.

$$\frac{r}{\operatorname{nnr}(M')} = \mathcal{O}(\log n).$$

- Consider M'^T (size $r^3 \times m$).
- Similarly, suppose approx. ratio of (\mathcal{M}'^T, r^3) is $\mathcal{O}(\log m)$ with \mathcal{M}'' as the $r^3 \times r^3$ witness.

$$rac{\operatorname{nnr}(\mathcal{M}')}{\operatorname{nnr}(\mathcal{M}'')} = \mathcal{O}(\log m).$$

• Suppose approx. ratio of (M, r^3) is $\mathcal{O}(\log n)$ with M' as the $m \times r^3$ witness.

$$\frac{r}{\operatorname{nnr}(M')} = \mathcal{O}(\log n).$$

- Consider M'^T (size $r^3 \times m$).
- Similarly, suppose approx. ratio of (\mathcal{M}'^T, r^3) is $\mathcal{O}(\log m)$ with \mathcal{M}'' as the $r^3 \times r^3$ witness.

$$\frac{\mathsf{nnr}(\mathcal{M}')}{\mathsf{nnr}(\mathcal{M}'')} = \mathcal{O}(\log m).$$

• Thus, M'' is a square witness with

$$\frac{r}{\operatorname{nnr}(\mathcal{M}'')} = \mathcal{O}((\log n)(\log m)).$$

イロト イポト イモト イモト 一日

• For a fixed $k \in [n]$, $s_k = \max_{A \in \binom{[n]}{k}} \operatorname{nnr}(M_A)$.

- For a fixed $k \in [n]$, $s_k = \max_{A \in \binom{[n]}{k}} \operatorname{nnr}(M_A)$.
- Let $\mathcal{F}_k \subseteq 2^{[n]}$ be any family such that

 $\operatorname{nnr}(M_A) \leq s_k \quad \forall A \in \mathcal{F}_k,$

and covers [n].

- For a fixed $k \in [n]$, $s_k = \max_{A \in \binom{[n]}{k}} \operatorname{nnr}(M_A)$.
- Let $\mathcal{F}_k \subseteq 2^{[n]}$ be any family such that

$$\operatorname{nnr}(M_A) \leq s_k \quad \forall A \in \mathcal{F}_k,$$

and covers [n].

• By subadditivity,

$$r \leq \sum_{A \in \mathcal{F}_k} \operatorname{nnr}(M_A)$$

- For a fixed $k \in [n]$, $s_k = \max_{A \in \binom{[n]}{k}} \operatorname{nnr}(M_A)$.
- Let $\mathcal{F}_k \subseteq 2^{[n]}$ be any family such that

$$\operatorname{nnr}(M_A) \leq s_k \quad \forall A \in \mathcal{F}_k,$$

and covers [n].

• By subadditivity,

$$r \leq \sum_{A \in \mathcal{F}_k} \mathsf{nnr}(\mathcal{M}_A) \leq s_k |\mathcal{F}_k|$$

• For a fixed
$$k \in [n]$$
, $s_k = \max_{A \in \binom{[n]}{k}} \operatorname{nnr}(M_A)$.

• Let $\mathcal{F}_k \subseteq 2^{[n]}$ be any family such that

$$\operatorname{nnr}(M_A) \leq s_k \quad \forall A \in \mathcal{F}_k,$$

and covers [n].

• By subadditivity,

$$r \leq \sum_{A \in \mathcal{F}_k} \operatorname{nnr}(\mathcal{M}_A) \leq s_k |\mathcal{F}_k| \Longrightarrow \frac{r}{s_k} \leq |\mathcal{F}_k|.$$

・ロト・日本・ 山田・ 山田・ 山口・

• For a fixed
$$k \in [n]$$
, $s_k = \max_{A \in \binom{[n]}{k}} \operatorname{nnr}(M_A)$.

• Let $\mathcal{F}_k \subseteq 2^{[n]}$ be any family such that

$$\operatorname{nnr}(M_A) \leq s_k \quad \forall A \in \mathcal{F}_k,$$

and covers [n].

• By subadditivity,

$$r \leq \sum_{A \in \mathcal{F}_k} \operatorname{nnr}(M_A) \leq s_k |\mathcal{F}_k| \Longrightarrow \frac{r}{s_k} \leq |\mathcal{F}_k|.$$

ullet small covering subfamily \Longrightarrow small approx. ratio

<ロ> <()</p>

- For a fixed $k \in [n]$, $s_k = \max_{A \in \binom{[n]}{k}} \operatorname{nnr}(M_A)$.
- Let $\mathcal{F}_k \subseteq 2^{[n]}$ be any family such that

$$\operatorname{nnr}(M_A) \leq s_k \quad \forall A \in \mathcal{F}_k,$$

and covers [n].

