Towards the Real 7-Conjecture
MSc Thesis

Hitesh Wankhede

The Institute of Mathematical Sciences

\y@@“"""’ %

w"“"a..,%
Bhces w»@

N
'y

,, K
»
e e

July 2025



Outline
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» For instance, when
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» Naive method — 5 multiplications and 3 additions

» 1+ a3+ a(5+ 7a)) — 3 multiplications and 3 additions
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Polynomial Evaluation

In general,

n

Z aix' = ay + x(a + - + x(an_2 + x(an_1 + xa,))
i=0
at most n multiplications and n additions suffice.
» This is Horner’s method (1819).
» Is this optimal? For addition, f(1) = ay + - - - + a,.

Is there a method that takes less than n multiplications

for all polynomials of degree n? (Ostrowski 1954)
» Evaluate x" at e using only x? (Dellac 1894, Scholz 1937)
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Straight Line Program (SLP)

Given
n

f(x) = Z ax’ a€’Z,

=0
what is the minimum number of +, —, X required to

build f(x) starting from 1" and x’?
» Denote this number by 7(f) (T-Complexity)

» sequence 1,x,...,f is called scalar-free div-free SLP

» compute an integer using just addition starting from ‘1’
— addition chain (Scholz 1937)
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Bounds on 7-Complexity
» By Horner’s method, for f(x) = Y7 aix’
7(f) < O(n) + cost to compute all of a;’s
» By degree argument,
log N7Z <'log NfR < log n < 7(f)

N7 I:= the number of distinct zeros of f in the set /.

» Strassen (1973) initiated study of lower bounds in terms

of number of common zeros of system of equations

» Borodin & Cook (1976), Risler (1985), Shub & Smale (1995)
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7-Conjecture by Shub and Smale (1995)

» We know log NJ?Z <7(f) = NJ?Z < 271,
Conjecture : N;Z < poly(7(f)).

» Candidate counterexample: Pochhammer-Wilkinson

Polynomials
PW, = [J(x - k)
k=1

Npw. Z = nand 7(PW,) < 2n—1

» 7(PW,) < polylog(n) = 7-Conjecture is false.

Theorem: T-Conjecture implies Pc # NPc in BSS model over C
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BSS model over a ring R

TuringMeetsNewton

n
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7-Conjecture

> We know log N;Z < 7(f) <= NZ <270).
Conjecture: N/Z < poly(7(f)).
» (Shub-Smale 1995)
T-Conjecture implies Pc # NPc & Pg # NP5

» (Biirgisser 2009)
7-Conjecture implies PERM,, ¢ VP°
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Straight Line Program (SLP)

Given

f(x) € Z[xi, ..., x],

denote by 7(f) the minimum number of +,—, X re-

quired to build f starting from 1 and x, ..., x;?

» 1,x1,...,Xk, ..., [ is called scalar-free div-free SLP
» (f,) € VPYif (f,) is computable by such an SLP (¢,) with

7(f,) as well as intermediate coeffs/degree polynomially
bounded in n. (Malod 2003)

» PERM, := permanent([x; ;]i<ij<n)

» VP is defined over some field F (Valiant 1979).



If the goal is PERM,, ¢ VP, what is the most relaxed variant

of the 7-conjecture that leads to this conclusion?

Studying real or complex zeros might be more approachable

than integer zeros.
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Variants by Koiran (2011)
» (SPS 7-conjecture) For f;; € Z[x] and k-sparse

q
f= Z Hf’f implies NZ < poly(pgk + s),

i=1 j=1
where s controls size of exponents and coefficients of f; ;
» 7-Conjecture = SPS 7-conjecture =—> PERM ¢ VP’
» (Real 7-Conjecture) For f;; € R[x] and k-sparse,

P g
f = Z HfiJ implies NfR < poly(pgk).
=1 j=1

» Real 7-Conjecture = SPS 7-conjecture
» (Tavenas 2014) poly(p29k) suffices & PERM ¢ VP follows
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Variant by Tavenas 2014

Tee following are equivalent:
> Let f:= 7, [}, fi; be such that each f;; € R[x] is
k-sparse. Then, N{R < poly(p27k).
> Letf:=> " af" besuch that each f; € R[x] is
k-sparse, a; € R, and a; < m. Then, N/R < poly(p2™k).

Proof idea: ( <= ) Write product as sum of powers (Ryser).

