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Polynomial Evaluation

Given

f (x) =
n∑

i=0

aix i

how many +,× are required to evaluate f (x) at α?

▶ For instance, when

f (x) = 1 + 3x + 5x2 + 7x3

▶ Naive method → 5 multiplications and 3 additions

▶ 1+α(3+α(5+ 7α)) → 3 multiplications and 3 additions
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Polynomial Evaluation

In general,

n∑
i=0

aix i = a0 + x(a1 + · · ·+ x (an−2 + x(an−1 + xan))

at most n multiplications and n additions suffice.

▶ This is Horner’s method (1819).

▶ Is this optimal? For addition, f (1) = a0 + · · ·+ an.

Is there a method that takes less than n multiplications

for all polynomials of degree n? (Ostrowski 1954)

▶ Evaluate xn at α using only ×? (Dellac 1894, Scholz 1937)
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Straight Line Program (SLP)

Given

f (x) =
n∑

i=0

aix i ai ∈ Z,

what is the minimum number of +,−,× required to

build f (x) starting from ‘1’ and ‘x’?

▶ Denote this number by τ(f ) (τ -Complexity)

▶ sequence 1, x, . . . , f is called scalar-free div-free SLP

▶ compute an integer using just addition starting from ‘1’

→ addition chain (Scholz 1937)
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Bounds on τ -Complexity

▶ By Horner’s method, for f (x) =
∑n

i=0 aix
i

τ(f ) ≤ O(n) + cost to compute all of ai’s

▶ By degree argument,

logN◦
f Z ≤ logN◦

f R ≤ log n ≤ τ(f )

N◦
f I := the number of distinct zeros of f in the set I.

▶ Strassen (1973) initiated study of lower bounds in terms

of number of common zeros of system of equations

▶ Borodin & Cook (1976), Risler (1985), Shub & Smale (1995)
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τ -Conjecture by Shub and Smale (1995)

▶ We know logN◦
f Z ≤ τ(f ) ⇐⇒ N◦

f Z ≤ 2τ(f ).

Conjecture : N◦
f Z ≤ poly(τ(f )).

▶ Candidate counterexample: Pochhammer-Wilkinson

Polynomials

PWn =
n∏

k=1

(x − k)

N◦
PWn

Z = n and τ(PWn) ≤ 2n− 1

▶ τ(PWn) ≤ polylog(n) =⇒ τ -Conjecture is false.

Theorem: τ -Conjecture implies PC ̸= NPC in BSS model over C
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BSS model over a ring R

For input x ∈ Cn, size(x) := n

L ⊆ C∞ is in PC if there is a

machine over C computing the

characteristic function 1L and

on all valid instances x , the

computation length is at most

poly(size(x)).
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Straight Line Program (SLP)

Given

f (x) ∈ Z[x1, . . . , xk],

denote by τ(f ) the minimum number of +,−,× re-

quired to build f starting from 1 and x1, . . . , xk?

▶ 1, x1, . . . , xk , . . . , f is called scalar-free div-free SLP

▶ (fn) ∈ VP0 if (fn) is computable by such an SLP (φn) with

τ(fn) as well as intermediate coeffs/degree polynomially

bounded in n. (Malod 2003)

▶ PERMn := permanent([xi,j]1≤i,j≤n)

▶ VP is defined over some field F (Valiant 1979).
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If the goal is PERMn /∈ VP0, what is the most relaxed variant

of the τ -conjecture that leads to this conclusion?

Studying real or complex zeros might be more approachable

than integer zeros.



Variants by Koiran (2011)

▶ (SPS τ -conjecture) For fi,j ∈ Z[x] and k-sparse

f :=

p∑
i=1

q∏
j=1

fi,j implies N◦
f Z ≤ poly(pqk + s),

where s controls size of exponents and coefficients of fi,j

▶ τ -Conjecture =⇒ SPS τ -conjecture =⇒ PERM /∈ VP0

▶ (Real τ -Conjecture) For fi,j ∈ R[x] and k-sparse,

f :=

p∑
i=1

q∏
j=1

fi,j implies N◦
f R ≤ poly(pqk).

▶ Real τ -Conjecture =⇒ SPS τ -conjecture

▶ (Tavenas 2014) poly(p2qk) suffices & PERM /∈ VP follows
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Variant by Tavenas 2014

Tee following are equivalent:
▶ Let f :=

∑p
i=1

∏q
j=1 fi,j be such that each fi,j ∈ R[x] is

k-sparse. Then, N◦
f R ≤ poly(p2qk).

▶ Let f :=
∑p

i=1 aif
αi
i be such that each fi ∈ R[x] is

k-sparse, ai ∈ R, and αi ≤ m. Then, N◦
f R ≤ poly(p2mk).

Proof idea: ( ⇐= ) Write product as sum of powers (Ryser).

perm


x1 x2 . . . xn
x1 x2 . . . xn
...

...
. . .

...

x1 x2 . . . xn

 = (−1)n
∑
S⊆[n]

(−1)|S|
n∏

i=1

∑
j∈S

xj

n!
n∏

i=1

xi =
∑
S⊆[n]

(−1)|S|+n

∑
j∈S

xj

n
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i be such that each fi ∈ R[x] is

k-sparse, ai ∈ R, and αi ≤ m. Then, N◦
f R ≤ poly(p2mk).

Proof idea: ( ⇐= ) Write product as sum of powers (Ryser).

perm


x1 x2 . . . xn
x1 x2 . . . xn
...

...
. . .

