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Plan

Parity time-reversal (PT") symmetric quantum mechanics.

Mott metal-insulator transition.
Effect of electric field on a Mott insulator (MI):
Landau-Zener tunneling.

Effect of electric field on a MI: PT symmetry breaking
point of view.

1-dimension : Bethe ansatz.

e 2 and 3-dimension : Dynamical mean-field theory
(DMFT).

o Vortex Mott transition.
e Summary and outlook.



PT -symmetric quantum mechanics

Conventional quantum mechanics
e ‘Reality’ of observables: 2t =%, pt =p, A =H".
e Hermitian operators (eg. Hamiltonian) have real
eigenvalues (eg. energies).

Generalized P T -symmetric quantum mechanics
e Carl Bender (1998): PT symmetric H also has real E's.
o Eg. ICI:ﬁ2+i)“c3.
PH= p 2R [p— —p, ¥ — —3];
TH=p —lx3 [p—>—p, i— —i];
PTH=p+i¥’ =H.



PT -symmetric quantum mechanics
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The condition of self-adjoi ensures that the ci iltonian are real and
bounded below. chhcmg this condition by the weaker condition of ?T symmetry, one obtains
new infinite classes of complex Hamiltonians whose spectra are also real and positive. These PT
symmetric theories may be viewed as analytic continuations of conventional theories from real to
complex phase space. This paper describes the unusual classical and quantum properties of these
theories. [S0031-9007(98)06371-6]

Eg. H = p*+i%(i%). [e = 0 = Harmonic oscillator.]
e For € >0, energy eigenvalues are always +ve and real.
o Near PT-breaking (exceptional points) eigenvalues merge.

Energy




PT -symmetric quantum mechanics

Exoerimental realizations
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Pump-Induced Exceptional Points in Lasers
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We demonstrate tht the above-threshold behavior of a laser can be strongly affected by exceptional
points which are induced by pumping the laser nonuniformly. At these singularities, the eigensiaies of (he
non-Hermitian operator which describes the lasing modes coalesce. In their vicinity, the laser may tum off
even when the overall pump power deposited in the system is increased. Such signatures of a pump-
induced exceptional point can be experimentally probed with coupled ridge or microdisk lasers.

RAPID COMMUNICATIONS

uits with P7° symmetries
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Experimental study of a
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(Received 28 June 2011; revised manuscript received 31 August 2011; published 13 October 2011)

Mutually coupled modes of a pair of active LRC circuits, one with amplification and another with an equivalent
amount of attenuation, provide an experimental realization of a wide class of systems where gain and loss
mechanisms break the Hermitcity while preserving parity-time PT symmetry. For a value ypr of the gain and
loss strength para from real to complex values,
while the normal modes coalesce, acquiring a defini ity. The of the phase transition in the
spatiotemporal energy evolution are also presented.




Mott transition (experiment)

Correlation driven metal-to-insulator transition (MIT)
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e High resistivity (low conductivity) = insulator.
e Low resistivity (high conductivity) = metal.



Mott metal-insulator transition (theory)
Model: Hubbard model

H= —th;rcj —,chjci + UzﬁiTﬁiL- (1)
(i) i i
d =1 solution : Bethe ansatz [E. H. Lieb and F. Y. Wu, PRL 20, 1445
e Finds ground state energies of M 1's and M’ |'s : E(M,M’; U).

Finds chemical potentials gy = +E(M + 1,M;U)FE(M,M;U).
e U, # u_ = insulator.

d > 1 solution : Dynamical mean-field theory (DMFT)
e Exact at d = . [Georges et al. , RMP 68, 13 ('96)]

e Finds interacting DOS or spectral function : A(@) = —+ImG(w);
G: single particle propagator or Green's function.

e Gap at Fermi level (o = 0) signifies insulator.



Mott metal-insulator transition (theory)

Bethe ansatz on 1-D Hubbard model
e No phase transition, always insulator at half-filling.

Eo= U448 (/G0 top(Us/2).

DMFT on Hubbard model for hypercubic lattice
e A(w) shows metal-to-insulator transition : At U > U,,, opens gap at
o =0.