• By subadditivity,

$$r \leq \sum_{A \in \mathcal{F}_k} \operatorname{nnr}(M_A) \leq s_k |\mathcal{F}_k| \Longrightarrow \frac{r}{s_k} \leq |\mathcal{F}_k|.$$

- ullet small covering subfamily \Longrightarrow small approx. ratio
- Example: $\lceil n/k \rceil$ disjoint subsets of size *k*.

• For a fixed
$$k \in [n]$$
, $s_k = \max_{A \in \binom{[n]}{k}} \operatorname{nnr}(M_A)$.

• Let $\mathcal{F}_k \subseteq 2^{[n]}$ be any family such that

$$\operatorname{nnr}(M_A) \leq s_k \quad \forall A \in \mathcal{F}_k,$$

and covers [n].

• By subadditivity,

$$r \leq \sum_{A \in \mathcal{F}_k} \operatorname{nnr}(M_A) \leq s_k |\mathcal{F}_k| \Longrightarrow \frac{r}{s_k} \leq |\mathcal{F}_k|.$$

- ullet small covering subfamily \Longrightarrow small approx. ratio
- Example: $\lceil n/k \rceil$ disjoint subsets of size *k*. Then, $|\mathcal{F}_k| = \frac{n}{k}$. Not logarithmic!

9/20

Pruning Lemma

Let $\mathcal{F}_k \subseteq 2^{[n]}$ be any covering family with the property:

any *k*-element subset of [n] is contained in some $A \in \mathcal{F}_k$.

Pruning Lemma

Let $\mathcal{F}_k \subseteq 2^{[n]}$ be any covering family with the property:

any *k*-element subset of [*n*] is contained in some $A \in \mathcal{F}_k$.

Then, there exists a covering subfamily $\mathcal{H}_k \subseteq \mathcal{F}_k$ and size

 $|\mathcal{H}_k| = \mathcal{O}(|\mathcal{F}_k|^{1/k}\log(n)).$

Pruning Lemma

Let $\mathcal{F}_k \subseteq 2^{[n]}$ be any covering family with the property:

any *k*-element subset of [n] is contained in some $A \in \mathcal{F}_k$.

Then, there exists a covering subfamily $\mathcal{H}_k \subseteq \mathcal{F}_k$ and size

 $|\mathcal{H}_k| = \mathcal{O}(|\mathcal{F}_k|^{1/k}\log(n)).$

• If \mathcal{F}_k has above property with nnr bound s_k , then

$$\frac{r}{s_k} = \mathcal{O}(|\mathcal{F}_k|^{1/k} \log(n))$$

Pruning Lemma

Let $\mathcal{F}_k \subseteq 2^{[n]}$ be any covering family with the property:

any *k*-element subset of [*n*] is contained in some $A \in \mathcal{F}_k$.

Then, there exists a covering subfamily $\mathcal{H}_k \subseteq \mathcal{F}_k$ and size

 $|\mathcal{H}_k| = \mathcal{O}(|\mathcal{F}_k|^{1/k}\log(n)).$

• If \mathcal{F}_k has above property with nnr bound s_k , then

$$\frac{r}{s_k} = \mathcal{O}(|\mathcal{F}_k|^{1/k} \log(n))$$

Observe $\binom{[n]}{k}$ has both properties.

イロト イポト イヨト イヨト 三日

• We'll show there is a map $f: 2^{[n]} \to 2^{[n]}$ such that for all $A \subseteq [n]$

- We'll show there is a map $f: 2^{[n]} \to 2^{[n]}$ such that for all $A \subseteq [n]$
 - $A \subseteq f(A)$

- We'll show there is a map $f: 2^{[n]} \to 2^{[n]}$ such that for all $A \subseteq [n]$
 - $A \subseteq f(A)$
 - $\operatorname{nnr}(M_{f(A)}) \leq \operatorname{nnr}(M_A) + 1$

- We'll show there is a map $f: 2^{[n]} \to 2^{[n]}$ such that for all $A \subseteq [n]$
 - $A \subseteq f(A)$
 - $\operatorname{nnr}(M_{f(A)}) \leq \operatorname{nnr}(M_A) + 1$
- The family

$$\mathcal{G}_k := \left\{ f(A) \mid A \in \binom{[n]}{k} \right\}$$

covers [n].

- We'll show there is a map $f: 2^{[n]} \to 2^{[n]}$ such that for all $A \subseteq [n]$
 - $A \subseteq f(A)$
 - $\operatorname{nnr}(M_{f(A)}) \leq \operatorname{nnr}(M_A) + 1$
- The family

$$\mathcal{G}_k := \left\{ f(A) \mid A \in \binom{[n]}{k} \right\}$$

covers [n].