...

x1 x2 . . . xn

 = (−1)n
∑
S⊆[n]

(−1)|S|
n∏

i=1

∑
j∈S

xj

n!
n∏

i=1

xi =
∑
S⊆[n]

(−1)|S|+n

∑
j∈S

xj

n



How do we count real zeros?



Descartes’ Rule

Theorem
A real k-sparse polynomial has at most (k − 1) positive zeros.

Proof by induction:

▶ Assume f (x) = anxαk + · · ·+ a1xα2 + a0 has r positive zeros

▶ By induction, f ′(x) has at most k − 2 positive zeros.

▶ By Rolle’s theorem, f ′(x) has at least r − 1 positive zeros

▶ r − 1 ≤ k − 2 =⇒ r ≤ k − 1

Corollary

at most 2k − 1 distinct real zeros.
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Upper Bounds

(Real τ -Conjecture for Powers) For fi ∈ R[x] and k-sparse,

ai ∈ R, and αi ≤ m

f :=

p∑
i=1

aif
αi
i =⇒ N◦

f R ≤ poly(p2mk).

▶ N◦
f R ≤ O(pkm) = O(p2m log k) by Descartes’ rule.

▶ N◦
f R ≤ kO(p2) using Wronskian approach.

▶ Conj. holds if any of p or m or k is bounded by a constant.
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How do we count real zeros of sum of two polynomials?

Let f = ϕ1 + ϕ2. Then by Rolle’s theorem

N◦
f R ≤ N◦

f ′R + 1

But f ′ is again sum of two polynomials!
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Wronskian approach (for p = 2)

Koiran, Portier, Tavenas (2015), motivated by Voorhoeve and

van der Poorten (1975)

Theorem
Let f = ϕ1 + ϕ2 (e.g. ϕi = f αi

i ). Then

N◦
f R ≤ 1 + N◦

ϕ1
R + N◦

W(ϕ1,ϕ2)R,

where W (ϕ1, ϕ2) = det

[
ϕ1 ϕ2

ϕ′
1 ϕ′

2

]
= ϕ1ϕ

′
2 − ϕ′

1ϕ2.

Idea:

▶ Prove instead N◦
f R− (1 +N◦

ϕ1
R) ≤ N◦

W(ϕ1,ϕ2)
R = N◦

W(ϕ1,f )R

▶ Use W (ϕ1, f ) = ϕ2
1

(
f
ϕ1

)′
on the set R\Z(ϕ1)
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For f = ϕ1 + ϕ2 where ϕi = f αi
i and fi is k-sparse,

N◦
f R ≤ 1 + N◦

ϕ1
R + N◦

W(ϕ1,ϕ2)R

≤ 1 + 2k − 1 + N◦
W(f α1

1 ,f α2
2 )R

W (f α1
1 , f α2

2 ) = f α1
1 (α2f α2−1

2 )− (α1f α1−1
1 )f α2

2

= f α1−1
1 f α2−1

2 (α2f1 − α1f2)

=⇒ N◦
W(f α1

1 ,f α2
2 )R ≤ (2k − 1) + (2k − 1) + (4k − 1)

Finally,

N◦
f R ≤ 10k − 3

For
∑p

i=1 f
αi
i , the bound kO(p2) can be shown similarly.
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What’s so special about real zeros and real polynomials? Why

count only distinct zeros?



Distribution of Zeros

Theorem (Hayman 1972)

f ∈ C[x] be k-sparse and of degree n with f (0) ̸= 0∣∣∣∣Nf S(α, β)−
β − α

2π
n

∣∣∣∣ ≤ k − 1

Re

Im

α

β

O

S(α, β) = {z ∈ C | |z| > 0, α < arg z < β}

▶ Motivating case: xn − 1

▶ Choose β = 0+ and α = 0− to get

Descartes’ rule

Corollary: Can also count zeros along any ray from the origin.
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Complex τ -Conjecture by Hrubeš 2013
TFAE:

▶ Let f :=
∑p

i=1

∏q
j=1 fi,j be such that each fi,j ∈ R[x] is

k-sparse. Then N◦
f R ≤ poly(pqk)

▶ Let f :=
∑p

i=1

∏q
j=1 fi,j be of degree n with f (0) ̸= 0 and

each fi,j ∈ C[x] be k-sparse. Then∣∣∣∣Nf S(α, β)−
β − α

2π
n

∣∣∣∣ ≤ poly(pqk)

Re

Im

α

β

O

Proof idea: (Generalized Hayman)

1. Discrepancy ≤ # distinct zeros of ℜ(f )
on the boundary of the sector

2. ℜ(f ) has small representation if f does
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How to Falsify Real τ -Conjecture?

Conjecture: Let f :=
∑p

i=1

∏q
j=1 fi,j be of degree n with

f (0) ̸= 0 and each fi,j ∈ C[x] be k-sparse. Then∣∣∣∣Nf S(α, β)−
β − α

2π
n

∣∣∣∣ ≤ poly(pqk).

▶ Candidate counterexample: (x + 1)n.

▶ Choose β = π + ϵ and α = π − ϵ

▶ Conjecture =⇒ pqk = Ω(nc) for some c > 0

▶ Can (x + 1)n be expressed by a small complex SPS

representation?



Summary

▶ Integer / Real / Complex τ -Conjecture are hard problems

▶ Hrubeš: Study distribution of zeros

▶ Tavenas: Study sum of powers

Possible directions:

▶ Does gh+ t have O(k) real zeros? (Chattopadhyay)

▶ Bivariate (Koiran, Portier, Tavenas, Thomassé 2015)

▶ Random (Briquel, Bürgisser 2020)

▶ SOS, SOC, . . . (Dutta 2021)
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Thank you for you attention! Any questions?
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