HM (IPT) phase diagram
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[H. Barman and N. S. Vidhyadhiraja, IJMPB 25, 2461 ('11)]



Effect of drive (electric field)

Dielectric breakdown: Landau Zener physics
e Eg. Two-level system: H = vF16% + Ac™.
[Zener, Proc. R. Soc. 145, 523 ('34)]

e Transition probability: Py, =¢7 7,
y=nFy/F; F, = A% /VF; F = ¢E.

nmz
e Cf. Pair production rate in QED: p=¢ £l [Schwinger '51].



Effect of drive (electric field)

Trending !

| Access by Tata Instit.

Dielectric Breakdown of the Insulating Charge-Ordered State in
La Q_XSI‘X NiO 4

S. Yamanouchi, Y. Taguchi, and Y. Tokura
Phys. Rev. Lett. 83, 5555 — Published 27 December 1999
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Dielectric breakdown of one-dimensional Mott insulators SrpCuQOs
and SrCuO»

Y. Taguchi, T. Matsumoto, and Y. Tokura
Phys. Rev. B 62, 7015 - Published 15 September 2000

Nonthermal and purely electronic resistive switching in a Mott
memaory

P. Stoliar, M. Rozenberg, E. Janod, B. Corraze, J. Tranchant, and L. Cario
Phys. Rev. B 90, 045146 — Published 30 July 2014

Dielectric breakdown via emergent nonequilibrium steady states of
the electric-field-driven Mott insulator

Woo-Ram Lee and Kwon Park
Phys. Rev. B 89, 205126 — Published 27 May 2014



Effect of drive (electric field)

Hubbard model in a complex gauge field y:

H=—1t Z [ez\ll C,G jo+h C]+UZI1,THI¢
(li)o

Landau-Zener-Schwinger (LZS) generalized: Landau-Dykhne formula
1 xc / /
v~ gRe [ axIE ()~ Eo()

y(t) = Fi+ix. In non-dissipative case: get back the usual LZS, but no
gap closing !

y~ AX(U)/(VF) = Fy/F; v=|dA/dt|.F.

[T. Oka, PRB 86, 075148 ('12)]



Effect of dissipation : 'PT -symmetric Hamiltonian

Hubbard model with only the dissipative term in the gauge field
(imaginary)

H =—1 Z [e Ci O'ch +e* jO' zo‘] + Uzannll
(ij).0

= _t(COth Z [CtO' ]O' jO' za] +UZH,T}1,¢
(if),o

—i(sinhy)J.
This has a generic form

H=H-i1]

e For small A, (J) = 0= real eigenvalues.
e For A > 2., (J) = I= complex eigenvalues (7 broken ).



ID fermionic Hubbard model

Coupled Bethe ansatz equations:

(k) = ﬁ—@/ 20/ (sink— 2)a (1),
G(A):——/dke (sink — A)p(k +—/ ar'e' (A —1")/2)5(1"),
x(b):b—i/i AL O(A + isinhb)G(1).

(4)

u=U/(4t), 6(x) = —2tanh ~!(x/u), b: parameter controlling contour C
[Fukui and Kawakami, PRB 58, 16051 ('98)].

O [u_cosh(b”/‘*’ do Jl(a))ewsinh(b):| _ (5)

— 21 @1+ 220])
e A(b:) =0, b, = sinh ! (u).

o X/(b) = C(b—be)= xe—x = C1(b—b)* = A(x) = Ca(Xe — %)?.
o =y~ (F.—F)*2



2D fermionic Hubbard model

Numerics : DMFT
e Hamiltonian:

H= Z[[—2t(coskx +cosky) —iAsink, — ,u]cl;cckﬁ] + UZﬁiTﬁii'
k,o i

e Density of states :
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e Finite A leads to 2D to 1D-like crossover at U = 0: splitting of
van-Hove singularity.

e Finite A renormalizes Mott gap, gap closes at A > A, ~ 1.1.



3D fermionic Hubbard model

Numerics : DMFT
e Hamiltonian:
H= Y [[—2t(cos ky + cosky + cosk;) — i sink, — u]clt oCuol TUY Ay, .
k,o i

e Density of states :
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e Not exactly 3D-1D crossover at U =0, two peaks arise near
boundaries instead of singularities.
e Gabp renormalization habpnens too oap closes at A > 21. ~20



Closing of gap : universality

Critical behaviors: 2D and 3D
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o Near the Mott transition, A ~ (A, — 1) VU.

e 2D: v=0.784+0.03, 3D: v ~0.85. (Is v =1 for mean-field d > d,
limit?)