• Recall $nnr(M_A) \leq s_k$ for any $A \in {[n] \choose k}$. So $nnr(M_{f(A)}) \leq s_k + 1$

- We'll show there is a map $f: 2^{[n]} \to 2^{[n]}$ such that for all $A \subseteq [n]$
 - $A \subseteq f(A)$
 - $\operatorname{nnr}(M_{f(A)}) \leq \operatorname{nnr}(M_A) + 1$
- The family

$$\mathcal{G}_k := \left\{ f(A) \mid A \in \binom{[n]}{k} \right\}$$

covers [n].

- Recall $nnr(M_A) \leq s_k$ for any $A \in {[n] \choose k}$. So $nnr(M_{f(A)}) \leq s_k + 1$
- By Pruning Lemma and subadditivity,

$$r \leq (s_k+1)\mathcal{O}(|\mathcal{G}_k|^{1/k}\log n)$$

- We'll show there is a map $f: 2^{[n]} \to 2^{[n]}$ such that for all $A \subseteq [n]$
 - $A \subseteq f(A)$
 - $\operatorname{nnr}(M_{f(A)}) \leq \operatorname{nnr}(M_A) + 1$
- The family

$$\mathcal{G}_k := \left\{ f(A) \mid A \in \binom{[n]}{k} \right\}$$

covers [n].

- Recall $nnr(M_A) \leq s_k$ for any $A \in {[n] \choose k}$. So $nnr(M_{f(A)}) \leq s_k + 1$
- By Pruning Lemma and subadditivity,

$$r \leq (s_k+1)\mathcal{O}(|\mathcal{G}_k|^{1/k}\log n) \implies \frac{r}{s_k} = \mathcal{O}(|\mathcal{G}_k|^{1/k}\log n).$$

(日)

- We'll show there is a map $f: 2^{[n]} \to 2^{[n]}$ such that for all $A \subseteq [n]$
 - $A \subseteq f(A)$
 - $\operatorname{nnr}(M_{f(A)}) \leq \operatorname{nnr}(M_A) + 1$
- The family

$$\mathcal{G}_k := \left\{ f(A) \mid A \in \binom{[n]}{k} \right\}$$

covers [n].

- Recall $nnr(M_A) \leq s_k$ for any $A \in {[n] \choose k}$. So $nnr(M_{f(A)}) \leq s_k + 1$
- By Pruning Lemma and subadditivity,

$$r \leq (s_k+1)\mathcal{O}(|\mathcal{G}_k|^{1/k}\log n) \implies \frac{r}{s_k} = \mathcal{O}(|\mathcal{G}_k|^{1/k}\log n).$$

For $k = r^3$, we expect $|\mathcal{G}_k| \le 2^k$.

• Let $v_1, \ldots, v_n \in \mathbb{R}^d$ and $A \in \mathbb{R}^{m \times d}$.

- Let $v_1, \ldots, v_n \in \mathbb{R}^d$ and $A \in \mathbb{R}^{m \times d}$.
- $P_0 := \mathsf{CH}(v_1, \ldots, v_n)$

- Let $v_1, \ldots, v_n \in \mathbb{R}^d$ and $A \in \mathbb{R}^{m \times d}$.
- $P_0 := \mathsf{CH}(v_1, \ldots, v_n)$
- $P_1 := \{x \in \mathbb{R}^d \mid Ax \leq b\}$
Slack Matrix

- Let $v_1, \ldots, v_n \in \mathbb{R}^d$ and $A \in \mathbb{R}^{m \times d}$.
- $P_0 := \mathsf{CH}(v_1, \ldots, v_n)$
- $P_1 := \{x \in \mathbb{R}^d \mid Ax \le b\}$
- The *Slack matrix of the pair* (P_0, P_1) is an $m \times n$ matrix *S* with

$$S_{i,j} := b_i - \langle A_i, v_j \rangle,$$

Slack Matrix

- Let $v_1, \ldots, v_n \in \mathbb{R}^d$ and $A \in \mathbb{R}^{m \times d}$.
- $P_0 := \mathsf{CH}(v_1, \ldots, v_n)$
- $P_1 := \{x \in \mathbb{R}^d \mid Ax \le b\}$
- The *Slack matrix of the pair* (P_0, P_1) is an $m \times n$ matrix *S* with

$$S_{i,j} := b_i - \langle A_i, v_j \rangle,$$

i.e., the slack of j^{th} vertex of P_0 in the i^{th} inequality of P_1 .

Slack Matrix

- Let $v_1, \ldots, v_n \in \mathbb{R}^d$ and $A \in \mathbb{R}^{m \times d}$.
- $P_0 := \mathsf{CH}(v_1, \ldots, v_n)$
- $P_1 := \{x \in \mathbb{R}^d \mid Ax \leq b\}$
- The *Slack matrix of the pair* (P_0, P_1) is an $m \times n$ matrix *S* with

$$S_{i,j} := b_i - \langle A_i, v_j \rangle,$$

i.e., the slack of j^{th} vertex of P_0 in the i^{th} inequality of P_1 .

