Perfect Hashing

1 Introduction

Let U be a universe of size m, and let S be a subset of U of size n such that n < m. Assume
that S is static. The problem is to store S optimally (linear space) in a memory T such
that the membership queries are also efficient (constant query time). The membership
queries are of the form “Is g € S, and where can it be found in 7?" Fredman, Komlés
and Szemerédi (1984) [1] described a data structure based on hashing scheme that uses
n + o(n) space for storing S such that membership queries take &' (1) time. We discuss
their construction in this note.

Previous constructions and the gap

A naive way is to store S in a sorted array of length n. But the query time is & (log, n) by
binary search.

* Tarjan and Yao (1979) show that @' (n) space and worst case query time @ (log,, m)
can generally be attained.

— This means worst case query time is & (1) if m bounded by a polynomial in n
(e.g. m =0 (n°) for some constant ¢ > 0).

* Yao (1981) shows that m grows at least exponentially in 7 (e.g m = Q(e?")), then
n + 1 space and worst case query time 2 is attained.

* Yao (1981) points out that for the immediate range (e.g. m = 2V7), the possibility
of linear space and constant query time is not yet settled. Fredman, Komlés and
Szemerédi (1984) settle this gap.

In the second section, we discuss a data structure achieving linear space and constant
worst case query time for all m and n, in particular, we first construct a data structure in
time @ (mn) such that it uses space at most 67, and requires 5 queries. Then, we show
that the worst case construction time can also be improved to o (n® logm). It can also be
made O (n) in expectation. In the third section, we refine the space to n + o(n) retaining
constant query time in the same construction time. Real RAM model is assumed, i.e.,
addition, subtraction, multiplication and division operations can be done in constant
time.



2 Preliminary data structure

For simplicity, to store a set S, let the universe U = {1,2,..., m} be such that p = m+ 1 for
some prime p.1 This is so that the set {0} U U is the finite field [ ,. The notation a mod b
is used to denote the integer x, x € {1,2,..., b} such that x = a mod b.

Given W c U with [W|=r, k€ U and s = r, let hy s : U — [s] be a hash function such
that
hi,s(x) = (kx mod p) mod s,

and foragiven1<j<s,let

B(s,W,k, j) = l{x| x € W and hy s(x) = j}|
=W nh ()],

in words, B(s, W, k, j) is the number of times the value j is attained by hj ; when re-
stricted to W. Clearly, Z;Zl B(s, W,k,j)=|W|=r.

B(s,W,k, ])) r2

2 <5

Lemmal. 1. Thereexistsake U suchthaty;_, (
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2. For at least half of the values of k € U, we have ¥.3_, (BeWk) < 2r®

Proof. We show that —— p [Z (B Wk g ))] < ’—SZ Then, by expectation argument,
the proof follows. By deﬁnltlon

B(s,W,k, j :
(s ; DI, y) e W x W | x < y and by o(x) = s () = j}]
5. [B(s,W,k,j)
2_ ) J =[{(x,y) e Wx W | x < y and hy s(x) = hg,s())}]
— S |B(s,W,k,j
=>k§_ E_ ( ) 2 =|{(k,x,y)) U x W x W | x < y and hy s(x) = hy s()}I.

Now for fixed (x, y) € W x W with x < y, the quantity hy s(x) = hi () is equivalent to
k(x—y) mod pe{s,2s,...,Is;u{-s,-2s,...,—1s},

where [s < p, butsince pisaprime, [ < [(p—1)/s]. Also, due to field properties of {0} U U
and x < y, (x— y) € U and it has a unique multiplicative inverse modulo p. Therefore,
the number of such k’s is at most 22 3—1). Now the number of pairs (x, y) € W x W such

that x < y is ('W|) (5) < —, and so

— & [B(s, W, k, j) 1 2(p-Dr* r?
Z::;( )<p—1 s 2 s

10therwise, find the next prime since we know at least one exists within a factor of 2 by Bertrand’s
postulate.



