
P ̸=NP with probability 1

Introduction

Suppose we could show that P ̸= NP, then by a similar proof we would expect that
PA ̸= NPA for any oracle A. Similarly, if we could show that P = NP, then again by a
similar proof we would expect that PA = NPA for any oracle A. Baker, Gill and Solovay
[1] showed that there are languages A and B such that

PA ̸=NPA and PB =NPB .

This means that P ̸= NP and P = NP are not relativizing results. On the contrary there
are also results in complexity theory that can be relativized by giving additional oracle
power. E.g. one consequence of the Deterministic Time Hierarchy Theorem, which itself
is a relativizing result, is that P ̸=EXP, and it is also true for all oracles A that

PA ̸=EXPA.

Consider a random oracle A such that each string x ∈ {0,1}∗ is added in A say with prob-
ability 1/2. The objective of this note is to prove a result by Bennett and Gill [2] which
is

Pr[PA ̸=NPA] = 1 or Pr[PA =NPA] = 0.

In other words,P ̸=NP relative to almost all oracles. Note that equality of two complexity
classes is not implied by whether their relativized version is true for almost all oracles.
E.g. IP=PSPACE, but IPA ̸=PSPACEA for almost all oracles A [3].

These notes are based on [4].

Defining L(A)

Let A be the random oracle as defined earlier. Corresponding to A, we’ll define a lan-
guage L(A) such that L(A) ∈NPA. Then, since PA ⊆NPA, we have

Pr[PA =NPA] = Pr[NPA ⊆ P A] ≤ Pr[L(A) ∈PA]. (1)

We define L(A) as follows: Consider the lexicographic ordering of the strings in {0,1}∗.
Let x ∈ {0,1}∗ such that |x| = n, and consider the 2n blocks followed by x such that each

1

of them contain n strings. Now x ∈ L(A) if and only if there exists at least one block
(among the 2n blocks) such that all its n strings are in A.

Claim 1: L(A) ∈NPA.

Proof. Construct anNPmachine N with oracle access to A. On input x ∈ {0,1}∗ of length
n, the machine guesses the index i ∈ {1,2, . . . ,2n} of a block of size n that follows x. Then,
it queries all the n strings of the i th block to A. If all of them are in A, then the machine
accepts x. Otherwise, if any of those strings are not in A, then the machine rejects x. The
language accepted by the machine L(N) = L(A). Since the number of queries is n, which
is also the input size, L(A) ∈NPA.

The point of defining L(A) in this way is that whether a string x is in L(A) depends on 2n

conditions, and each of which have probability 1/2n of being true.

Also, note that the certificate for x ∈ L(A) is the set of n strings from the same block that
are in A.

Claim 2: Let x ∈ {0,1}∗. Then, Pr[x ∈ L(A)] = 1− (
1− 1

2n

)2n

.

Proof. Let |x| = n. Then,

Pr[x ∈ L(A)] = Pr[∃ at least one block all of which is in A]

= 1−Pr[none of the blocks are completely in A]

= 1−
2n∏

i=1
Pr[at least one string of the i th block is not in A]

= 1− (
1−Pr[all the strings of a block are in A]

)2n

= 1−
(
1− 1

2n

)2n

.

We’ll see similar argument later.

Independence

Let M1, M2, . . . be a listing of all deterministic Turing machines that run in polynomial
time. Then,

PA = {L(M A
i) | i ≥ 1}.

Now

Pr[L(A) ∈PA] = Pr[∃i such that L(A) = L(M A
i)]

≤∑
i

Pr[L(A) = L(M A
i)]

=∑
i

Pr[∀x x ∈ L(A)□L(M A
i)],

2

where the inequality is due to the union bound, and

L(A)□L(M A
i) = {x | x ∈ L(A) ⇔ x ∈ L(M A

i)}.

Our goal is to show that a fixed polynomial-time deterministic Turing machine Mi cor-
rectly accepts L(A) with a very low probability, that is, it makes a lot of mistakes.

