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Reinterpreting Rank

Rank

Consider a matrix M ∈ Rm×n.

Recall rank(M) = maximum order of a full-rank submatrix

Witness to “Is rank(M) ≥ r?”:

an r × r submatrix of full-rank

What is a witness to “Is rank(M) ≤ r?”
Suppose M = XY for some X ∈ Rm×s and Y ∈ Rs×n.

Then this is a factorization of M with inner dimension s.

rank(M) ≤ inn. dim. of any factorization.

Proof:

M = XY =⇒ rank(M) ≤ min(rank(X), rank(Y)) = inn. dim.
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Reinterpreting Rank

Rank

Witness to “Is rank(M) ≤ r?”:

a factorization with inner dimension r

∃ a factorization of M with inner dimension rank(M).

Proof: ∃ invertible matrices P and Q such that:

PMQ =

[
Ir 0
0 0

]

M = P−1
[
Ir 0
0 0

]
Q−1 =

[
X X ′] [Ir 0

0 0

] [
Y
Y ′

]
= XY

where X is m× r and Y is r × n.

rank(M) := minimum inner dimension of any such factorization
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Nonnegative Rank

Nonnegative Rank

Consider M ∈ Rm×n
≥0 .

Suppose M = LR for some L ∈ Rm×s
≥0 ,R ∈ Rs×n

≥0 .
Then this is a nonnegative factorization of M with inn. dim. s.

nnr(M) := minimum inner dimension of any nonnegative factorization.

Some properties:
rank(M) ≤ nnr(M) ≤ min(m, n).
Monotonicity: If M′ is a submatrix of M, then nnr(M′) ≤ nnr(M).
Proof:

M =

[
M′ ∗
∗ ∗

]
= XY =

[
X ′

∗

] [
Y ′ ∗

]
=

[
X ′Y ′ ∗
∗ ∗

]
.

For A ⊆ [n], let MA = submatrix obtained by keeping only cols indexed by A.
Subadditivity: If A = A1 ∪ A2, then nnr(MA) ≤ nnr(MA1) + nnr(MA2).
Proof: Suppose A1 ∩ A2 = ∅.

MA =
[
MA1 MA2

]
=

[
L1R1 L2R2

]
=

[
L1 L2

] [R1 0
0 R2

]
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Nonnegative Rank

Nonnegative Rank

Is it true that nnr(M) ≥ r iff there is an r × r submatrix of nnr r?

Theorem (Moitra 2013)

There is an n× n nonnegative matrix with nnr 4, such that any submatrix with at most
n
3 columns has nnr at most 3.

To witness nnr exactly, a submatrix with Ω(n) columns is needed!

How much close to the nnr can we get if O(rc) columns are allowed?

6 / 20



Nonnegative Rank

Nonnegative Rank

Is it true that nnr(M) ≥ r iff there is an r × r submatrix of nnr r?

Theorem (Moitra 2013)

There is an n× n nonnegative matrix with nnr 4, such that any submatrix with at most
n
3 columns has nnr at most 3.

To witness nnr exactly, a submatrix with Ω(n) columns is needed!

How much close to the nnr can we get if O(rc) columns are allowed?

6 / 20



Nonnegative Rank

Nonnegative Rank

Is it true that nnr(M) ≥ r iff there is an r × r submatrix of nnr r?

Theorem (Moitra 2013)

There is an n× n nonnegative matrix with nnr 4, such that any submatrix with at most
n
3 columns has nnr at most 3.

To witness nnr exactly, a submatrix with Ω(n) columns is needed!

How much close to the nnr can we get if O(rc) columns are allowed?

6 / 20



Nonnegative Rank

Nonnegative Rank

Is it true that nnr(M) ≥ r iff there is an r × r submatrix of nnr r?

Theorem (Moitra 2013)

There is an n× n nonnegative matrix with nnr 4, such that any submatrix with at most
n
3 columns has nnr at most 3.

To witness nnr exactly, a submatrix with Ω(n) columns is needed!

How much close to the nnr can we get if O(rc) columns are allowed?

6 / 20



Main result

Main result

Assume M of size m× n and nnr r .