This completes proof of the first statement.

B(S,W,k,j))
2

for each k € U with uniform probability. By Lemma 1.1., u = E(X) < r—SZ The second
statement can also be proved in two ways.

For the second statement, let X be a random variable that takes value }.;_, (

e By Markov, Pr(X =2pu] < %, which implies, Pr(X <2u < %] > %

* Suppose on the contrary that for at least half of the values of k € U, we have X (k) =
2r2 r

2 — 2 .. . e
2%. Then, Y jcy X(k) = pTlT, and so u = *-. This is a contradiction.

O

The next two corollaries will especially be helpful in the construction of the data struc-
ture.

Corollary2. 1. There exists a k € U such that the function hy, , partitions W into r
blocks and the sum of squares of their sizes is strictly less than 3r, i.e., Z;:l B(r,W,k, j)? <
3r.

2. For at least half of the values k € U, the function hy , partitions W into r blocks such
that the sum of squares of their sizes is strictly less than 5r, i.e., Z;Zl B(r,W,k, j)* <
or.

Proof. First, observe that Z;le(r, W, k,j) = Z;:l W n h,;lr(j)l =|W|=r. Choose s=r
in Lemma 1.1., there exists a k € U such that

r 2r2 r
Y. B W,k )° < ==+ ) By Wk, ) =2r +71=3r.

j=1 j=1

This proves the first statement.

Now for the second, by choosing s = r in Lemma 1.2, we have Z;:l (B(r'vg’k'j)) < 2r and

using the fact Z;le(r, W, k, j) = r, we get Z;le(r, W, k, j)? < 4r +Z;=1B(r, W, k, j) <
Sr. O

Corollary3. 1. There exists a k' € U such that the function hy. .2 is one-to-one when
restricted to W.

2. For at least half of the values k' € U, the function hy ,, is one-to-one when re-
stricted toW.

B(r2, W,k j)
) )<1,

that is, for all j, ( = 0 which implies that B(r3, W, K/, j) < 1. In words, for all j,
the number of times the value j is attained by the function h; . when restricted to W is
at most 1, that is, the function Ay ,2 is one-to-one when restricted to W.

. . . 2
Proof. Setting s = r? in Lemma 1.1., there exists a k’ € U such that X0 (
B(rZ,W,k',j))
2

Setting s = 2r? in Lemma 1.2., we get Z?; 21 (® (S’Vg'k,’j )) < 1. As seen in the first part, this

implies that the function Ay ,,2 is one-to-one when restricted to W. O

3



Such one-to-one functions will be called perfect hash functions.

Description of data structure

Suppose we want to represent a set S <€ U, |S| = n, |[U| = m in memory T. We assume
that each cell of T can hold log m many bits. Next, we do the following.

STEP 1: Partitioning the given set, and storing pointers in the first level.

* Substitute W = Sand r = n, and find an appropriate k € U satisfying Corollary 2.1..
Store it in T°[0].

* Use this k (content of T[0]), to partition S into blocks W; for each j =1,2,...,n,
where

- Wi={xeS| hgn(x) =j}
- Z;?zl |W;|? < 3n by Corollary 2.1. since|W;| = B(n, S, k, J).
e Let T'=T[1],T[2],..., Tn] be the cells assigned to each W; (called primary cells)

* Foreach Wj, j=1,2,...,n, assign a memory T; of size IW]-I2

store the pointer to T; in the cell T'[j].

+2 to resolve W;, and

— The total memory used so far is at most6n+1 (1 for k, n for pointers in primary
cells, and 5n for secondary memory blocks).

STEP 2: Resolving each block using perfect hash function in the second level.
Consider a block T; where W is to be resolved.
* Store |W;| in the first location of T};.

* Substitute W = W; and r = |W;|, and find an appropriate k} € U satisfying Corol-
lary 3.1.. Store it in the second location of T;.

th
* Store each x € W; in (thWﬂz (x) + 2) location of T;.