For a fixed a machine M A
i , we want to construct a sequence x1 < x2 < x3 < . . . of widely

separated strings in lexicographic order such that the machine cannot correctly accept
L(A) in polynomial time. Now we can do the following approximation.

Pr[L(A) ∈PA] ≤∑
i

Pr[∀x x ∈ L(A)□L(M A
i)]

≤∑
i

Pr[∀ j x j ∈ L(A)□L(M A
i)].

Let |xi | = ni for each i . We’d also like this sequence to satisfy the following two proper-
ties:

1. The events “x j ∈ L(A)” for j = 1,2, . . . are completely independent.

2. The event “x j ∈ L(M A
i)” is independent of the set of events {“xk ∈ L(M A

i)" |k > j }
for each j = 1,2, . . . , in other words, we at least have sufficient independence for
the events “x j ∈ L(M A

i)”.

Ensuring Property 1

It is sufficient to choose x j and x j+1 such that the regions following them that determine
their membership in L(A) are disjoint, that is, we’d like to have at least n j 2n j strings in
between them. The possible lengths of strings between x j and x j+1 are

n j +1,n j +2, . . . ,n j+1 −1,

and there can be at least
n j+1−n j−1∑

t=1
2n j+t

many strings of such lengths. We would like this number to be at least n j 2n j . Suppose
we choose n j+1 > 3n2

j . Then,

n j+1−n j−1∑
t=1

2n j+t = (2n j+1−n j −2)2n j

> (23n2
j −n j −2)2n j

> n j 2n j ,

since 23n2
j −n j −2 > n j .

Ensuring Propery 2

3

What we want to show in this case is that the machine Mi on input x j for large j cannot
query strings of length n j+1 to the oracle A. For this choose n j+1 > 2n j+1 such that n1 > 2.
Then, in this case as well, we have

n j+1−n j−1∑
t=1

2n j+t = (2n j+1−n j −2)2n j

> n j 2n j .

Since the running time of M A
i is polynomially bounded, the space it can use is also poly-

nomially bounded. Hence, on input x j , the machine cannot query x j+1 or later strings
because they have exponential length in the input size n j .

Bounding the probability

Now consider

Pr[∀x x ∈ L(A)□L(M A
i)] ≤ Pr[∀ j x j ∈ L(A)□L(M A

i)]

=∏
j

Pr[x j ∈ L(A)□L(M A
i)|xk ∈ L(A)□L(M A

i) for k < j].

For a fixed machine M A
i and a string x j for some i and j , let us refer to the following

condition as condition C :
xk ∈ L(A)□L(M A

i) for k < j ,

and we’ll always assume this condition. Assuming this condition means that the oracle
A is “fixed" on the strings x1, x2, . . . , x j−1, and this has the effect of shrinking the sample
space of the random oracles that we are considering.

Putting everything together, we have

Pr[PA =NPA] ≤∑
i

∏
j

Pr[x j ∈ L(A)□L(M A
i)|C].

To show Pr[PA =NPA] = 0 it is sufficient to show that Pr[x j ∈ L(A)□L(M A
i)|C] < 1. Let

• p1 = Pr[x j ∈ L(M A
i) and x j ∈ L(A) |C],

• p2 = Pr[x j ∉ L(M A
i) and x j ∈ L(A) |C],

• p3 = Pr[x j ∈ L(M A
i) and x j ∉ L(A) |C],

• p4 = Pr[x j ∉ L(M A
i) and x j ∉ L(A) |C].

Then,

Pr[x j ∈ L(A)□L(M A
i)|C] < 1 ⇔ p1 +p4 < 1

⇔ p2 +p3 > 0

Hence, we only need to show the following that p2 +p3 > 0. To do this we need to prove
two more claims.

Claim 3: p1 +p2 > 0.6, and p3 +p4 > 0.3.

4

Proof.

p1 +p2 = Pr[x j ∈ L(A) | xk ∈ L(A)□L(M A
i) for k < j]

Whether x j ∈ L(A) depends on the 2n block following x j . By Property 1, those blocks are
disjoint from the blocks corresponding to xk for any k < j . Also, on input xk for k < j ,
the machine Mi cannot query the oracle strings of length n j or more by Property 2. Thus
we can drop condition C . By Claim 2, we have

p1 +p2 = Pr[x j ∈ L(A)] = 1−
(
1− 1

2n j

)2
n j

≥ 1− 1

e
> 0.6.