• *S* is nonnegative iff $P_0 \subseteq P_1$

• Let $d = \operatorname{rank}(M)$, then

M = LR

for $L \in \mathbb{R}^{m \times d}$, $R \in \mathbb{R}^{d \times n}$.

• Let $d = \operatorname{rank}(M)$, then

M = LR

for $L \in \mathbb{R}^{m \times d}$, $R \in \mathbb{R}^{d \times n}$.

• V = columns of R.

Think of $V \subseteq \mathbb{R}^d$ as [*n*].

• Let
$$d = \operatorname{rank}(M)$$
, then
 $M = LR$
for $L \in \mathbb{R}^{m \times d}$, $R \in \mathbb{R}^{d \times n}$.
• $V = \operatorname{columns}$ of R .
Think of $V \subseteq \mathbb{R}^d$ as $[n]$.
 V •

イロト イポト イモト イモト 一日

• Let $d = \operatorname{rank}(M)$, then

M = LR

for $L \in \mathbb{R}^{m \times d}$, $R \in \mathbb{R}^{d \times n}$.

- V =columns of R. Think of $V \subseteq \mathbb{R}^d$ as [n].
- $V_A \subseteq V$ for $A \subseteq [n]$

• Let $d = \operatorname{rank}(M)$, then

M = LR

for $L \in \mathbb{R}^{m \times d}$, $R \in \mathbb{R}^{d \times n}$.

- V =columns of R. Think of $V \subseteq \mathbb{R}^d$ as [n].
- $V_A \subseteq V$ for $A \subseteq [n]$
- $P_A := \operatorname{conv}(V_A)$

• Let $d = \operatorname{rank}(M)$, then

M = LR

for $L \in \mathbb{R}^{m \times d}$, $R \in \mathbb{R}^{d \times n}$.

• V =columns of R.

Think of $V \subseteq \mathbb{R}^d$ as [*n*].

- $V_A \subseteq V$ for $A \subseteq [n]$
- $P_A := \operatorname{conv}(V_A)$
- $Q := \{x \mid Lx \ge 0\}$

• Let $d = \operatorname{rank}(M)$, then

M = LR

for $L \in \mathbb{R}^{m \times d}$, $R \in \mathbb{R}^{d \times n}$.

• V =columns of R.

Think of $V \subseteq \mathbb{R}^d$ as [*n*].

- $V_A \subseteq V$ for $A \subseteq [n]$
- $P_A := \operatorname{conv}(V_A)$
- $Q := \{x \mid Lx \ge 0\}$
- $P_A \subseteq Q$

• Consider a *polyhedron* $P = \{x \in \mathbb{R}^d \mid Ax \leq b, Cx = d\}.$

- Consider a *polyhedron* $P = \{x \in \mathbb{R}^d \mid Ax \leq b, Cx = d\}.$
- size(P) := # inequalities.

- Consider a *polyhedron* $P = \{x \in \mathbb{R}^d \mid Ax \le b, Cx = d\}.$
- size(P) := # inequalities.
- A polyhedron $Q \subseteq \mathbb{R}^{d+k}$ is an *extension* of *P* if

$$P = \{x \in \mathbb{R}^d \mid \exists y \in \mathbb{R}^k \text{ such that } (x, y) \in Q\}.$$

- Consider a *polyhedron* $P = \{x \in \mathbb{R}^d \mid Ax \le b, Cx = d\}.$
- size(*P*) := # inequalities.
- A polyhedron $Q \subseteq \mathbb{R}^{d+k}$ is an *extension* of *P* if

$$P = \{x \in \mathbb{R}^d \mid \exists y \in \mathbb{R}^k \text{ such that } (x, y) \in Q\}.$$

• The extension complexity of a polyhedron *P* is

xc(P) := minimum size of any extension of *P*.

- Consider a *polyhedron* $P = \{x \in \mathbb{R}^d \mid Ax \le b, Cx = d\}.$
- size(*P*) := # inequalities.
- A polyhedron $Q \subseteq \mathbb{R}^{d+k}$ is an *extension* of *P* if

$$P = \{x \in \mathbb{R}^d \mid \exists y \in \mathbb{R}^k \text{ such that } (x, y) \in Q\}.$$

• The extension complexity of a polyhedron *P* is

xc(P) := minimum size of any extension of *P*.