— Recall hk/.,|Wj|2(x) = (k;.x mod p) mod |Wj|2, and note that +2 is due to the
J
first two cells being already occupied.

Query execution
Input: qg.
e Set k= T[0].

e Set j = hin(q).

* Access T|j] (contains pointer to block T}), and access the quantities in the first
two locations of T; which are |W;| and k} respectively.

e Setl= hkl.,Ilez (JC) + 2.
J



e Access I cell of T}. g € Siiff q is in this cell.

Note that processing a query requires accessing only 5 cells.

Construction time

The running time is dominated by finding k and k; foreach j=1,...,n. By Corollary 2.1.,

finding a k requires going over all elements in U such that it satisfies } 7:1 B, S, k, j)2 <
3n. The sum can be computed as follows:

e Maintain an array A (initially all entries zero) of length n indexed by j =1,2,..., n.

* For each x € S, compute hy ,(x) = kx mod p mod n, and increment the hy ; (x) th
entry of A.

e Now A[j]=B(n,S,k, j)foreach j=1,2,...,n.
e Compute the sum Z?zl A[j1?, check whether it is less than 37.
e Ifyes, then pick k. Otherwise, move to another choice of k € U.

For each k, this procedure takes &' (n) time, and hence the worst case time to find a hash
function given by k satisfying Corollary 2.1. is ©(mn). Similarly, finding a perfect hash
function given by k} for each W; satisfying Corollary 3.1. takes time ﬁ(mlelz). Sum-
ming over all j = 1,2,...,n, the total time to find all secondary perfect hash functions
given by k; 's is O (mn). So overall time is G (mn).

Improved construction time
The construction time can also be improved to @ (n°log m). For this, we need alemma.

Lemma 4. There exists a prime q < n*log m that does not divide any of the elements in S,
and that separates these elements into distinct residue classes mod q.

If m < n?logn, then clearly @ (nm) = @ (n3logn) = G(n®log m). If m = n*logn, then

» We produce a prime ¢ satisfying Lemma 4 (g < n*logm). It can be done in time
O(nq).

Store g at the location T[-1].

Use this prime g to map the elements x, X, ..., X, of Sto x; mod ¢, x, mod g,...,x, mod
q respectively. By Lemma 4, all these elements are distinct.

* Now store each x € S as before but now replacing the value x with x mod ¢ in
earlier computations.

Then, the construction time for this new problem becomes @ (nq) = G (n®log m).

Proof of Lemma 4. For S = {xy,...,x,}, we want an existence of a prime g < n? log m that
does not divide any of x;’s, and no two elements in S have the same remainder when
divided by qg, ie, if t =[]; x; ]'[l-<]-(x,- — Xxj), then g must not divide ¢.



Since x; < m, we have || < m"m®) i.e., log|t| < (";l)logm.

Suppose on the contrary that all primes g < n?logm divide . Then, it must be that

T y<n?10gm,q prime 4 < ¢ which implies 10g(IT ;< 210gm @) <logl 1 < ("3 ') log m.

Recall that if f(x) is the number of primes less than x, then by prime number theo-
rem, f(x) = @ +o0 (@), and it is also equivalent to, in terms of Chebyshev function,
10g(ITg<x,q prime 9) = x+0(x). Substitute x with n?log m, we get log(I1;<n?10g m, g prime 9) =
n? logm + o(n? logm).

But now we have n?logm + o(n?logm) < ("3')logm, which can also be written as, 1+

o(1) < % (1+ %) This a contradiction. So the Lemma is proved. O

To summarize, we constructed a data structure in time @ (n3logm) using space 67 + 1
and query time 5.

Expected construction time

Next, we can show that by allowing the space for T slightly more than before, we can
show that the construction time is &' (n) in expectation.

