Extended Formulations

Introduction’

Consider a polytope P = {x € R" | Ax < b}, where A is a m x n matrix for m = n. The
size of a polytope will be the number inequalities in Ax < b*. For our main theorem, we
assume that none of the inequalities in Ax < b are implicit equalities. We also assume
that there are no redundant constraints®. Thus, every constraint in Ax < b corresponds
to a facet [Theorem 8.1. [Sch98]].

Although ellipsoid method solves LP in polynomial time, it is impractical and alter-
natives such as Simplex or interior point method require knowing all the constraints.
Hence, we are interested in expressing a polytope using polynomially many inequali-
ties (in the number of variables). It is possible that the size is exponential even after
removing the redundant constraints. We could then try to extend a polytope to a higher
dimension, i.e, increase the number of variables, and hope that the size is polynomial in
the new number of variables. See an example below.

Example 1 (Spanning Tree Polytope). Let Pspan be the convex hull of the characteristic
vectors of the spanning trees of the complete graph K;,. The characteristic vector is a
vector x € R() such that each entry x; ; corresponds to an edge {i, j}. Then, Pspan as
described by Edmonds [Edm71] is :

" LipjeXii =Nl
. Z{i,j}e(g) Xi,j = |Al—1 forall AcV,

e 0=<x;;<1 forall{i,j}e(‘z/).

The number of variables and the size of this description is @ (n?) and @ (2") respectively”.
By introducing @ (n®) new variables, Martin [Mar91] showed that Pspan has an extended
formulation of size @ (n3).

Example 2 (Parity polytope). Let PP = CH{x € {0,1}" | Z;?:l x; = k for some odd k}. A
description of this polytope was given by Jeroslow [Jer75]:

IThis presentation is based on [Yan91]. There are of course notes on this topic by many others: here,
here, here and here.

2The alternative is to define the size as number of equalities plus the inequalities. But Fiorini et al.
[FMP*15] comment that it makes little difference.

3By Khachiyan'’s theorem, implicit equalities and redundant constraints can be found in polynomial
time. See the remark below Theorem 13.4 [Sch98].

“Verify that none of the constraints are redundant.


https://www.epfl.ch/labs/disopt/wp-content/uploads/2018/09/4.pdf
https://www.cs.mcgill.ca/~yli252/files/552xc.pdf
https://www.timroughgarden.org/w15/l/l5.pdf
https://theory.stanford.edu/~jvondrak/MATH233B-2017/lec18.pdf

* YieaXi—XieaXi<|Al-1 for all even subsets A of {1,...,n},
e 0=<x;=<1 for all i.

The number of variables is n but the size of this description is exponential. Next, we
can increase the number of variables and reduce the size to a polynomial. For this, write
PP = CH{Uj 0adSk}, where S = {x € {0,1}" | X", x; = k}. We need two observations: (i)
PP =CH{Ujoad CH{Si}}. (i) If y € CH{S}*, then X1 y; = k.

By Observation (i), x € PP iff there exists a;’s and y; € CH{Sy} such that x =) . oqd @k V&
where

* Dkodd@k = 1.
Let y;  denote entries of y, and define z; = a yk. Let z; . denote entries of z;. Then,
. xi:ZkOddZi,k foralli=l,...,n.

By Observation (ii), Z?zl ¥i .k = k for each yi, which can also be written as

X zik=ark for all odd k.
Since each y; €10,11", i.e, each y; r € [0, 1], we have
* 0<sz;r<ag foralli=1,...,nand odd k.

These four constraints describe PP. The number of variables and the number of in-
equalities are both @ (n?).

Extended formulation

To formalize this idea of extending a polytope to a higher dimension, we define the fol-
lowing.

Definition 1. Let P = {x e R" | Ax < b}, and Q ={(x,y) e R"*S | Bx+Cy < d}. Then, Q isan
extended formulation of P if P = {x e R" | 3y e R® s.t. (x, y) € Q}. The extension complexity
xc(P) of P is the minimum size of an extended formulation of P °.