Similarly,

p3 +p4 = Pr[x j ∉ L(A)|C] = Pr[x j ∉ L(A)] =
(
1− 1

2n j

)2
n j

> 0.3.

Here, the bound holds, in particularly, due to n1 > 2 as chosen earlier.

Claim 4: p2
p2+p4

≥ 1
3

Proof.

p2

p2 +p4
= Pr[x j ∉ L(M A

i) and x j ∈ L(A) |C]

Pr[x j ∉ L(M A
i) |C]

= Pr[x j ∈ L(A)|x j ∉ L(M A
i),C]

= Pr[x j ∈ L(A)|x j ∉ L(M A
i), xk ∈ L(A)□L(M A

i) for k < j]

In this case as well, the previous argument holds. But we cannot drop the condition
easily. The only difference is that we are given the condition x j ∉ L(M A

i). The machine
hence cannot query strings of length n j+1, but it might have queried strings of length n j .
Since the running time of the machine Mi polynomially bounded. Hence, on input x j ,
it can only query polynomially (in n j) many strings to the oracle of length n j that could
affect the blocks following x j on which the event “x j ∈ L(A)” depends.

Let m = n j , and let pi (m) be the bound on the number of queries made by the machine
Mi to the oracle. These strings can lie in at most pi (m) many different blocks following
x j .

Let us now bound the probability as done in the proof of Claim 2,

1−Pr[x j ∈ L(A) | x j ∉ L(M A
i) |C] = 1−Pr[∃ at least one block all of which is in A | x j ∉ L(M A

i),C]

= Pr[none of the blocks are completely in A | x j ∉ L(M A
i),C]

=
2m∏
i=1

Pr[i th block is not completely in A | x j ∉ L(M A
i),C]

5

For the sake of approximation, let us fix the blocks in which the strings the machine
queried lie. There are at most pi (m) many of those, and so we have rest of the 2m−pi (m)
blocks free for our random experiment. Then,

1−Pr[x j ∈ L(A) | x j ∉ L(M A
i) |C] ≤

2m−pi (m)∏
i=1

Pr[i th block is not completely in A]

= (
1−Pr[all strings of a block are in A]

)2m−pi (m)

=
(
1− 1

2m

)2m−pi (m)

≤
(
1− 1

2m

)2m /2

≤ 2/3.

The second last bound is obtained by considering large m for which pi (m) ≤ 2m/2.
Hence,

p2

p2 +p4
= Pr[x j ∈ L(A) | x j ∉ L(M A

i)] ≥ 1/3. (2)

Now we can prove p2 +p3 > 0 be considering two cases:

Case 1: p3 ≥ 0.1.

Then, clearly p2 +p3 ≥ 0.1.

Case 2: p3 < 0.1.

Since p3 +p4 > 0.3 by Claim 3, we have p4 > 0.2. Also since p2
p2+p4

≥ 1
3 by Claim 4, we get

p2 > 0.1, and therefore, p2 +p3 > 0.1.

In any case, we get p2 +p3 > 0, and this completes a proof of Pr[PA =NPA] = 0.

References

[1] Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =?N P

question. SIAM Journal on Computing, 4(4):431–442, 1975.

[2] Charles H. Bennett and John Gill. Relative to a random oracle a, P A ̸= N P A ̸= co-N P A

with probability 1. SIAM Journal on Computing, 10(1):96–113, 1981.

[3] Richard Chang, Benny Chor, Oded Goldreich, Juris Hartmanis, Johan Håstad, Desh
Ranjan, and Pankaj Rohatgi. The random oracle hypothesis is false. Journal of Com-
puter and System Sciences, 49(1):24–39, August 1994.

[4] Uwe Schöning and Randall Pruim. P ̸= NP with probability 1, Gems of Theoretical
Computer Science, pages 191–195. Springer Berlin Heidelberg, 1998.

6