Source: Kwan, Sauermann, Zhao 2022

• Given $P_0 \subseteq P_1$, the extension complexity of the pair (P_0, P_1) is

$$\operatorname{xc}(P_0, P_1) := \min_{P_0 \subseteq P \subseteq P_1} \operatorname{xc}(P),$$

• Given $P_0 \subseteq P_1$, the extension complexity of the pair (P_0, P_1) is

$$\mathsf{xc}(P_0, P_1) := \min_{P_0 \subseteq P \subseteq P_1} \mathsf{xc}(P),$$

Lemma (Braun, Fiorini, Pokutta, Steurer 2015)

Let $P_0 \subseteq P_1$ and S be a Slack matrix. Then,

 $\mathsf{xc}(P_0, P_1) \in \{\mathsf{nnr}(S) - 1, \mathsf{nnr}(S)\}.$

• Given $P_0 \subseteq P_1$, the extension complexity of the pair (P_0, P_1) is

$$\mathsf{xc}(P_0, P_1) := \min_{P_0 \subseteq P \subseteq P_1} \mathsf{xc}(P),$$

Lemma (Braun, Fiorini, Pokutta, Steurer 2015)

Let $P_0 \subseteq P_1$ and S be a Slack matrix. Then,

 $\operatorname{xc}(P_0, P_1) \in {\operatorname{nnr}(S) - 1, \operatorname{nnr}(S)}.$

For a polytope $P := P_0 = P_1$, xc(P) = nnr(S) (Yannakakis 1991).

• $P_A \subseteq Q$ with Slack matrix M_A .

- $P_A \subseteq Q$ with Slack matrix M_A .
- By Braun et al.

$$\operatorname{xc}(P_A, Q) := \min_{P_A \subseteq P \subseteq Q} \operatorname{xc}(P) \le \operatorname{nnr}(M_A).$$

<ロト < 四ト < 回ト < 回ト

E

- $P_A \subseteq Q$ with Slack matrix M_A .
- By Braun et al.

$$\operatorname{xc}(P_A, Q) := \min_{P_A \subseteq P \subseteq Q} \operatorname{xc}(P) \leq \operatorname{nnr}(M_A).$$

• Q_A be the argmin s.t. $P_A \subseteq Q_A \subseteq Q$.

<ロト < 四ト < 回ト < 回ト

- $P_A \subseteq Q$ with Slack matrix M_A .
- By Braun et al.

$$\operatorname{xc}(P_A, Q) := \min_{P_A \subseteq P \subseteq Q} \operatorname{xc}(P) \leq \operatorname{nnr}(M_A).$$

• Q_A be the argmin s.t. $P_A \subseteq Q_A \subseteq Q$.

・ロト ・ 日 ・ ・ 回 ト ・

.≣...▶

- $P_A \subseteq Q$ with Slack matrix M_A .
- By Braun et al.

$$\operatorname{xc}(P_A, Q) := \min_{P_A \subseteq P \subseteq Q} \operatorname{xc}(P) \leq \operatorname{nnr}(M_A).$$

• Q_A be the argmin s.t. $P_A \subseteq Q_A \subseteq Q$. Then,

 $\operatorname{xc}(Q_A) \leq \operatorname{nnr}(M_A).$

・ロト ・ 日 ・ ・ 回 ト ・

≣⇒

- $P_A \subseteq Q$ with Slack matrix M_A .
- By Braun et al.

$$\operatorname{xc}(P_A, Q) := \min_{P_A \subseteq P \subseteq Q} \operatorname{xc}(P) \leq \operatorname{nnr}(M_A).$$

• Q_A be the argmin s.t. $P_A \subseteq Q_A \subseteq Q$. Then,

 $\operatorname{xc}(Q_A) \leq \operatorname{nnr}(M_A).$

• $U_A := Q_A \cap V$.

<ロト < 四ト < 回ト < 回ト

- $P_A \subseteq Q$ with Slack matrix M_A .
- By Braun et al.

$$\operatorname{xc}(P_A, Q) := \min_{P_A \subseteq P \subseteq Q} \operatorname{xc}(P) \leq \operatorname{nnr}(M_A).$$

• Q_A be the argmin s.t. $P_A \subseteq Q_A \subseteq Q$. Then,

 $\operatorname{xc}(Q_A) \leq \operatorname{nnr}(M_A).$

• $U_A := Q_A \cap V$.

<ロト < 四ト < 回ト < 回ト

- $P_A \subseteq Q$ with Slack matrix M_A .
- By Braun et al.

$$\operatorname{xc}(P_A, Q) := \min_{P_A \subseteq P \subseteq Q} \operatorname{xc}(P) \leq \operatorname{nnr}(M_A).$$

• Q_A be the argmin s.t. $P_A \subseteq Q_A \subseteq Q$. Then,

 $\operatorname{xc}(Q_A) \leq \operatorname{nnr}(M_A).$

• $U_A := Q_A \cap V$.

For each $V_A \subseteq V$, there is $U_A \subseteq V$ with • $V_A \subseteq U_A$

- $P_A \subseteq Q$ with Slack matrix M_A .
- By Braun et al.

$$\operatorname{xc}(P_A, Q) := \min_{P_A \subseteq P \subseteq Q} \operatorname{xc}(P) \leq \operatorname{nnr}(M_A).$$

• Q_A be the argmin s.t. $P_A \subseteq Q_A \subseteq Q$. Then,

 $\operatorname{xc}(Q_A) \leq \operatorname{nnr}(M_A).$

• $U_A := Q_A \cap V$.