One way to prove P = NP is to express any NP-complete problem by a LP, and show
that it has an extended formulation of polynomial size. Yannakakis [Yan91] shows that
matching and TSP polytope cannot be expressed by a symmetric LP of subexponential
size. This demonstrates that LP approach cannot determine P = NP. Later Fiorini et al.
[FMP™*15] show that TSP polytope cannot be expressed by a LP of superpolynomial size,
and Rothvoss [Rot17] shows that matching polytope has exponential extension com-
plexity which also implies exponential lower bound for TSP polytope. Note that expo-
nential lower bound does not mean that the linear optimization problem over that LP

SNote y € [0,1]".

SThere is also a different definition. We say that a polytope Q expresses P if there exists a linear map 7
such that 7(Q) = P. It can be shown that these two notions are equivalent, i.e, xc(P) is the minimum of
the number of facets over all polytopes that express P [Yan91, FMP*15].



cannot be solved in polytime. E.g. checking whether a graph has a perfect matching can
be done polynomial time, but the decision version of TSP is NP-complete.

Slack matrix

A polytope P in R"” with m facets and v vertices can be described in two ways. Let {x €
R™ | (A;,x) < b;} for i = 1,..., m be the halfspaces corresponding to the facets. If A is a
matrix whose rows are the vectors Ay, ..., A;;, then P can be expressed as an intersection
of these halfspaces,

P={xeR"| Ax < b}.

Let x!,..., x" be the vertices of P. Then, P can also be expressed as a convex hull of these
vertices,
P=CH(®!,...,x").

Next, we define slack matrix.

Definition 2. The slack matrix S associated with a polytope P is a m x v matrix, whose
rows are indexed by the facets and columns are indexed by the vertices, such that its (i, j) "
entry is the slack of j'" vertex in the i'" constraint given by

Si,j = bi — (A;, x7).
Observe that S is a nonnegative matrix.

Nonnegative rank

Let us first recall a definition of rank of a matrix. A matrix A has rank r if r is the smallest
integer such that A can be written as a sum of r rank 1 matrices’, i.e., if Aisamxn
matrix over R of rank r, then there exists vectors uy,..., 4, € R™ and vy,..., v, € R” such
that A= Z;zl uivl.T. Define U to be the m x r matrix whose columns are u;,..., u;, and
V to be the r x n matrix whose rows are v ,...,v!. Then, A= UV. Thus we have

Definition 3. Let A€ R™*". Then,
rank(A) = min{r | 3U e R""™*" V e R"*" such that A= UV}.
Similar to this is the notion of nonnegative rank denoted by rank, for nonnegative ma-
trices.
Definition 4. Let A€ RI". Then,
rank; (A) = min{r | 3U e RZ;", V e RLy" such that A= UV}.

It is easy to see that rank(A) < rank, (A) for a nonnegative matrix A8,

"By singular value decomposition of a real matrix A of size m x n and rank r, there exists two orthogonal
matrices Q and R such that A = QXR7, where X is a nonnegative diagonal matrix of size m x n such that
its first r diagonal entries are nonzero. Let Qy,...,Q;, and Ry, ..., R, be the columns vectors of Q and R
respectively. Then, A = Zgzl QiZ,-,iRiT. Let u; =%;;Q; and v; = R;.

8Find examples of nonnegative matrices for which there is a large gap between its rank and nonnega-
tive rank.



Yannakakis’s theorm

Theorem 5. If P = {x € R" | Ax < b} is a polytope with slack matrix S, then rank(S) =
xc(P).

Proof. Claim I: “rank,(S) = xc(P)".

Suppose that rank, (S) = r, then we’ll show that xc(P) < r, i.e, there is an extended for-
mulation of P of size r.