Fix k ∈ [n] and consider m× k submatrices MA for A ∈
(
[n]
k

)
.

sk := maximum nnr(MA) over all A ∈
(
[n]
k

)
.

approximation ratio of (M, k) := r
sk

.

For every k ∈ [n], there exists a submatrix with k cols and nnr sk .

Theorem (Hrubeš 2024)

Approx. ratio of (M, r3) is O(log n).

This means there is a submatrix with r3 columns and nnr Ω( r
log n ).
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Main result

Rectangular witnesses are enough

Suppose approx. ratio of (M, r3) is O(log n) with M′ as the m× r3 witness.

r
nnr(M′)

= O(log n).

Consider M′T (size r3 ×m).

Similarly, suppose approx. ratio of (M′T , r3) is O(logm) with M′′ as the r3 × r3

witness.

nnr(M′)

nnr(M′′)
= O(logm).

Thus, M′′ is a square witness with

r
nnr(M′′)

= O((log n)(logm)).
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Proof of main result Part 1

Step 1: Translating the problem

For a fixed k ∈ [n], sk = maxA∈([n]k )
nnr(MA).

Let Fk ⊆ 2[n] be any family such that

nnr(MA) ≤ sk ∀A ∈ Fk ,

and covers [n].

By subadditivity,

r ≤
∑
A∈Fk

nnr(MA) ≤ sk |Fk | =⇒
r
sk

≤ |Fk |.

small covering subfamily =⇒ small approx. ratio

Example: ⌈n/k⌉ disjoint subsets of size k. Then, |Fk | = n
k . Not logarithmic!
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Proof of main result Part 1

Step 2: Pruning any cover

Pruning Lemma

Let Fk ⊆ 2[n] be any covering family with the property:

any k-element subset of [n] is contained in some A ∈ Fk .

Then, there exists a covering subfamily Hk ⊆ Fk and size

|Hk | = O(|Fk |1/k log(n)).

If Fk has above property with nnr bound sk , then

r
sk

= O(|Fk |1/k log(n))

Observe
(
[n]
k

)
has both properties.
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Proof of main result Part 1

Step 3: Constructing a cover

We’ll show there is a map f : 2[n] → 2[n] such that for all A ⊆ [n]
A ⊆ f (A)
nnr(Mf (A)) ≤ nnr(MA) + 1

The family

Gk :=

{
f (A) | A ∈

(
[n]
k

)}
covers [n].

Recall nnr(MA) ≤ sk for any A ∈
(
[n]
k

)
. So nnr(Mf (A)) ≤ sk + 1

By Pruning Lemma and subadditivity,

r ≤ (sk + 1)O(|Gk |1/k log n) =⇒ r
sk

= O(|Gk |1/k log n).

For k = r3, we expect |Gk | ≤ 2k .
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Proof of main result Part 2

Slack Matrix

Let v1, . . . , vn ∈ Rd and A ∈ Rm×d .

P0 := CH(v1, . . . , vn)

P1 := {x ∈ Rd | Ax ≤ b}
The Slack matrix of the pair (P0, P1) is an m× n matrix S with

Si,j := bi − ⟨Ai, vj⟩,

i.e., the slack of jth vertex of P0 in the ith inequality of P1.

S is nonnegative iff P0 ⊆ P1
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Proof of main result Part 2

Step 4: Viewing a witness MA as a Slack matrix

Let d = rank(M), then

M = LR

for L ∈ Rm×d , R ∈ Rd×n.

V = columns of R.

Think of V ⊆ Rd as [n].

VA ⊆ V for A ⊆ [n]

PA := conv(VA)

Q := {x | Lx ≥ 0}
PA ⊆ Q

MA is the slack matrix of (PA,Q)

V

Rd

VAPA

Q
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Proof of main result Part 2

Extension Complexity

Consider a polyhedron P = {x ∈ Rd | Ax ≤ b,Cx = d}.

size(P) := # inequalities.
A polyhedron Q ⊆ Rd+k is an extension of P if

P = {x ∈ Rd | ∃y ∈ Rk such that (x, y) ∈ Q}.