X1 X2 ... Xn
X1 X2 Xn n

perm | = ST
: : - : 5CIn] i=1 jES
X1 X2 Xn

W Tx = 3 (-pister (Zx,)n

i=1 SC[n] jes
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Descartes’ Rule

Theorem
A real k-sparse polynomial has at most (k — 1) positive zeros.
Proof by induction:
» Assume f(x) = apx“ + - - + a1x*? + ao has r positive zeros
» By induction, f'(x) has at most k — 2 positive zeros.
» By Rolle’s theorem, f’(x) has at least r — 1 positive zeros

> r—1<k—-2 = r<k-1

Corollary

at most 2k — 1 distinct real zeros.
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Upper Bounds

(Real 7-Conjecture for Powers) For f; € R[x] and k-sparse,
a€Randa; <m

p
f = Zaifiai — NJSR S poly(pzmk)
=1

> NpR < O(pk™) = O(p27'°¢¥) by Descartes’ rule.
> NR< k°®*) using Wronskian approach.

» Conj. holds if any of p or mor k is bounded by a constant.



How do we count real zeros of sum of two polynomials?



How do we count real zeros of sum of two polynomials?
Let f = ¢ + ¢,. Then by Rolle’s theorem
NfR < Nf,R + 1

But f is again sum of two polynomials!
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Koiran, Portier, Tavenas (2015), motivated by Voorhoeve and

van der Poorten (1975)
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Wronskian approach (for p = 2)

Koiran, Portier, Tavenas (2015), motivated by Voorhoeve and

van der Poorten (1975)

Theorem

Letf = ¢ + ¢, (e.g. ¢i = f'). Then

NER < 1+ NS R+ Ny, omR:

where W(o1, ¢,) = det ¢, ¢ = ¢10) — P19
o) b
Idea:
> Prove instead N7R — (1+ Ng R) < Ny 4R = Ny, oR

— (
> Use W(¢1,f) = (q{) on the set R\ Z(¢,)



For f = ¢1 + ¢, where ¢; = ' and f; is k-sparse,
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For f = ¢1 + ¢, where ¢; = ' and f; is k-sparse,

NFR < T+ NG R+ Niyg, )R

<14+2k—1+N, R

WO 72)
W(ﬁm, az) — (Oé Qap— 1) _ (Oé1 1a171)f2a2
— ]Oq 1 042 1(@2ﬂ_a1ﬁ)

= N, R<(2k—1)+ (2k— 1)+ (4k — 1)

W)
Finally,
N;R <10k —3

For > *_, £, the bound k°(") can be shown similarly.



What’s so special about real zeros and real polynomials? Why

count only distinct zeros?
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Theorem (Hayman 1972)
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Distribution of Zeros

Theorem (Hayman 1972)
f € C|x]| be k-sparse and of degree n with f(0) # 0

NeS(e, B) — B_an < k-1
Im
P S(a,) = {z€C||z| >0,a < argz < 5}
v » Motivating case: x" — 1
Re » Choose 5 = 0" and @ = 0~ to get
o Descartes’ rule

Corollary: Can also count zeros along any ray from the origin.



Complex 7-Conjecture by Hrubes 2013

TFAE:
> Let f:= > 7 [, fi; be such that each f;; € R[x] is
k-sparse. Then N¢R < poly(pqk)
> Let f:= > 7, [}, fi; be of degree n with f(0) # 0 and
each f;; € C[x] be k-sparse. Then
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Complex 7-Conjecture by Hrubes 2013

TFAE:
> Let f:= > 7 [, fi; be such that each f;; € R[x] is
k-sparse. Then N¢R < poly(pqk)
> Let f:= > 7, [}, fi; be of degree n with f(0) # 0 and
each f;; € C[x] be k-sparse. Then

8

(6%
n| < poly(pgk)

N¢S -
rS(e, B) — =
Im

5 Proof idea: (Generalized Hayman)
) 1. Discrepancy < # distinct zeros of R(f)
on the boundary of the sector

2. R(f) has small representation if f does

Re




How to Falsify Real 7-Conjecture?

Conjecture: Let f := 37 | [[1_, fi; be of degree n with
f(0) # 0 and each f;; € C[x] be k-sparse. Then

NpS(er ) — 2

n| < poly(pqk).

» Candidate counterexample: (x + 1)".
» Choose S =m+ecanda=m—¢
» Conjecture = pgk = Q(n°) for some ¢ > 0

» Can (x + 1)" be expressed by a small complex SPS

representation?
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Summary

» Integer / Real / Complex 7-Conjecture are hard problems
» Hrubes: Study distribution of zeros
» Tavenas: Study sum of powers
Possible directions:
» Does gh + t have O(k) real zeros? (Chattopadhyay)
» Bivariate (Koiran, Portier, Tavenas, Thomassé 2015)
» Random (Briquel, Biirgisser 2020)
> SOS, SOC, ...(Dutta 2021)



Thank you for you attention! Any questions?



	Problem Statement