For each $V_A \subseteq V$, there is $U_A \subseteq V$ with

- $V_A \subseteq U_A$
- nnr(M_B) ≤ nnr(M_A) + 1 where B ⊆ [n] is the index set for U_A ⊆ V

- $P_A \subseteq Q$ with Slack matrix M_A .
- By Braun et al.

$$\operatorname{xc}(P_A, Q) := \min_{P_A \subseteq P \subseteq Q} \operatorname{xc}(P) \leq \operatorname{nnr}(M_A).$$

• Q_A be the argmin s.t. $P_A \subseteq Q_A \subseteq Q$. Then,

 $\operatorname{xc}(Q_A) \leq \operatorname{nnr}(M_A).$

• $U_A := Q_A \cap V$.

For each $V_A \subseteq V$, there is $U_A \subseteq V$ with

- $V_A \subseteq U_A$
- nnr(M_B) ≤ nnr(M_A) + 1 where B ⊆ [n] is the index set for U_A ⊆ V

• Consider a finite set $V \subseteq \mathbb{R}^d$ and a subset $U \subseteq V$.

- Consider a finite set $V \subseteq \mathbb{R}^d$ and a subset $U \subseteq V$.
- A polyhedron $P \subseteq \mathbb{R}^d$ is a *separating polyhedron* for *U* if

 $P \cap V = U.$

- Consider a finite set $V \subseteq \mathbb{R}^d$ and a subset $U \subseteq V$.
- A polyhedron $P \subseteq \mathbb{R}^d$ is a *separating polyhedron* for *U* if

$$P \cap V = U.$$

• *Separation Complexity* of *U* wrt *V*:

$$\operatorname{sep}_{V}(U) := \min_{P \text{ is separating for } U} \operatorname{xc}(P),$$

- Consider a finite set $V \subseteq \mathbb{R}^d$ and a subset $U \subseteq V$.
- A polyhedron $P \subseteq \mathbb{R}^d$ is a *separating polyhedron* for *U* if

$$P \cap V = U.$$

• *Separation Complexity* of *U* wrt *V*:

$$\operatorname{sep}_{V}(U) := \min_{P \text{ is separating for } U} \operatorname{xc}(P),$$

i.e., the smallest number *s* such that *U* can be separated from $V \setminus U$ using a linear program with *s* inequalities.

- Consider a finite set $V \subseteq \mathbb{R}^d$ and a subset $U \subseteq V$.
- A polyhedron $P \subseteq \mathbb{R}^d$ is a *separating polyhedron* for *U* if

$$P \cap V = U.$$

• *Separation Complexity* of *U* wrt *V*:

$$\operatorname{sep}_{V}(U) := \min_{P \text{ is separating for } U} \operatorname{xc}(P),$$

i.e., the smallest number *s* such that *U* can be separated from $V \setminus U$ using a linear program with *s* inequalities.

• For each $x \in V$,

$$x \in U$$
 iff $\exists_{y \in \mathbb{R}^s} Cx + Dy = b, y \ge 0$

4 ロ ト 4 昂 ト 4 臣 ト 4 臣 ト 臣 の Q (や 17/20
- $P_A \subseteq Q$ with Slack matrix M_A .
- There is a polyhedron Q_A with

 $\operatorname{xc}(Q_A) \leq \operatorname{nnr}(M_A).$

• $U_A := Q_A \cap V$.

Image: A match a ma

- $P_A \subseteq Q$ with Slack matrix M_A .
- There is a polyhedron Q_A with

 $\operatorname{xc}(Q_A) \leq \operatorname{nnr}(M_A).$

- $U_A := Q_A \cap V$.
- Q_A is separating for $U_A \subseteq V$

- $P_A \subseteq Q$ with Slack matrix M_A .
- There is a polyhedron Q_A with

 $\operatorname{xc}(Q_A) \leq \operatorname{nnr}(M_A).$

- $U_A := Q_A \cap V$.
- Q_A is separating for $U_A \subseteq V$ with

$$sep_V(U_A) := \min_{\substack{P \text{ is separating for } U_A}} xc(P)$$
$$\leq xc(Q_A) \leq nnr(M_A).$$

- $P_A \subseteq Q$ with Slack matrix M_A .
- There is a polyhedron Q_A with

 $\operatorname{xc}(Q_A) \leq \operatorname{nnr}(M_A).$

- $U_A := Q_A \cap V$.
- Q_A is separating for $U_A \subseteq V$ with

 $\mathrm{sep}_V(U_A) := \min_{P ext{ is separating for } U_A} \mathrm{xc}(P) \ \leq \mathrm{xc}(Q_A) \leq \mathrm{nnr}(M_A).$