The extension complexity of a polyhedron P is

xc(P) := minimum size of any extension of P.

Source: Kwan, Sauermann, Zhao 2022
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Proof of main result Part 2

Extension Complexity

Given P0 ⊆ P1, the extension complexity of the pair (P0, P1) is

xc(P0, P1) := min
P0⊆P⊆P1

xc(P),

Lemma (Braun, Fiorini, Pokutta, Steurer 2015)

Let P0 ⊆ P1 and S be a Slack matrix. Then,

xc(P0, P1) ∈ {nnr(S)− 1, nnr(S)}.

For a polytope P := P0 = P1, xc(P) = nnr(S) (Yannakakis 1991).
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Proof of main result Part 2

Step 5: Map

PA ⊆ Q with Slack matrix MA.

By Braun et al.

xc(PA,Q) := min
PA⊆P⊆Q

xc(P) ≤ nnr(MA).

QA be the argmin s.t. PA ⊆ QA ⊆ Q.

Then,

xc(QA) ≤ nnr(MA).

UA := QA ∩ V .

For each VA ⊆ V , there is UA ⊆ V with

VA ⊆ UA

nnr(MB) ≤ nnr(MA) + 1 where B ⊆ [n] is the
index set for UA ⊆ V

V

Rd

VAPA

Q

QA

UA

Thus we have a cover for V

Gk = {UA ⊆ V | A ∈
(
[n]
k

)
}
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Proof of main result Part 2

Separation Complexity

Consider a finite set V ⊆ Rd and a subset U ⊆ V .

A polyhedron P ⊆ Rd is a separating polyhedron for U if

P ∩ V = U.

Separation Complexity of U wrt V :

sepV (U) := min
P is separating for U

xc(P),

i.e., the smallest number s such that U can be separated from V \ U using a
linear program with s inequalities.

For each x ∈ V ,
x ∈ U iff ∃y∈Rs Cx + Dy = b, y ≥ 0
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Proof of main result Part 2

Step 6: Separating polyhedron for a witness

PA ⊆ Q with Slack matrix MA.

There is a polyhedron QA with

xc(QA) ≤ nnr(MA).

UA := QA ∩ V .

QA is separating for UA ⊆ V

with

sepV (UA) := min
P is separating for UA

xc(P)

≤ xc(QA) ≤ nnr(MA).

Since nnr(MA) ≤ sk for all A ∈
(
[n]
k

)
,

Gk = {UA ⊆ V | A ∈
(
[n]
k

)
}

⊆ {U ⊆ V | sepV (U) ≤ sk}

:= Hsk

V

Rd

VAPA

Q

QA

UA

Theorem. |Hs| = 2O((s+d)3 log n)
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Proof of main result Part 2

Step 7: Conclusion

Finally, a cover with size

|Gk | = 2O((sk+d)3 log n).

By Pruning Lemma, the approx ratio is

r
sk

= O(|Gk |1/k log n)

= 2O(
(sk+d)3 log n

k ) log n

Suppose d ≤ sk and k = r3, then

r
sk

= 2O((
sk
r )

3 log n) log n

=⇒ r
sk

= O(log n)

Approx. ratio of (M, r3) is O(log n).

There exists a submatrix with at most r3 cols and nnr Ω( r
log n ).
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log n ).
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∃ submatrix of order at most r3 and nnr Ω( r
(log n)(logm) ) := s.

r = O(s log n logm)

Guess t = O(r3).
Let st = maximum nnr of any t × t submatrix.
Return O(st log n logm)

Approximation algorithm: (mn)O(r3)

Exact algorithm (Moitra): (mn)O(r2)

Is logarithmic approx. ratio always possible with r2 cols?

Possible when r = O((log n)2).

Thank you! Any questions?
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Communication Complexity

Let M be a boolean matrix with boolean rank χ and communication
complexity c.

(Yannakakis) c = O((logχ)2))

Log-Rank Conjecture. c = O((log d)α).

Approx ratio of (M, χ2) is O(log n).

It is enough to focus of matrices of order 2k with boolean rank 2Ω(
√
k).
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