Vortex insulator-to-metal transition
Array of Nb superconducting islands on Si/SiO, substrate

164——7——7——7——— Eo02

0.2

-
= oot 01

¥
» 0.0 4r=1-5| =1 001, F=14]5]

0.1

dv/dr-dvidI(I=1) (Q)
S
|
1z \ e
.
i J

Differential resistance, d V/dZ(Q)

7 : z
<4 7 4 . 4 -
i insulator Y :; ] 01-\__ 014
1 v | 0.01 =1 1001 1w r=1:18] |
0.0 . £=1-6|

™
0.8 0.9 1.0 1 10° 10t

19 o 5
f=B/8, |FL)/1617 |61

[Poccia et al. , Science 349, 1202 ('15)]
e Increasing I = Minimum (ins) to maximum (metal) flip in
differential resistance (dV/dI).
e Critical scaling law:

dV(f,I)_dV(f,I)| _z I-IF
d ar "\ lplE )

o Scaling collapse = £ =2/3 =y~ (I. —I)3/2



Vortex insulator-to-metal transition
e Landau-Ginzburg-Wilson Hamiltonian:
H:/dzx[D|V\|l|2+m2|\|J|2+u|\U\4] 7)

y: vortex field, D: vortex stiffness, m: mass, u : interaction.
Considering W(x,y,1) = e ~*y(x) [Rubinstein, Sternberg, Ma, PRL
99, 167003 ('07)] :

DU +i(l1/p)xu=—(A —mz—ki)u (8)

o = M= —Du" —i(l/p)
o PT-symmetry limits: I =0 = E’s real, I — o = E's imaginary.
E=x/a, E= (l—mz—kg)/ET, Er=D/a* =

W' +i(la/Erp)u= —Eu. (9)

1
= (E; —Ey) ~Er(1-1/1.)2
e = Same universality with 1D-fermions!.
Landau-Dykhne = 7 ~ (I. —1)*/?> = Supports experiment.



Summary and outlook

o Effect of electric field with dissipation on a Mott insulator can be
modeled by a P77 -symmetric Hubbard model.

e The PT-symmetry broken eigenstates signals onset of a
insulator-to-metal transition (dielectric breakdown).

e 1D fermionic Mott insulator (Bethe ansatz) shows transition with
critical exponent 0.5. Vortex Mott transition in superconducting
islands reflects the same universality class.

e 2D and 3D fermionic Mott insulators (DMFT) show transitions with
critical exponents v ~0.78 and 0.85 (Does d > d, reproduces
mean-field limit v =17)

e 1D LZW scheme on PT-symmetric field equation explains critical
behavior in vortex Mott transition.

e Microscopic theory could be developed for vortices (bosonic BA or
B-DMFT 7).

e Benchmarking against results for dissipation treated through a
coupled reservoir [eg. Aron, PRB 86, 085127 ('12)] .
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Appendix A: More about P7T
symmetric QM



PT symmetric QM

Pseudo norm conservation

o (W()IPly(1)) = (w(0)[Ply(0)). [Miloslav Znojil,
arXiv:math-ph/0104012]

Pseudo Hermiticity
o A" =fHAR, f): intertwinning operator.
e 11 =1= Hermitian QM.
e =P = PT-symmetric QM.



Appendix B: DMFT



Classical Weiss mean-field theory

Average magnetization at site O:

m= Z SOeBHMF/ Z PHY

So=+1 So=+1
_ (eBhMF . eiﬁhMF)/(eBhMF + eiﬁhMF)
= tanh(BAMF)

Now AMF = j + Z Jiom; = h+ zJm;

i€ (i0)
z= coordination number, J;; = J for nearest neighbor interaction,
m; =m = (S;)=average magnetization per site .
Wrote (S;) = m as well since Sy is not spin of any special site, i.e.
(Si) = (So)-

Thus ’ m = tanh B (h + zJm) ‘:> self-consistent MF equation.




Quantum version: Dynamical mean field theory (DMFT)

e No order parameter or extensive quantity, but a Green’s function
(probability amplitude of an electron moving from site i to site j
starting at time 7 and ending at 7’):

A

Gjo(t—17)= —<Tcic(r)c;,(fl)>

e No direct mean-field Hamiltonian, but an effective or local action
for an interacting lattice model (e.g. Hubbard model):

Slocalzf/ dr/ ar’ ZCOG (T —1)coe ()
+U/0 dTVlQT(T)I’l()i(T)

e ¢ represents Green's function of the effective conduction bath
attached to an impurity atom. = Single impurity Anderson model
(SIAM).

