
Perfect Hashing

1 Introduction

Let U be a universe of size m, and let S be a subset of U of size n such that n ≤ m. Assume
that S is static. The problem is to store S optimally (linear space) in a memory T such
that the membership queries are also efficient (constant query time). The membership
queries are of the form “Is q ∈ S, and where can it be found in T ?" Fredman, Komlós
and Szemerédi (1984) [1] described a data structure based on hashing scheme that uses
n +o(n) space for storing S such that membership queries take O (1) time. We discuss
their construction in this note.

Previous constructions and the gap

A naive way is to store S in a sorted array of length n. But the query time is O (log2 n) by
binary search.

• Tarjan and Yao (1979) show that O (n) space and worst case query time O (logn m)
can generally be attained.

– This means worst case query time is O (1) if m bounded by a polynomial in n
(e.g. m =O (nc) for some constant c > 0).

• Yao (1981) shows that m grows at least exponentially in n (e.g m = Ω(e2n)), then
n +1 space and worst case query time 2 is attained.

• Yao (1981) points out that for the immediate range (e.g. m = 2
p

n), the possibility
of linear space and constant query time is not yet settled. Fredman, Komlós and
Szemerédi (1984) settle this gap.

In the second section, we discuss a data structure achieving linear space and constant
worst case query time for all m and n, in particular, we first construct a data structure in
time O (mn) such that it uses space at most 6n, and requires 5 queries. Then, we show
that the worst case construction time can also be improved to O (n3 logm). It can also be
made O (n) in expectation. In the third section, we refine the space to n +o(n) retaining
constant query time in the same construction time. Real RAM model is assumed, i.e.,
addition, subtraction, multiplication and division operations can be done in constant
time.

1

2 Preliminary data structure

For simplicity, to store a set S, let the universe U = {1,2, . . . ,m} be such that p = m+1 for
some prime p.1 This is so that the set {0}∪U is the finite field Fp . The notation a mod b
is used to denote the integer x, x ∈ {1,2, . . . ,b} such that x ≡ a mod b.

Given W ⊆ U with |W | = r , k ∈ U and s ≥ r , let hk,s : U → [s] be a hash function such
that

hk,s(x) = (kx mod p) mod s,

and for a given 1 ≤ j ≤ s, let

B(s,W,k, j) = |{x | x ∈W and hk,s(x) = j }|
= |W ∩h−1

k,s(j)|,

in words, B(s,W,k, j) is the number of times the value j is attained by hk,s when re-
stricted to W . Clearly,

∑s
j=1 B(s,W,k, j) = |W | = r .

Lemma 1. 1. There exists a k ∈U such that
∑s

j=1

(B(s,W,k, j)
2

)< r 2

s .

2. For at least half of the values of k ∈U , we have
∑s

j=1

(B(s,W,k, j)
2

)< 2r 2

s .

Proof. We show that 1
p−1

∑p−1
k=1

[∑s
j=1

(B(s,W,k, j)
2

)] < r 2

s . Then, by expectation argument,

the proof follows. By definition,(
B(s,W,k, j)

2

)
= |{(x, y) ∈W ×W | x < y and hk,s(x) = hk,s(y) = j }|

=⇒
s∑

j=1

(
B(s,W,k, j)

2

)
= |{(x, y) ∈W ×W | x < y and hk,s(x) = hk,s(y)}|

=⇒
p−1∑
k=1

s∑
j=1

(
B(s,W,k, j)

2

)
= |{(k, x, y) ∈U ×W ×W | x < y and hk,s(x) = hk,s(y)}|.

Now for fixed (x, y) ∈W ×W with x < y , the quantity hk,s(x) = hk,s(y) is equivalent to

k(x − y) mod p ∈ {s,2s, . . . , l s}∪ {−s,−2s, . . . ,−l s} ,

where l s < p, but since p is a prime, l ≤ ⌊(p−1)/s⌋. Also, due to field properties of {0}∪U
and x < y , (x − y) ∈ U and it has a unique multiplicative inverse modulo p. Therefore,
the number of such k’s is at most 2(p−1)

s . Now the number of pairs (x, y) ∈ W ×W such

that x < y is
(|W |

2

)= (r
2

)< r 2

2 , and so

1

p −1

p−1∑
k=1

s∑
j=1

(
B(s,W,k, j)

2

)
< 1

p −1

2(p −1)

s

r 2

2
= r 2

s
.