Now in storing S in memory T, we follow the same procedure as before except that we
allocate 2| W; > +2 space for a block W; and use primary hash function given by Corollary
2.2. in the first step and secondary perfect hash function k. 5 w;[2 given by Corollary 3.2.
in the second step. Hence, the overall space used for T is 13n+1 (n+ 1 for primary cells,
and at most 12n for secondary cells). Since the expected number of choices for k or k'
until a suitable one is found is 2, the expected construction time becomes 0 (n).2 We'll
stick to this randomized construction idea in the next section as well.

3 An even more refined construction

First observe that there are three cases for a block W;:
Case 1: |W;| = 0.
e Then, we are allocating 3 cells for such a block.

* Perhaps, we can just use a single bit instead to check whether a block is empty or
non-empty?

Case 2: IWJ-I =1.
e Then, we are allocating 4 cells for such a block.
* Perhaps, we can simply store the element of W; in the primary cell itself?

* For this, we also need a tag bit to distinguish between |W;| =1 and |W;| = 2 if W;
is nonempty.

2Note that the worst case time can be infinite.



* Note that in the worst case if all W;’s are singleton sets, then we already have used
at least n + 1 cells for elements and n/logm = o(n) cells for tag bits.

Case 3: |W;| = 2.

e Then, we'll resolve only such a block in secondary memory of size 2|Wj|2 +2 as

before.
* Perhaps, we can show that the total memory used to resolve such blocks is o(n)?

* For this, we'll partition S into a large number of blocks, say g(n) instead of n as
done earlier. Since g(n) will be larger compared to n, hopefully there will be very
few blocks with more than one element such that the total space required is o(n).

Lemma 5. There exists a g(n) such that the space to resolve blocks with more than one
elements iso(n).

Proof. Recall thatby Lemma 1.2., for half of the values of k € U, we have X5_ (BEWRD) <

%. Choose W =S, s = g(n) and r = n, then

8 (B(g(n), S, k, J) 2n
|

=1 2 TN

and since W; will be such that |W;| = B(g(n), S, k, j),
8 (|Wj|) 2n?
Y <—.
m1\ 2 g(n)

Note that all those terms for which [W;| =1 contribute zero to the sum. We need a fact
x? < 4(3) for x = 2 (Proof: x* < ¢(3) holds for ¢ = 2+ ;. Choose ¢ = 4.) using which we
have a k € U such that

g(n) g(n) Wi 2n2
WD |l <aZl
j=1, gn)
[W;|=2 IW]|>2
This implies
g(n) n2
2

Y IWF<8—,

i, g(n)

|Wj|=2

and by choosing g(n) such that lim,,_.q, == 200 =0, the sum is o(n). Next, since |Wj| = 2,

g(n) g(n) )

Y 2= ) WP =o(n),
=1, Jj=1

|Wj|22 |Wj|22



where the sum on the left is exactly the number of #W;’s of size at least 2. Thus,

gn) , gn) , g
Y @IWiP+2)=2 ) WP+ ) 2=o0m)+o(n) =o(n).
j=1, j=1 j=1,
|Wj|2 |Wj|2 |Wj|22

We choose g(n) = ny/logn for convenience.

Description of data structure

Suppose we want to represent a set S € U, |S| = n, |[U| = m in memory T. We do the
following.

STEP 1: Partitioning the given set, and storing pointers to nonempty blocks in the first
level along with tag bits to distinguish between two types of nonempty blocks.

Set g(n) = ny/logn.

Substitute W = S, s = g(n) and r = n. Pick k € U u.a.r, and check if it satisfies
Lemma 1.2. Repeat until a suitable one is found. In that case, store it in T'[0].

Use this k (content of T'[0]), to partition S into blocks W;, j =1,2,...,g(n), where
- Wj={x€eS| hggmx) = j}

— Note Zg;i)l |Wj|2 = o(n) by Lemma 5, since |W;| = B(g(n), S, k, j).
|Wj|=2

Let T" = T[1],T[2],..., T[n'] be the cells assigned to each nonempty W;j’s in in-
creasing order of j, where n’ is the number of nonempty blocks (primary cells).