Ref. Georges and Kotliar, PRB 45, 6479 (1992)



DMFT: Introduction

e A similar picture similar to the classical Weiss mean-field theory.

o Effective single-impurity Anderson model (SIAM) (e.g. a quantum
dot attached to conducting leads)

Hgsiam = Hpath + Himpurity + thbridization
= qucz;o.cqo + (& — ‘Ll)d(J;o‘dOO' + Unmngi] + Z(chjlﬁd()o‘ +h.c.)
qo qo

e Host/bath/mean-field Green's function:
G =1/(0" +u—-A0); Ale)=)[Ve/(0" - &)
q



DMFT: Introduction

e The impurity represents no special site. Mapping is true for each site
in the lattice = self-consistency

Impurity sector:

e Coulomb interaction at impurity site develops a self-energy for the
host Green's function. Impurity Green's function obtained through
Dyson's €q.: Gimpurity71 = gil - Zimpurity-

Lattice sector:

o Further simplification: d — . Only site-diagonal Green's function
(Giis) contribute and self-energy of the lattice become
k-independent.

1
; ot +U— &+ & — Zlocal(a))

Glocal = ZG(k,(D) =
k

® Self—consistency = ’ Gimpurity = Glocal; zimpurity = Ylocal

e No averaging out in the time domain, i.e. quantum dynamics intact.
e Hence the mean-field is dynamical.



DMFT: In practice

What can we do within DMFT framework?

e Green's function tells about the spectral density (DoS):
D(w) = f%ImG(a)); can be tested through ARPES experiment.

e Transport properties using Kubo formula (e.g. conductivity):

01(0) = 7o [ dte (j(a.1)i(a.0))

oot p(@0) —np(0+ @) [G*(@') — G(o + o)

ke [ da o [ Ho+@)—7 (@)

B G(a)’)—G(a)—Ho’)}
Yo+ o) —y(o')

e And many more: Energy, specific heat, Hall coefficient,
susceptibility.



DMFT: Numerical steps

Im purity
Problem
Approximation N
G G.E
N Dyson's eq. /
Self

Consistency

1. Start with a guessed ¢ or ¥.

2. Use and impurity solver (e.g. IPT, LMA, NRG, ED) to find ¥ and .
3. Calculate the local Green's function for a given lattice DoS (Dy).

_ Dy(¢)
Glo) = /ds ot — edis— Y (o)

4. Use Dyson's eq. to update ¢ or ¥X:
7 Y 0)=G6"Yw)+ (o)

e The most difficult task is to find a suitable impurity solver




Semi-analytic impurity solver

Iterated perturbation theory (IPT)[Georges, Kotliar, Jarrell, Pruschke, Cox]

Wy + Wy

(0)= lim ,322% i+ iV )o (i@ + Vi) %o (i) “
—

iwy, + iy,

—_

Local moment approach (LMA) [Logan, Eastwood, Vidhyadhiraja]

RPA (LMA)

7N
®=lmio+ ?JFECJ(LK}.QJ' —

!

IPT

Hartree Fock

o (0) = 2m/ 4o’ F5(0 — )% (o)

e Spin symmetry broken, but restored for Fermi liquid phase by
satisfying: Yo 05 (0) = |u|U; = (i — iz}



Results: Mott metal-insulator transition

DMFT+IPT: Spectral functions and resistivity
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e Mott transition with thermal hysteresis observed.

[H. Barman and N. S. Vidhyadhiraja, IJMPB 25, 2461 (2011)]



Appendix C: Bethe Ansatz



Basic formalism

1. f(x1,---,xn): Amplitude of wavefunction with electrons J-spin
residing in sites x1,---,xy and T-spin residing in sites xp; 41, - ,XN.

2. Ansatz: f(x1,---,xn) = Lp[Q, Plexp(iL}Y kpxg;)
where P, Q are set of N unequal real numbers.

3. Lieb-Wu equations:

M
Lkj=2xrl+ ) 6(2sink; —2Ag),j=1,2,...,N;
B=1

02Ny —2sink;) =27/ — Ze —Ag),x=12,....M

N
=1

0(x) = —2tan ' (2x/U), —m < 6 <,
(10)

Ijintegers for M, Jy:integers for M’.