Since $\operatorname{nnr}(M_A) \leq s_k$ for all $A \in {[n] \choose k}$, $\mathcal{G}_k = \{U_A \subseteq V \mid A \in {[n] \choose k}\}$ $\subseteq \{U \subseteq V \mid \operatorname{sep}_V(U) \leq s_k\}$

- $P_A \subseteq Q$ with Slack matrix M_A .
- There is a polyhedron Q_A with

 $\operatorname{xc}(Q_A) \leq \operatorname{nnr}(M_A).$

- $U_A := Q_A \cap V$.
- Q_A is separating for $U_A \subseteq V$ with

 $\mathrm{sep}_V(U_A) := \min_{P ext{ is separating for } U_A} \mathrm{xc}(P) \ \leq \mathrm{xc}(Q_A) \leq \mathrm{nnr}(M_A).$

Since nnr(M_A) $\leq s_k$ for all $A \in {[n] \choose k}$, $\mathcal{G}_k = \{U_A \subseteq V \mid A \in {[n] \choose k}\}$ $\subseteq \{U \subseteq V \mid \operatorname{sep}_V(U) \leq s_k\} := \mathcal{H}_{s_k}$

- $P_A \subseteq Q$ with Slack matrix M_A .
- There is a polyhedron Q_A with

 $\operatorname{xc}(Q_A) \leq \operatorname{nnr}(M_A).$

- $U_A := Q_A \cap V$.
- Q_A is separating for $U_A \subseteq V$ with

 $\mathrm{sep}_V(U_A) := \min_{P ext{ is separating for } U_A} \mathrm{xc}(P) \ \leq \mathrm{xc}(Q_A) \leq \mathrm{nnr}(\mathcal{M}_A).$

Since $nnr(M_A) \leq s_k$ for all $A \in {\binom{[n]}{k}}$,

$$\mathcal{G}_{k} = \{ U_{A} \subseteq V \mid A \in \binom{[n]}{k} \}$$
$$\subseteq \{ U \subseteq V \mid \operatorname{sep}_{V}(U) \leq s_{k} \} := \mathcal{H}_{s_{k}}$$

• Finally, a cover with size

$$|\mathcal{G}_k| = 2^{\mathcal{O}((s_k+d)^3 \log n)}.$$

・ロト・日本・モート・ロークへの

• Finally, a cover with size

$$|\mathcal{G}_k| = 2^{\mathcal{O}((s_k+d)^3 \log n)}.$$

• By Pruning Lemma, the approx ratio is

$$\frac{r}{s_k} = \mathcal{O}(|\mathcal{G}_k|^{1/k} \log n)$$

• Finally, a cover with size

$$|\mathcal{G}_k| = 2^{\mathcal{O}((s_k+d)^3 \log n)}.$$

• By Pruning Lemma, the approx ratio is

$$\frac{r}{s_k} = \mathcal{O}(|\mathcal{G}_k|^{1/k} \log n)$$
$$= 2^{\mathcal{O}(\frac{(s_k+d)^3 \log n}{k})} \log n$$

• Finally, a cover with size

$$|\mathcal{G}_k| = 2^{\mathcal{O}((s_k+d)^3 \log n)}.$$

• By Pruning Lemma, the approx ratio is

$$\frac{r}{s_k} = \mathcal{O}(|\mathcal{G}_k|^{1/k} \log n)$$
$$= 2^{\mathcal{O}(\frac{(s_k+d)^3 \log n}{k})} \log n$$

• Suppose $d \leq s_k$ and $k = r^3$, then

$$\frac{r}{s_k} = 2^{\mathcal{O}((\frac{s_k}{r})^3 \log n)} \log n$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 で
19/20

• Finally, a cover with size

$$|\mathcal{G}_k| = 2^{\mathcal{O}((s_k+d)^3 \log n)}.$$

• By Pruning Lemma, the approx ratio is

$$\frac{r}{s_k} = \mathcal{O}(|\mathcal{G}_k|^{1/k} \log n)$$
$$= 2^{\mathcal{O}(\frac{(s_k+d)^3 \log n}{k})} \log n$$

• Suppose $d \leq s_k$ and $k = r^3$, then

$$\frac{r}{s_k} = 2^{\mathcal{O}((\frac{s_k}{r})^3 \log n)} \log n$$
$$\implies \frac{r}{s_k} = \mathcal{O}(\log n)$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 で
19/20

• Finally, a cover with size

$$|\mathcal{G}_k| = 2^{\mathcal{O}((s_k+d)^3 \log n)}$$

• By Pruning Lemma, the approx ratio is

$$\frac{r}{s_k} = \mathcal{O}(|\mathcal{G}_k|^{1/k} \log n)$$
$$= 2^{\mathcal{O}(\frac{(s_k+d)^3 \log n}{k})} \log n$$

• Suppose $d \leq s_k$ and $k = r^3$, then

$$\frac{\frac{r}{s_k}}{\frac{s_k}{s_k}} = 2^{\mathcal{O}((\frac{s_k}{r})^3 \log n)} \log n$$
$$\implies \frac{r}{s_k} = \mathcal{O}(\log n)$$

- Approx. ratio of (M, r^3) is $\mathcal{O}(\log n)$.
- There exists a submatrix with at most r^3 cols and nnr $\Omega(\frac{r}{\log n})$.