— Note that T[n'] may even be associated with the block Wg(y,) if nonempty.

Let C be a sequence of n tag bits used to distinguish between the cases |W;| =1
and |W;| = 2.

— These tag bits can be packed in n/logm < n/logn = o(n) cells.
For each nonempty Wj, j=1,...,g(n):

- If [Wj| =1, then set C[j] = 0, and store the single item of W in the next avail-
able cell of T’ directly.

- If [Wj| = 2, then set C[j] = 1, and assign a memory T; of size 2|W]~|2 +2to
resolve W}, and store the pointer to T; in the next available cell in T".

STEP 2: Resolving each block of size at least 2 using a perfect hash function in the second

level.

Consider memory T} to resolve W;

Store |W;| in the first location of T;.



* Substitute W = W; and r = |W;|. Pick k'. € U u.a.r, and check if it satisfies Corollary
3.2. Repeat until a suitable one is found. In that case, store it in the second location
of T;.

J

th
* Store each element x € W; in (h K 21wy (X) + 2) location of Tj.
]7

— As seen earlier, the total memory allocated for all W;'s with at least two ele-
ments is o(n).

STEP 3: Setting up an auxillary data structure to check whether a block is nonempty and
find tag bits and primary cells associated with it.

e Let t = (g(n)/n)?, and partition I = [1,g(n)] into g(n)/t intervals 0Ly Tgm)/t
each of size t.

Let B be an array of size g(n)/¢, a cell for each interval.

For each interval o, set B[o] to be the address of the location immediately preced-
ing the cells in T’ associated with the first nonempty W; for j € 0.

- Note B[o] + 1 gives the index where the interval containing the primary cell of
W; begins.

— Note that the size of Bis g(n)/ t = nz/g(n) =n/+/logn=o(n).

Let A be a sequence of bits of total length g(n)logt to store offsets, where each
portion is of size log t and corresponds to some j € [1, g(n)].

Foreach j=1,2,...,8(n):
- If W; is empty, set A[j] =0.

- Else find the interval o such that j € g, and set A[j] to be the index of j in the
interval o (offset).

Thus, Blo] + Alj] gives the exact location of the primary cell of block W;.
— Note any Alj] has sizelogt since it is an index in an interval of length t

— Since A has total length g(n)logt, and any cell of the memory can hold at
mostlogm bits, the number of cells required to store A isG(g(n)logt/logm) =

O(nloglogn/+/logn) = o(n).

Query execution
Input: g
e Set k= T[0].

¢ Set ] = hk,g(n)(q)-
e Access A[j], the j! portion of size log t of A.
- If A[j] =0, then return NO.



- Else, access B[o] and compute j' = B[o] + A[j] where ¢ is the quotient of j
when divided by ¢ (interval size).

* Access tag bit C[j'].

- IfC[j'] =0, thenaccess T[j'] (contains pointer to singleton block W;). Return
YES iff g is in this cell.

— Else, access T'[j'] (contains pointer to memory 7; where W; is resolved), and
access the quantities in the first two locations of T; which are |W;| and k}

respectively of size 2|W;|? + 2

e Setl= hk},ZlWﬂZ(q) +2.

* Access I'" cell of T;. Return YES iff g is in this cell.

Note that processing a query requires accessing at most 7 cells. The space used for pri-
mary cells is at most n + 1, for secondary cells is o(n) and for each of A, B and C is also
o(n). So the overall space is n+ o(n). The construction time is &'(n) in expectation as
seen in the previous section.

References

[1] M. Fredman, J. Komlés, E. Szemerédi, Storing a Sparse Table with O(1) Worst Case
Access Time, Journal of the ACM, 31(3):538-544, 1984.

10



	Introduction
	Preliminary data structure
	An even more refined construction

