
Extended Formulations

Introduction1

Consider a polytope P = {x ∈ Rn | Ax ≤ b}, where A is a m ×n matrix for m ≥ n. The
size of a polytope will be the number inequalities in Ax ≤ b2. For our main theorem, we
assume that none of the inequalities in Ax ≤ b are implicit equalities. We also assume
that there are no redundant constraints3. Thus, every constraint in Ax ≤ b corresponds
to a facet [Theorem 8.1. [Sch98]].

Although ellipsoid method solves LP in polynomial time, it is impractical and alter-
natives such as Simplex or interior point method require knowing all the constraints.
Hence, we are interested in expressing a polytope using polynomially many inequali-
ties (in the number of variables). It is possible that the size is exponential even after
removing the redundant constraints. We could then try to extend a polytope to a higher
dimension, i.e, increase the number of variables, and hope that the size is polynomial in
the new number of variables. See an example below.

Example 1 (Spanning Tree Polytope). Let Pspan be the convex hull of the characteristic
vectors of the spanning trees of the complete graph Kn . The characteristic vector is a
vector x ∈ R(n

2) such that each entry xi , j corresponds to an edge {i , j }. Then, Pspan as
described by Edmonds [Edm71] is :

•
∑

{i , j }∈(V
2) xi , j = n −1,

•
∑

{i , j }∈(A
2) xi , j ≤ |A|−1 for all A ⊆V ,

• 0 ≤ xi , j ≤ 1 for all {i , j } ∈ (V
2

)
.

The number of variables and the size of this description is O (n2) and O (2n) respectively4.
By introducing O (n3) new variables, Martin [Mar91] showed that Pspan has an extended
formulation of size O (n3).

Example 2 (Parity polytope). Let PP = C H {x ∈ {0,1}n | ∑n
i=1 xi = k for some odd k}. A

description of this polytope was given by Jeroslow [Jer75]:

1This presentation is based on [Yan91]. There are of course notes on this topic by many others: here,
here, here and here.

2The alternative is to define the size as number of equalities plus the inequalities. But Fiorini et al.
[FMP+15] comment that it makes little difference.

3By Khachiyan’s theorem, implicit equalities and redundant constraints can be found in polynomial
time. See the remark below Theorem 13.4 [Sch98].

4Verify that none of the constraints are redundant.

1

https://www.epfl.ch/labs/disopt/wp-content/uploads/2018/09/4.pdf
https://www.cs.mcgill.ca/~yli252/files/552xc.pdf
https://www.timroughgarden.org/w15/l/l5.pdf
https://theory.stanford.edu/~jvondrak/MATH233B-2017/lec18.pdf


•
∑

i∈A xi −∑
i∉A xi ≤ |A|−1 for all even subsets A of {1, . . . ,n},

• 0 ≤ xi ≤ 1 for all i .

The number of variables is n but the size of this description is exponential. Next, we
can increase the number of variables and reduce the size to a polynomial. For this, write
PP =C H {∪k oddSk }, where Sk = {

x ∈ {0,1}n | ∑n
i=1 xi = k

}
. We need two observations: (i)

PP =C H {∪k oddC H {Sk }}. (ii) If y ∈C H {Sk }5, then
∑n

i=1 yi = k.

By Observation (i), x ∈ PP iff there existsαk ’s and yk ∈C H {Sk } such that x =∑
k oddαk yk ,

where

•
∑

k oddαk = 1.

Let yi ,k denote entries of yk , and define zk =αk yk . Let zi ,k denote entries of zk . Then,

• xi =∑
k odd zi ,k for all i = 1, . . . ,n.

By Observation (ii),
∑n

i=1 yi ,k = k for each yk , which can also be written as

•
∑n

i=1 zi ,k =αk k for all odd k.

Since each yk ∈ [0,1]n , i.e, each yi ,k ∈ [0,1], we have

• 0 ≤ zi ,k ≤αk for all i = 1, . . . ,n and odd k.

These four constraints describe PP . The number of variables and the number of in-
equalities are both O (n2).

Extended formulation

To formalize this idea of extending a polytope to a higher dimension, we define the fol-
lowing.

Definition 1. Let P = {x ∈Rn | Ax ≤ b}, and Q = {(x, y) ∈Rn+s | B x+C y ≤ d}. Then, Q is an
extended formulation of P if P = {x ∈Rn | ∃y ∈Rs s.t. (x, y) ∈Q}. The extension complexity
xc(P ) of P is the minimum size of an extended formulation of P 6.