• \exists submatrix of order at most r^3 and nnr $\Omega(\frac{r}{(\log n)(\log m)}) := s$.

• \exists submatrix of order at most r^3 and nnr $\Omega(\frac{r}{(\log n)(\log m)}) := s$.

 $r = \mathcal{O}(s \log n \log m)$

• \exists submatrix of order at most r^3 and nnr $\Omega(\frac{r}{(\log n)(\log m)}) := s$.

 $r = \mathcal{O}(s \log n \log m)$

- Guess $t = \mathcal{O}(r^3)$.
- Let s_t = maximum nnr of any $t \times t$ submatrix.
- Return $\mathcal{O}(s_t \log n \log m)$

• \exists submatrix of order at most r^3 and nnr $\Omega(\frac{r}{(\log n)(\log m)}) := s$.

 $r = \mathcal{O}(s \log n \log m)$

- Guess $t = \mathcal{O}(r^3)$.
- Let $s_t = maximum nnr of any t \times t$ submatrix.
- Return $\mathcal{O}(s_t \log n \log m)$
- Approximation algorithm: $(mn)^{\mathcal{O}(r^3)}$

• \exists submatrix of order at most r^3 and nnr $\Omega(\frac{r}{(\log n)(\log m)}) := s$.

 $r = \mathcal{O}(s \log n \log m)$

- Guess $t = \mathcal{O}(r^3)$.
- Let s_t = maximum nnr of any $t \times t$ submatrix.
- Return $\mathcal{O}(s_t \log n \log m)$
- Approximation algorithm: $(mn)^{\mathcal{O}(r^3)}$
- Exact algorithm (Moitra): $(mn)^{\mathcal{O}(r^2)}$

Is logarithmic approx. ratio always possible with r^2 cols?

• \exists submatrix of order at most r^3 and nnr $\Omega(\frac{r}{(\log n)(\log m)}) := s$.

 $r = \mathcal{O}(s \log n \log m)$

- Guess $t = \mathcal{O}(r^3)$.
- Let $s_t = maximum nnr of any t \times t$ submatrix.
- Return $\mathcal{O}(s_t \log n \log m)$
- Approximation algorithm: $(mn)^{\mathcal{O}(r^3)}$
- Exact algorithm (Moitra): $(mn)^{\mathcal{O}(r^2)}$

Is logarithmic approx. ratio always possible with r^2 cols?

• Possible when $r = \mathcal{O}((\log n)^2)$.

• \exists submatrix of order at most r^3 and nnr $\Omega(\frac{r}{(\log n)(\log m)}) := s$.

 $r = \mathcal{O}(s \log n \log m)$

- Guess $t = \mathcal{O}(r^3)$.
- Let $s_t = maximum nnr of any t \times t$ submatrix.
- Return $\mathcal{O}(s_t \log n \log m)$
- Approximation algorithm: $(mn)^{\mathcal{O}(r^3)}$
- Exact algorithm (Moitra): $(mn)^{\mathcal{O}(r^2)}$

Is logarithmic approx. ratio always possible with r^2 cols?

• Possible when $r = \mathcal{O}((\log n)^2)$.

Thank you! Any questions?

Communication Complexity

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

• Let ${\it M}$ be a boolean matrix with boolean rank χ and communication complexity ${\it c}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Let ${\it M}$ be a boolean matrix with boolean rank χ and communication complexity ${\it c}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• (Yannakakis) $c = \mathcal{O}((\log \chi)^2)$)

• Let *M* be a boolean matrix with boolean rank χ and communication complexity *c*.

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへで

- (Yannakakis) $c = \mathcal{O}((\log \chi)^2)$)
- Log-Rank Conjecture. $c = O((\log d)^{\alpha})$.

• Let ${\it M}$ be a boolean matrix with boolean rank χ and communication complexity ${\it c}.$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

- (Yannakakis) $c = \mathcal{O}((\log \chi)^2))$
- Log-Rank Conjecture. $c = O((\log d)^{\alpha})$.
- Approx ratio of (M, χ^2) is $\mathcal{O}(\log n)$.

- Let ${\it M}$ be a boolean matrix with boolean rank χ and communication complexity ${\it c}.$
- (Yannakakis) $c = \mathcal{O}((\log \chi)^2))$
- Log-Rank Conjecture. $c = O((\log d)^{\alpha})$.
- Approx ratio of (M, χ^2) is $\mathcal{O}(\log n)$.
- It is enough to focus of matrices of order 2^k with boolean rank $2^{\Omega(\sqrt{k})}$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで