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Consider a matrix M € R™*".
@ Recall rank(M) = maximum order of a full-rank submatrix
e Witness to “Is rank(M) > r?”:
an r X r submatrix of full-rank
What is a witness to “Is rank(M) < r?”
Suppose M = XY for some X € R™**and Y € R**".

o Then this is a factorization of M with inner dimension s.

rank(M) < inn. dim. of any factorization.

@ Proof:

M= XY = rank(M) < min(rank(X), rank(Y)) = inn. dim.
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Reinterpreting Rank

@ Witness to “Is rank(M) < r?”:

a factorization with inner dimension r
o 3 a factorization of M with inner dimension rank(M).

@ Proof: 3 invertible matrices P and Q such that:

. 0
mwa——{o 0}
N1P1{g 8}Q1
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Reinterpreting Rank

@ Witness to “Is rank(M) < r?”:

a factorization with inner dimension r
o 3 a factorization of M with inner dimension rank(M).

@ Proof: 3 invertible matrices P and Q such that:

pa |

—1 Ir 0 —1 I’.
M=P k ol =[x X]
where Xism X rand Yisr X n.

rank(M) := minimum inner dimension of any such factorization
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o Is it true that nnr(M) > riff there is an r x r submatrix of nnr r?

Theorem (Moitra 2013)

There is an n X n nonnegative matrix with nnr 4, such that any submatrix with at most
3 columns has nnr at most 3.

@ To witness nnr exactly, a submatrix with Q(n) columns is needed!

@ How much close to the nnr can we get if O(r) columns are allowed?
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@ s, := maximum nnr(M,) over all A € ([Z]).

approximation ratio of (M, k) := .

For every k € [n], there exists a submatrix with k cols and nnr sy.
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Main result

Main result

Assume M of size m X nand nnr r.

Fix k € [n] and consider m X k submatrices M, for A € ([Z]).

® s, := maximum nnr(M,) over all A € ([Z]).

e approximation ratio of (M, k) := .

@ For every k € [n], there exists a submatrix with k cols and nnr s;.

Theorem (Hrubes 2024)
Approx. ratio of (M, r*) is O(log n). J

This means there is a submatrix with r* columns and nnr Q(

Iogn)'
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Main result

Rectangular witnesses are enough

@ Suppose approx. ratio of (M, r*) is O(log n) with M’ as the m x r* witness.

r
nnr(M')

= O(log n).

Consider M'T (size r* x m).

e Similarly, suppose approx. ratio of (M'", r®) is O(log m) with M as the r* x r

witness.
nnr(M')
——L =0l .
nnr(M'") (log m)
@ Thus, M" is a square witness with

eV = O((log n)(log m)).
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Step 1: Translating the problem

® Forafixed k € [n], sy = Max,, (i) nnr(M,).
~\k
o Let 7 C 2l be any family such that
nnr(My) < s, YA € Fy,

and covers [n].

@ By subadditivity,

r< 3 (M) < sl Bl = = < |Fdl-
Sk
AEFy

o small covering subfamily = small approx. ratio

e Example: [n/k] disjoint subsets of size k. Then, |F| = 7. Not logarithmic!
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Step 2: Pruning any cover

Pruning Lemma
Let i C 21" be any covering family with the property:

any k-element subset of [n] is contained in some A € Fy.

Then, there exists a covering subfamily H, C F and size

il = O(1Fi]'/* log(n)).

o If Fy has above property with nnr bound sy, then

r

= O(|F«|"*log(n))

Observe ([Z]) has both properties.
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Step 3: Constructing a cover

o We'll show there is a map f : 2"l — 2l such that for all A C [n]

o AC f(A)
o nnr(My(a)) < nnr(Ma) + 1
@ The family
G = {f(A) PE <[Z]>}
covers [n].

@ Recall nnr(M,) < s forany A € ([Z]). So nnr(Mga)) < sp+ 1
@ By Pruning Lemma and subadditivity,
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Step 3: Constructing a cover

o We'll show there is a map f : 2"l — 2l such that for all A C [n]
o ACf(A)

o nnr(Mp(a)) < nnr(Ma) + 1
@ The family

6.~ {r1ae ()]
covers [r].

@ Recall nnr(M,) < s forany A € ([Z]). So nnr(Mga)) < sp+ 1
@ By Pruning Lemma and subadditivity,

r < (s + DO(IG] ¥ logn) = L= = O(|G|*log n).

For k = r®, we expect |G| < 2K,
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o P :={xeR!| Ax < b}

o The Slack matrix of the pair (P, Py) is an m X n matrix S with
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Proof of main result  Part 2

Slack Matrix

Let vi,...,v, € RYand A € R™*4
P() = CH(V],...7Vn)
Py :={x € R?| Ax < b}

The Slack matrix of the pair (Py, P1) is an m x n matrix S with

Siji=bi— (A, v)),

i.e., the slack of j vertex of P, in the i" inequality of P;.

S is nonnegative iff Py C P,
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Extension Complexity

Consider a polyhedron P = {x € RY | Ax < b, Cx = d}.
size(P) := # inequalities.
A polyhedron Q C RY** is an extension of P if

P = {x € R?| 3y € R* such that (x,y) € Q}.

o The extension complexity of a polyhedron P is

xc(P) := minimum size of any extension of P.

Source: Kwan, Sauermann, Zhao 2022
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XC(P(), P1) =

mlgpl xc(P),

Let Py C Py and S be a Slack matrix. Then

xc(Py, P1) € {nnr(S) — 1,nnr(S)}

For a polytope P := P,

Py, xc(P) = nnr(S) (Yannakakis 1991)
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o Separation Complexity of U wrt V:

sep,(U) := min xc(P
pv( ) P is separating for U ( )7
linear program with s inequalities.

i.e., the smallest number s such that U can be separated from V' \ U using a
@ Foreachx €V,

x € UiffIycps Cx+ Dy =b,y >0
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@ Suppose d < s, and k = 3, then

T 0((%) 108 g
Sk

= L = O(log n)
Sk

e Approx. ratio of (M, r*) is O(log n).

o There exists a submatrix with at most r* cols and nnr Q( |o;:7n)'
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r = O(slog nlog m)

o Guesst = O(r).
e Let sy = maximum nnr of any t X t submatrix.
e Return O(s; log nlog m)

@ Approximation algorithm: (mn)o(r3)

O(rz)

Exact algorithm (Moitra): (mn)
Is logarithmic approx. ratio always possible with r? cols?
@ Possible when r = O((log n)?).

Thank you! Any questions?
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Communication Complexity

Let M be a boolean matrix with boolean rank x and communication
complexity c.

(Yannakakis) ¢ = O((log x)?))
Log-Rank Conjecture. ¢ = O((log d)®).
Approx ratio of (M, x?) is O(log n).

It is enough to focus of matrices of order 2X with boolean rank 22V,
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