1Otherwise, find the next prime since we know at least one exists within a factor of 2 by Bertrand’s
postulate.

2

This completes proof of the first statement.

For the second statement, let X be a random variable that takes value
∑s

j=1

(B(s,W,k, j)
2

)
for each k ∈ U with uniform probability. By Lemma 1.1., µ = E(X) < r 2

s . The second
statement can also be proved in two ways.

• By Markov, Pr[X ≥ 2µ] ≤ 1
2 , which implies, Pr[X < 2µ< 2r 2

s] > 1
2 .

• Suppose on the contrary that for at least half of the values of k ∈U , we have X (k) ≥
2r 2

s . Then,
∑

k∈U X (k) ≥ p−1
2

2r 2

s , and so µ≥ r 2

s . This is a contradiction.

The next two corollaries will especially be helpful in the construction of the data struc-
ture.

Corollary 2. 1. There exists a k ∈ U such that the function hk,r partitions W into r
blocks and the sum of squares of their sizes is strictly less than 3r , i.e.,

∑r
j=1 B(r,W,k, j)2 <

3r .

2. For at least half of the values k ∈U , the function hk,r partitions W into r blocks such
that the sum of squares of their sizes is strictly less than 5r , i.e.,

∑r
j=1 B(r,W,k, j)2 <

5r .

Proof. First, observe that
∑r

j=1 B(r,W,k, j) = ∑r
j=1 |W ∩h−1

k,r (j)| = |W | = r . Choose s = r
in Lemma 1.1., there exists a k ∈U such that

r∑
j=1

B(r,W,k, j)2 < 2r 2

r
+

r∑
j=1

B(r,W,k, j) = 2r + r = 3r.

This proves the first statement.

Now for the second, by choosing s = r in Lemma 1.2, we have
∑r

j=1

(B(r,W,k, j)
2

) < 2r and

using the fact
∑r

j=1 B(r,W,k, j) = r , we get
∑r

j=1 B(r,W,k, j)2 < 4r +∑r
j=1 B(r,W,k, j) <

5r .

Corollary 3. 1. There exists a k ′ ∈U such that the function hk ′,r 2 is one-to-one when
restricted to W .

2. For at least half of the values k ′ ∈ U , the function hk ′,2r 2 is one-to-one when re-
stricted to W .

Proof. Setting s = r 2 in Lemma 1.1., there exists a k ′ ∈U such that
∑r 2

j=1

(B(r 2,W,k ′, j)
2

)< 1,

that is, for all j ,
(B(r 2,W,k ′, j)

2

) = 0 which implies that B(r 2,W,k ′, j) ≤ 1. In words, for all j ,
the number of times the value j is attained by the function hk ′,r 2 when restricted to W is
at most 1, that is, the function hk ′,r 2 is one-to-one when restricted to W .

Setting s = 2r 2 in Lemma 1.2., we get
∑2r 2

j=1

(B(s,W,k ′, j)
2

) < 1. As seen in the first part, this
implies that the function hk ′,2r 2 is one-to-one when restricted to W .

3

Such one-to-one functions will be called perfect hash functions.

Description of data structure

Suppose we want to represent a set S ⊆ U , |S| = n, |U | = m in memory T . We assume
that each cell of T can hold logm many bits. Next, we do the following.

STEP 1: Partitioning the given set, and storing pointers in the first level.

• Substitute W = S and r = n, and find an appropriate k ∈U satisfying Corollary 2.1..
Store it in T [0].

• Use this k (content of T [0]), to partition S into blocks W j for each j = 1,2, . . . ,n,
where

– W j = {x ∈ S | hk,n(x) = j },

–
∑n

j=1 |W j |2 < 3n by Corollary 2.1. since |W j | = B(n,S,k, j).

• Let T ′ = T [1],T [2], . . . ,T [n] be the cells assigned to each W j (called primary cells)

• For each W j , j = 1,2, . . . ,n, assign a memory T j of size |W j |2 +2 to resolve W j , and
store the pointer to T j in the cell T [j].

– The total memory used so far is at most 6n+1 (1 for k, n for pointers in primary
cells, and 5n for secondary memory blocks).

STEP 2: Resolving each block using perfect hash function in the second level.