One way to prove P = NP is to express any NP-complete problem by a LP, and show
that it has an extended formulation of polynomial size. Yannakakis [Yan91] shows that
matching and TSP polytope cannot be expressed by a symmetric LP of subexponential
size. This demonstrates that LP approach cannot determine P=NP. Later Fiorini et al.
[FMP+15] show that TSP polytope cannot be expressed by a LP of superpolynomial size,
and Rothvoss [Rot17] shows that matching polytope has exponential extension com-
plexity which also implies exponential lower bound for TSP polytope. Note that expo-
nential lower bound does not mean that the linear optimization problem over that LP

5Note y ∈ [0,1]n .
6There is also a different definition. We say that a polytope Q expresses P if there exists a linear map π

such that π(Q) = P . It can be shown that these two notions are equivalent, i.e, xc(P ) is the minimum of
the number of facets over all polytopes that express P [Yan91, FMP+15].
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cannot be solved in polytime. E.g. checking whether a graph has a perfect matching can
be done polynomial time, but the decision version of TSP is NP-complete.

Slack matrix

A polytope P in Rn with m facets and v vertices can be described in two ways. Let {x ∈
Rn | 〈Ai , x〉 ≤ bi } for i = 1, . . . ,m be the halfspaces corresponding to the facets. If A is a
matrix whose rows are the vectors A1, . . . , Am , then P can be expressed as an intersection
of these halfspaces,

P = {x ∈Rn | Ax ≤ b}.

Let x1, . . . , xv be the vertices of P . Then, P can also be expressed as a convex hull of these
vertices,

P = CH(x1, . . . , xv ).

Next, we define slack matrix.

Definition 2. The slack matrix S associated with a polytope P is a m × v matrix, whose
rows are indexed by the facets and columns are indexed by the vertices, such that its (i , j )th

entry is the slack of j th vertex in the i th constraint given by

Si , j = bi −〈Ai , x j 〉.

Observe that S is a nonnegative matrix.

Nonnegative rank

Let us first recall a definition of rank of a matrix. A matrix A has rank r if r is the smallest
integer such that A can be written as a sum of r rank 1 matrices7, i.e., if A is a m ×n
matrix over R of rank r , then there exists vectors u1, . . . ,ur ∈ Rm and v1, . . . , vr ∈ Rn such
that A = ∑r

i=1 ui vT
i . Define U to be the m × r matrix whose columns are u1, . . . ,ur , and

V to be the r ×n matrix whose rows are vT
1 , . . . , vT

r . Then, A =UV . Thus we have

Definition 3. Let A ∈Rm×n . Then,

rank(A) = min{r | ∃U ∈Rm×r ,V ∈Rr×n such that A =UV }.

Similar to this is the notion of nonnegative rank denoted by rank+ for nonnegative ma-
trices.

Definition 4. Let A ∈Rm×n
≥0 . Then,

rank+(A) = min{r | ∃U ∈Rm×r
≥0 ,V ∈Rr×n

≥0 such that A =UV }.

It is easy to see that rank(A) ≤ rank+(A) for a nonnegative matrix A8.

7By singular value decomposition of a real matrix A of size m×n and rank r , there exists two orthogonal
matrices Q and R such that A = QΣRT , where Σ is a nonnegative diagonal matrix of size m ×n such that
its first r diagonal entries are nonzero. Let Q1, . . . ,Qm and R1, . . . ,Rn be the columns vectors of Q and R
respectively. Then, A =∑r

i=1 QiΣi ,i RT
i . Let ui =Σi ,i Qi and vi = Ri .

8Find examples of nonnegative matrices for which there is a large gap between its rank and nonnega-
tive rank.
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Yannakakis’s theorm

Theorem 5. If P = {x ∈ Rn | Ax ≤ b} is a polytope with slack matrix S, then rank+(S) =
xc(P ).

Proof. Claim 1: “rank+(S) ≥ xc(P )”.

Suppose that rank+(S) = r , then we’ll show that xc(P ) ≤ r , i.e, there is an extended for-
mulation of P of size r .