Since rank, (S) = r, there exists matrices U and V of sizes m x r and r x v respectively
such that S = UV. Let Uy,..., Uy € R, be the rows of U, and V},...,V, € R, be the
columns of V. Introducing a new vector y € R", consider a new polytope Q = {(x,y) €
R™7" | Ax+ Uy = b,y = 0} of size r. We'll show next that Q is an extended formulation of
P,ie, P={xeR" |3y e R’ s.t. (x,y) € Q}. This requires showing two inclusions.

Claim 1.1: “P2{xeR" | Iy e R" s.t. (x,y) € Q}".

Consider a x € R” such that there exists y € R” and (x, y) € Q. Then, they satisfy Ax+Uy =
b,y = 0. Since y and U are nonnegative, clearly Ax < b. Thus, x € P.

Claim 1.2: “Pc{xeR" |dy e R" s.t. (x,y) € Q}".

To show that the convex hull definition will be useful. Let x!,...,x" be the vertices of
P. Suppose we show for an arbitrary vertex x/ € P that there exists a y; € R" such that
Ax! +Uyj=band y; = 0. Then, let x € P be an arbitrary point. It can be written as a
convex combination x = Z;zl cjx!. Lety= Z;le c]: y;. Note since y;’s are nonnegatives,
y is also nonnegative. Then, Ax+Uy = Z;zl cj(Ax/+Uy;) = (Z}’zl cj)b=b. Thus (x,y) €
Q proving the inclusion. Now consider an arbitrary vertex x/ € P, and let y; = V; ( jth
column of V). Then,

Alxj + U1Vj Alxj +81’j b1

. . Azx] + U2Vj Azx] + 82’]' bg
Ax! +Uy;j=Ax' +UV; = ) = ) =| | =h

Amx! +UpV; Amx! +Sp,j bm

Thus, (x/,y i) € Qand y; is too since V is nonnegative.
This completes the proof that Q is an extended formulation of P of size r and of Claim 1.
Claim 2: “rank. (S) < xc(P)".

Suppose that xc(P) = r, then we’ll show that rank, (S) < r, i.e, the slack matrix S can be
written as a product of m x r and r x v matrices.

Since xc(P) = r, there is an extended formulation Q = {(x,y) | Bx+ Cy < d} of P with r
inequalities, i.e, B is an r x n matrix and d € R". By definition, P = {x € R" | 3y s.t. Bx +
Cy < d}. Next, we need a result:



Claim 2.1: Given A, b, suppose P = {x | Ax < b} is not empty. Further suppose that (c, x) <
§ for all x € P. Given ' < 6, show that the linear inequality {c,x) < &' is a non-negative
linear combination of the inequalities in Ax < b°.

Thus, each inequality A;x < b; in P is a nonnegative linear combination of inequalities
in Bx+ Cy < d, i.e., there exists a nonnegative vector p; € R” such that plT [B C d|=
[A,- 0 b]. In terms of slacks, we have piT(d —Bx—Cy) = b; — A;x. Also, for each vertex
x/ of P, fix a vector y ;i such that Bx! +Cy i < d (existence due to extended formulation).
Thus, for i'" inequality A;x < b; and j'* vertex x/ of P, we have p!(d - Bx/ — Cy;) =
b, —Ajx = Si,j. Let U be a m x r matrix whose rows are pl.T’s, and V be a r x v matrix
whose columns are d — Bx/ — Cy i's. Then, UV = S where S is the slack matrix. This also
shows rank; (S) < r, and proves Claim 2. O

Corollary 6. [FMP" 15] (a) IfF is an extension of P, then xc(F) = xc(P). (b) If Q is a face
of P, then xc(P) = xc(Q)

This result is useful for showing lower bounds. E.g. the correlation polytope has expo-
nential extension complexity, and it can be shown that TSP polytope contains a face that
is an extension of correlation polytope, which shows that TSP polytope also has expo-
nential extension complexity [FMP* 15].