Consider a block T j where W j is to be resolved.

• Store |W j | in the first location of T j .

• Substitute W = W j and r = |W j |, and find an appropriate k ′
j ∈U satisfying Corol-

lary 3.1.. Store it in the second location of T j .

• Store each x ∈W j in
(
hk ′

j ,|W j |2 (x)+2
)th

location of T j .

– Recall hk ′
j ,|W j |2 (x) = (k ′

j x mod p) mod |W j |2, and note that +2 is due to the

first two cells being already occupied.

Query execution

Input: q .

• Set k = T [0].

• Set j = hk,n(q).

• Access T [j] (contains pointer to block T j), and access the quantities in the first
two locations of T j which are |W j | and k ′

j respectively.

• Set l = hk ′
j ,|W j |2 (x)+2.

4

• Access l th cell of T j . q ∈ S iff q is in this cell.

Note that processing a query requires accessing only 5 cells.

Construction time

The running time is dominated by finding k and k ′
j for each j = 1, . . . ,n. By Corollary 2.1.,

finding a k requires going over all elements in U such that it satisfies
∑n

j=1 B(n,S,k, j)2 <
3n. The sum can be computed as follows:

• Maintain an array A (initially all entries zero) of length n indexed by j = 1,2, . . . ,n.

• For each x ∈ S, compute hk,n(x) = kx mod p mod n, and increment the hk,n(x)th

entry of A.

• Now A[j] = B(n,S,k, j) for each j = 1,2, . . . ,n.

• Compute the sum
∑n

j=1 A[j]2, check whether it is less than 3n.

• If yes, then pick k. Otherwise, move to another choice of k ∈U .

For each k, this procedure takes O (n) time, and hence the worst case time to find a hash
function given by k satisfying Corollary 2.1. is O (mn). Similarly, finding a perfect hash
function given by k ′

j for each W j satisfying Corollary 3.1. takes time O (m|W j |2). Sum-
ming over all j = 1,2, . . . ,n, the total time to find all secondary perfect hash functions
given by k ′

j ’s is O (mn). So overall time is O (mn).

Improved construction time

The construction time can also be improved to O (n3 logm). For this, we need a lemma.

Lemma 4. There exists a prime q < n2 logm that does not divide any of the elements in S,
and that separates these elements into distinct residue classes mod q.

If m < n2 logn, then clearly O (nm) =O (n3 logn) =O (n3 logm). If m ≥ n2 logn, then

• We produce a prime q satisfying Lemma 4 (q < n2 logm). It can be done in time
O (nq).

• Store q at the location T [−1].

• Use this prime q to map the elements x1, x2, . . . , xn of S to x1 mod q, x2 mod q, . . . , xn mod
q respectively. By Lemma 4, all these elements are distinct.

• Now store each x ∈ S as before but now replacing the value x with x mod q in
earlier computations.

• Then, the construction time for this new problem becomes O (nq) =O (n3 logm).

Proof of Lemma 4. For S = {x1, . . . , xn}, we want an existence of a prime q < n2 logm that
does not divide any of xi ’s, and no two elements in S have the same remainder when
divided by q , i,e, if t =∏

i xi
∏

i< j (xi −x j), then q must not divide t .

5

Since xi ≤ m, we have |t | ≤ mnm(n
2), i.e., log |t | ≤ (n+1

2

)
logm.

Suppose on the contrary that all primes q < n2 logm divide t . Then, it must be that∏
q<n2 logm,q prime q ≤ t which implies log(

∏
q<n2 logm q) ≤ log |t | ≤ (n+1

2

)
logm.

Recall that if f (x) is the number of primes less than x, then by prime number theo-

rem, f (x) = x
log x +o

(
x

log x

)
, and it is also equivalent to, in terms of Chebyshev function,

log(
∏

q<x,q prime q) = x+o(x). Substitute x with n2 logm, we get log(
∏

q<n2 logm,q prime q) =
n2 logm +o(n2 logm).

But now we have n2 logm +o(n2 logm) ≤ (n+1
2

)
logm, which can also be written as, 1+

o(1) ≤ 1
2

(
1+ 1

n

)
. This a contradiction. So the Lemma is proved.

To summarize, we constructed a data structure in time O (n3 logm) using space 6n + 1
and query time 5.