Since rank+(S) = r , there exists matrices U and V of sizes m × r and r × v respectively
such that S = UV . Let U1, . . . ,Um ∈ Rr

≥0 be the rows of U , and V1, . . . ,Vv ∈ Rr
≥0 be the

columns of V . Introducing a new vector y ∈ Rr , consider a new polytope Q = {(x, y) ∈
Rn+r | Ax +U y = b, y ≥ 0} of size r . We’ll show next that Q is an extended formulation of
P , i.e, P = {x ∈Rn | ∃y ∈Rr s.t. (x, y) ∈Q}. This requires showing two inclusions.

Claim 1.1: “P ⊇ {x ∈Rn | ∃y ∈Rr s.t. (x, y) ∈Q}”.

Consider a x ∈Rn such that there exists y ∈Rr and (x, y) ∈Q. Then, they satisfy Ax+U y =
b, y ≥ 0. Since y and U are nonnegative, clearly Ax ≤ b. Thus, x ∈ P .

Claim 1.2: “P ⊆ {x ∈Rn | ∃y ∈Rr s.t. (x, y) ∈Q}”.

To show that the convex hull definition will be useful. Let x1, . . . , xv be the vertices of
P . Suppose we show for an arbitrary vertex x j ∈ P that there exists a y j ∈ Rr such that
Ax j +U y j = b and y j ≥ 0. Then, let x ∈ P be an arbitrary point. It can be written as a
convex combination x =∑v

j=1 c j x j . Let y =∑v
j=1 c j y j . Note since y j ’s are nonnegatives,

y is also nonnegative. Then, Ax+U y =∑v
j=1 c j (Ax j +U y j ) = (

∑v
j=1 c j )b = b. Thus (x, y) ∈

Q proving the inclusion. Now consider an arbitrary vertex x j ∈ P , and let y j = V j ( j th

column of V ). Then,

Ax j +U y j = Ax j +UV j =


A1x j +U1V j

A2x j +U2V j
...

Am x j +UmV j

=


A1x j +S1, j

A2x j +S2, j
...

Am x j +Sm, j

=


b1

b2
...

bm

= b.

Thus, (x j , y j ) ∈Q and y j is too since V is nonnegative.

This completes the proof that Q is an extended formulation of P of size r and of Claim 1.

Claim 2: “rank+(S) ≤ xc(P )”.

Suppose that xc(P ) = r , then we’ll show that rank+(S) ≤ r , i.e, the slack matrix S can be
written as a product of m × r and r × v matrices.

Since xc(P ) = r , there is an extended formulation Q = {(x, y) | B x +C y ≤ d} of P with r
inequalities, i.e, B is an r ×n matrix and d ∈ Rr . By definition, P = {x ∈ Rn | ∃y s.t. B x +
C y ≤ d}. Next, we need a result:
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Claim 2.1: Given A,b, suppose P = {x | Ax ≤ b} is not empty. Further suppose that 〈c, x〉 ≤
δ for all x ∈ P. Given δ′ ≤ δ, show that the linear inequality 〈c, x〉 ≤ δ′ is a non-negative
linear combination of the inequalities in Ax ≤ b9.

Thus, each inequality Ai x ≤ bi in P is a nonnegative linear combination of inequalities
in B x +C y ≤ d , i.e., there exists a nonnegative vector pi ∈ Rr such that pT

i

[
B C d

] =[
Ai 0 b

]
. In terms of slacks, we have pT

i (d −B x −C y) = bi − Ai x. Also, for each vertex
x j of P , fix a vector y j such that B x j +C y j ≤ d (existence due to extended formulation).
Thus, for i th inequality Ai x ≤ bi and j th vertex x j of P , we have pT

i (d −B x j −C y j ) =
bi − Ai x j = Si , j . Let U be a m × r matrix whose rows are pT

i ’s, and V be a r × v matrix
whose columns are d −B x j −C y j ’s. Then, UV = S where S is the slack matrix. This also
shows rank+(S) ≤ r , and proves Claim 2.

Corollary 6. [FMP+15] (a) If F is an extension of P, then xc(F ) ≥ xc(P ). (b) If Q is a face
of P, then xc(P ) ≥ xc(Q)

This result is useful for showing lower bounds. E.g. the correlation polytope has expo-
nential extension complexity, and it can be shown that TSP polytope contains a face that
is an extension of correlation polytope, which shows that TSP polytope also has expo-
nential extension complexity [FMP+15].