Upper bound on xc(Pspan)

As an application of this theorem, we show that extension complexity of spanning tree
polytope is @ (n®) by showing a bound on the nonnegative rank of its slack matrix. Let us
consider only the second set of constraints from the description Example 1 for the slack
matrix since the first and the third set of constraints can possibly increase the nonneg-
ative rank only by a polynomiallo. We had forall Ac V, Z{i,j}e(;‘) xi,j <|Al—1. Let S be
a slack matrix of size 2" x n"~2 such that its rows correspond to these constraints, i.e.,
the subsets of V, and columns correspond to spanning trees of K,,'!. Given a subset of
vertices A, and a spanning tree T, the slack of T in the constraint corresponding to A
is
Sar=1Al-1- > Xi,j,
{i,j1e())NE(T)

where E(T) is the set of edges of T. For each subset A< V, fix a vertex k4 € A arbitrarily.
Now make T arooted tree with k4 as the root. Then, the quantity

> Xij

{i,j}e(5)NE(D)

is the number of nodes in A\{ks} whose parent in T is also in A (one node for each
edge). Note that k4 does not have a parent in T which means only |A| — 1 nodes in A

9This is a problem from Assignment 2 in this course.
10Verify this formally!
By Cayley’s formula, the number of spanning trees in K, is n’*~2.



have a parentin 7. Hence,

Sar=1Al-1- > Xi,j
{i,j}e(5)NE(D)

is the number of nodes in A\{k4} whose parent in T is not in A. Now, we introduce a
variable )L,f i for each pair k4 and {i, j} such that k4 ¢ {i,j}lz, and defined as, for the
given spanning tree T,

AT = {1 if j is the parent of i in T rooted at k4,
Avl)]

0 otherwise,

such that
_ T
SA,T_ . Z A/kA;ivj.
€A jEA

Let R = {(k,i,j) | {i, ]} € (Z),k ¢ {i,j}}, and r = |R|. Let U and W be matrices of sizes
2" x r and r x n""? respectively defined as follows: The rows and columns of U corre-
spond to the subsets of A, and the elements of R respectively. Let U, be the row vector
corresponding to a subset A of V. Then, its (k, i, /)" entry is given by

1 ifk=kaicAjeA

Uak,i,j) =
) 0 otherwise.

The rows and the columns of W correspond to the elements of R and the spanning trees
of K, respectively. Let Wt be the column vector corresponding to a spanning tree T of
K. Then, its (k, i, )" entry is given by

{ 1 if jis the parent of i in T rooted at k,
T,(k,i,j) =

0 otherwise.

Now (Uy, Wr) is the number of pairs (i, j) such that j ¢ A is the parentofie Ain T
rooted at k4, where i # j and k4 ¢ {i, j}. In other words, it is the number of nodes in
A\k4 whose parent in T rooted at k4 is not in A. This shows S 1 = (Ua, W), S=UW
and rank, (S) <r =(})(n—-2) = 0 (n®). Thus xc(Pspan) = O(n®). This upper bound is also
due to Wong [Won80] and Martin [Mar91].

Lower bound on xc(Pspq5)

Proposition 7. If P is a full-dimensional polytope in R", then xc(P) = n+ 1.

Proof. The polytope P must have at least n + 1 vertices, and n + 1 constraints defining
them. Consider the (1 +1) x (n+ 1) submatrix S’ of S corresponding to these constraints
and vertices. Each vertex satisfies exactly n of these constraints as equalities since P is
full-dimensional. Thus, every column and every row of S’ has exactly one nonzero entry
and n zero entries making rank, (S’) = n+ 1. Since rank, (S’) < rank, (S) = xc(P), this
proves the result. O

2Note i # j.



Recall that in the description of spanning tree polytope in Example 1 none of the con-
straints are redundant and there is one equality that is satisfied by all points. Thus P4,
has dimension (},) — 1. By the previous proposition, x¢(Pspan) = (5,) = Q(n%). Recently,
Khoshkhah and Theis [KT18] improved this lower bound by a logarithmic factor and
comment that this is best possible using combinatorial methods. It is an open problem
to improve any of these upper or lower bound .
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