Expected construction time

Next, we can show that by allowing the space for T slightly more than before, we can
show that the construction time is O (n) in expectation.

Now in storing S in memory T , we follow the same procedure as before except that we
allocate 2|W j |2+2 space for a block W j and use primary hash function given by Corollary
2.2. in the first step and secondary perfect hash function hk ′,2|W j |2 given by Corollary 3.2.
in the second step. Hence, the overall space used for T is 13n+1 (n+1 for primary cells,
and at most 12n for secondary cells). Since the expected number of choices for k or k ′

until a suitable one is found is 2, the expected construction time becomes O (n).2 We’ll
stick to this randomized construction idea in the next section as well.

3 An even more refined construction

First observe that there are three cases for a block W j :

Case 1: |W j | = 0.

• Then, we are allocating 3 cells for such a block.

• Perhaps, we can just use a single bit instead to check whether a block is empty or
non-empty?

Case 2: |W j | = 1.

• Then, we are allocating 4 cells for such a block.

• Perhaps, we can simply store the element of W j in the primary cell itself?

• For this, we also need a tag bit to distinguish between |W j | = 1 and |W j | ≥ 2 if W j

is nonempty.

2Note that the worst case time can be infinite.

6

• Note that in the worst case if all W j ’s are singleton sets, then we already have used
at least n +1 cells for elements and n/logm = o(n) cells for tag bits.

Case 3: |W j | ≥ 2.

• Then, we’ll resolve only such a block in secondary memory of size 2|W j |2 + 2 as
before.

• Perhaps, we can show that the total memory used to resolve such blocks is o(n)?

• For this, we’ll partition S into a large number of blocks, say g (n) instead of n as
done earlier. Since g (n) will be larger compared to n, hopefully there will be very
few blocks with more than one element such that the total space required is o(n).

Lemma 5. There exists a g (n) such that the space to resolve blocks with more than one
elements is o(n).

Proof. Recall that by Lemma 1.2., for half of the values of k ∈U , we have
∑s

j=1

(B(s,W,k, j)
2

)<
2r 2

s . Choose W = S, s = g (n) and r = n, then

g (n)∑
j=1

(
B(g (n),S,k, j)

2

)
< 2n2

g (n)
,

and since W j will be such that |W j | = B(g (n),S,k, j),

g (n)∑
j=1

(
|W j |

2

)
< 2n2

g (n)
.

Note that all those terms for which |W j | ≤ 1 contribute zero to the sum. We need a fact
x2 ≤ 4

(x
2

)
for x ≥ 2 (Proof: x2 ≤ c

(x
2

)
holds for c ≥ 2+ 2

x−1 . Choose c = 4.) using which we
have a k ∈U such that

g (n)∑
j=1,

|W j |≥2

|W j |2 ≤
g (n)∑
j=1,

|W j |≥2

4

(
|W j |

2

)
< 4

2n2

g (n)
.

This implies
g (n)∑
j=1,

|W j |≥2

|W j |2 < 8
n2

g (n)
,

and by choosing g (n) such that limn→∞ n
g (n) = 0, the sum is o(n). Next, since |W j | ≥ 2,

g (n)∑
j=1,

|W j |≥2

2 ≤
g (n)∑
j=1,

|W j |≥2

|W j |2 = o(n),

7

where the sum on the left is exactly the number of #W j ’s of size at least 2. Thus,

g (n)∑
j=1,

|W j |≥2

(2|W j |2 +2) = 2
g (n)∑
j=1,

|W j |≥2

|W j |2 +
g (n)∑
j=1,

|W j |≥2

2 = o(n)+o(n) = o(n).

We choose g (n) = n
√

logn for convenience.

Description of data structure

Suppose we want to represent a set S ⊆ U , |S| = n, |U | = m in memory T . We do the
following.

STEP 1: Partitioning the given set, and storing pointers to nonempty blocks in the first
level along with tag bits to distinguish between two types of nonempty blocks.

• Set g (n) = n
√

logn.

• Substitute W = S, s = g (n) and r = n. Pick k ∈ U u.a.r, and check if it satisfies
Lemma 1.2. Repeat until a suitable one is found. In that case, store it in T [0].

• Use this k (content of T [0]), to partition S into blocks W j , j = 1,2, . . . , g (n), where

– W j = {x ∈ S | hk,g (n)(x) = j }.