Upper bound on xc(Pspan)

As an application of this theorem, we show that extension complexity of spanning tree
polytope is O (n3) by showing a bound on the nonnegative rank of its slack matrix. Let us
consider only the second set of constraints from the description Example 1 for the slack
matrix since the first and the third set of constraints can possibly increase the nonneg-
ative rank only by a polynomial10. We had for all A ⊆ V ,

∑
{i , j }∈(A

2) xi , j ≤ |A|−1. Let S be

a slack matrix of size 2n ×nn−2 such that its rows correspond to these constraints, i.e.,
the subsets of V , and columns correspond to spanning trees of Kn

11. Given a subset of
vertices A, and a spanning tree T , the slack of T in the constraint corresponding to A
is

S A,T = |A|−1− ∑
{i , j }∈(A

2)∩E(T )

xi , j ,

where E(T ) is the set of edges of T . For each subset A ⊆V , fix a vertex kA ∈ A arbitrarily.
Now make T a rooted tree with kA as the root. Then, the quantity∑

{i , j }∈(A
2)∩E(T )

xi , j

is the number of nodes in A\{kA} whose parent in T is also in A (one node for each
edge). Note that kA does not have a parent in T which means only |A| − 1 nodes in A

9This is a problem from Assignment 2 in this course.
10Verify this formally!
11By Cayley’s formula, the number of spanning trees in Kn is nn−2.
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have a parent in T . Hence,

S A,T = |A|−1− ∑
{i , j }∈(A

2)∩E(T )

xi , j

is the number of nodes in A\{kA} whose parent in T is not in A. Now, we introduce a
variable λT

kA ,i , j for each pair kA and {i , j } such that kA ∉ {i , j }12, and defined as, for the
given spanning tree T ,

λT
kA ,i , j =

{
1 if j is the parent of i in T rooted at kA,

0 otherwise,

such that
S A,T = ∑

i∈A, j∉A
λT

kA ,i , j .

Let R = {(k, i , j ) | {i , j } ∈ (V
2

)
,k ∉ {i , j }}, and r = |R|. Let U and W be matrices of sizes

2n × r and r ×nn−2 respectively defined as follows: The rows and columns of U corre-
spond to the subsets of A, and the elements of R respectively. Let UA be the row vector
corresponding to a subset A of V . Then, its (k, i , j )th entry is given by

UA,(k,i , j ) =
{

1 if k = kA, i ∈ A, j ∉ A

0 otherwise.

The rows and the columns of W correspond to the elements of R and the spanning trees
of Kn respectively. Let WT be the column vector corresponding to a spanning tree T of
Kn . Then, its (k, i , j )th entry is given by

WT,(k,i , j ) =
{

1 if j is the parent of i in T rooted at k,

0 otherwise.

Now 〈UA,WT 〉 is the number of pairs (i , j ) such that j ∉ A is the parent of i ∈ A in T
rooted at kA, where i ̸= j and kA ∉ {i , j }. In other words, it is the number of nodes in
A\kA whose parent in T rooted at kA is not in A. This shows S A,T = 〈UA,WT 〉, S =UW
and rank+(S) ≤ r = (n

2

)
(n −2) =O (n3). Thus xc(Pspan) =O (n3). This upper bound is also

due to Wong [Won80] and Martin [Mar91].

Lower bound on xc(Pspan)

Proposition 7. If P is a full-dimensional polytope in Rn , then xc(P ) ≥ n +1.

Proof. The polytope P must have at least n +1 vertices, and n +1 constraints defining
them. Consider the (n+1)× (n+1) submatrix S′ of S corresponding to these constraints
and vertices. Each vertex satisfies exactly n of these constraints as equalities since P is
full-dimensional. Thus, every column and every row of S′ has exactly one nonzero entry
and n zero entries making rank+(S′) = n + 1. Since rank+(S′) ≤ rank+(S) = xc(P ), this
proves the result.

12Note i ̸= j .
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Recall that in the description of spanning tree polytope in Example 1 none of the con-
straints are redundant and there is one equality that is satisfied by all points. Thus Pspan

has dimension
(n

2

)− 1. By the previous proposition, xc(Pspan) ≥ (n
2

) = Ω(n2). Recently,
Khoshkhah and Theis [KT18] improved this lower bound by a logarithmic factor and
comment that this is best possible using combinatorial methods. It is an open problem
to improve any of these upper or lower bound13.
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