– Note
∑g (n)

j=1,
|W j |≥2

|W j |2 = o(n) by Lemma 5, since |W j | = B(g (n),S,k, j).

• Let T ′ = T [1],T [2], . . . ,T [n′] be the cells assigned to each nonempty W j ’s in in-
creasing order of j , where n′ is the number of nonempty blocks (primary cells).

– Note that T [n′] may even be associated with the block Wg (n) if nonempty.

• Let C be a sequence of n tag bits used to distinguish between the cases |W j | = 1
and |W j | ≥ 2.

– These tag bits can be packed in n/logm ≤ n/logn = o(n) cells.

• For each nonempty W j , j = 1, . . . , g (n):

– If |W j | = 1, then set C [j] = 0, and store the single item of W j in the next avail-
able cell of T ′ directly.

– If |W j | ≥ 2, then set C [j] = 1, and assign a memory T j of size 2|W j |2 + 2 to
resolve W j , and store the pointer to T j in the next available cell in T ′.

STEP 2: Resolving each block of size at least 2 using a perfect hash function in the second
level.

Consider memory T j to resolve W j

• Store |W j | in the first location of T j .

8

• Substitute W =W j and r = |W j |. Pick k ′
j ∈U u.a.r, and check if it satisfies Corollary

3.2. Repeat until a suitable one is found. In that case, store it in the second location
of T j .

• Store each element x ∈W j in
(
hk ′

j ,2|W j |2 (x)+2
)th

location of T j .

– As seen earlier, the total memory allocated for all W j ’s with at least two ele-
ments is o(n).

STEP 3: Setting up an auxillary data structure to check whether a block is nonempty and
find tag bits and primary cells associated with it.

• Let t = (g (n)/n)2, and partition I = [1, g (n)] into g (n)/t intervals σ1, . . . ,σg (n)/t

each of size t .

• Let B be an array of size g (n)/t , a cell for each interval.

• For each intervalσ, set B [σ] to be the address of the location immediately preced-
ing the cells in T ′ associated with the first nonempty W j for j ∈σ.

– Note B [σ]+1 gives the index where the interval containing the primary cell of
W j begins.

– Note that the size of B is g (n)/t = n2/g (n) = n/
√

logn = o(n).

• Let A be a sequence of bits of total length g (n) log t to store offsets, where each
portion is of size log t and corresponds to some j ∈ [1, g (n)].

• For each j = 1,2, . . . , g (n):

– If W j is empty, set A[j] = 0.

– Else find the intervalσ such that j ∈σ, and set A[j] to be the index of j in the
interval σ (offset).

• Thus, B [σ]+ A[j] gives the exact location of the primary cell of block W j .

– Note any A[j] has size log t since it is an index in an interval of length t

– Since A has total length g (n) log t , and any cell of the memory can hold at
most logm bits, the number of cells required to store A is O (g (n) log t/logm) =
O (n loglogn/

√
logn) = o(n).

Query execution

Input: q

• Set k = T [0].

• Set j = hk,g (n)(q).

• Access A[j], the j th portion of size log t of A.

– If A[j] = 0, then return NO.

9

– Else, access B [σ] and compute j ′ = B [σ]+ A[j] where σ is the quotient of j
when divided by t (interval size).

• Access tag bit C [j ′].

– If C [j ′] = 0, then access T [j ′] (contains pointer to singleton block W j). Return
YES iff q is in this cell.

– Else, access T [j ′] (contains pointer to memory T j where W j is resolved), and
access the quantities in the first two locations of T j which are |W j | and k ′

j

respectively of size 2|W j |2 +2

• Set l = hk ′
j ,2|W j |2 (q)+2.

• Access l th cell of T j . Return YES iff q is in this cell.

Note that processing a query requires accessing at most 7 cells. The space used for pri-
mary cells is at most n +1, for secondary cells is o(n) and for each of A, B and C is also
o(n). So the overall space is n +o(n). The construction time is O (n) in expectation as
seen in the previous section.

References

[1] M. Fredman, J. Komlós, E. Szemerédi, Storing a Sparse Table with O(1) Worst Case
Access Time, Journal of the ACM, 31(3):538-544, 1984.

10

	Introduction
	Preliminary data structure
	An even more refined construction

