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1 Topological state in condensed matter

The conventional way of viewing the phases/states in condensed matter is
from the point of broken/enhanced symmetry, e.g. crystals with broken
translational and rotational symmetry, ferromagnets with broken rotational
and time-reversal symmetry, and superconductors with broken U(1) gauge
symmetry. However, after the discovery of quantum hall effect (QHE) [I],
though not understood at that time, the perception about states of matter
has moved from symmetry broken order to a different kind of order, reason-
ably termed as the topological order. One may argue that QHE arises in 2D
electron gas by applying magnetic field that breaks time-reversal (TR) sym-
metry of the system and hence can be viewed as a result of broken TR sym-
metry. However, the topological connection has been discussed in the next
section and the recent realization of the quantum spin Hall effect (QSHE)
due to presence of strong spin-orbit (SO) coupling, which is a relativistic
effect that preserves the TR symmetry, forces us think of a new state of mat-
ter. This new material is like a band insulator in the bulk with protected
(unaffected by disorder) conducting states on the edges or surfaces and hence
it is named topological insulator. Presence of this protected state has drawn
a big attention to the scientific community with a promise of dissipationless
modern computation. The topological order concept was first introduced in
the context of fractional quantum Hall effect by X-G Wen in 1995 [2].

2 Topological order in 2D, topological invari-
ants

2.1 TKNN invariant

The QHE shows a quantized conductivity :
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Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) [3] identified this in-
teger n as an integral of the Bloch wave functions over the magnetic Brillouin
zone (BZ), and corresponds to the first Chern class of a U(1) principal fiber



bundle on a torus. The periodicity of a crystal Hamiltonian can be topo-
logically mapped onto a torus. A torus or band-structures are topologically
equivalent if the former can be deformed to the latter continuously without
closing the bandgap. Thus they both share the same topological invariant,
which is denoted by n, the Chern number. The Chern number is the Euler
characteristic that appears as an integer in the Gauss-Bonnet theorem in
Riemann manifold. The Chern number can be associated to the Berry phase
which appears in the Bloch wave function |u,,(k)) when its momentum k in
the band m moves around the closed loop of a periodic BZ. The Berry phase
is given in form of a line integral A,, = i(uy|Vi|u,,) which can be finally
written in term of Berry flux &, = V x A,,, and the Chern number will be

n:Z%/ko?m (2)

TKNN showed the conductivity o, calculated from the Kubo formula has
the same form and hence the Chern number is exactly the same in both cases.

2.2 75 invariant

Now as we know that the QHE appears only when the TR is broken, the
Hall conductivity and hence the TKNN invariant n = 0 when there is a
TR symmetry. As we mentioned before that in QSHE, though there will be
two Chern numbers ny and ny, the total number n = ny + n; = 0 due to
the presence of TR symmetry, whereas the Hall conductivity for spins will
be finite and quantized since nt - n; # 0 (i.e. S, is conserved). This spin
conservation and hence Hall quantization can break down in presence of other
interactions or disorder, but the topological order will not be disturbed since
Kramer’s theorem for the spin—% particles protects the edge states [4, 5] [6].
The presence of protected edge state even when TKKN invariant n = 0
distinguishes from ordinary insulator and offers a new class of topological
invariant, which is classified as Z5 topological order. This additional invariant
can have two possible values, v = 0 (trivial insulator) and v = 1 (topological
insulator). By simple arguments based on Haldane model Kane and Mele [7]
showed that the quantum spin Hall insulator (QSHI) is robust only when
number of edge states crossing the Fermi level is odd, the Z; number is
v = 1. When the number of edge states is even it becomes a trivial insulator

(v =0).



3 'Topological order in 3D

Since there is no QHE in 3D, the only way to get a 3D TT is through lay-
ers of 2D QSHIs. However, Moore and Balent [6] showed that apart from
three invariants coming from three layers, another fourth 7, invariant exists.
Therefore total 2* = 16 different classes of TI can emerge. Thus the Z,
invariants are written as vy; v, Ve, v3. The layered 3D insulator (1 = 0) is
termed as the weak topological insulator (WTI) since presence of disorder
can localize the surface states and the insulator becomes equivalent to a band
insulator. In contrast, 1y = 1 for the strong topological insulators (STI), one
can think of a Dirac cone with Kramers degeneracy at the Dirac point. The
surface of a STI forms a 2D topological metal that encloses odd number of
such Dirac points.

4 Experimental realization

4.1 2D TI

Though spin-orbit interaction exists in all materials, only a few turned out to
be suitable candidates for 2D TI. In 2006, Berenvig, Hughes, and Zhang [§]
proposed that such a QSHI state can be realized in HgTe quantum well struc-
ture sandwiched between CdTe. Their prediction was based on the theory of
band inversion that arise due to the strong SO coupling that affects beyond
a critical thickness of HgTe layer. In a short while a team led by Laurens
Molenkamp [9] from the university of Wiirzburg observed the QSH effect
in HgTe quantum wells grown by molecular beam epitaxy. Since the QSHI
with TR symmetry does not promise QHE, they found only the mesoscopic
Landauer-Biittiker [T0] conductance, i.e. o = 2¢?/h from the edge states.

4.2 3D TI

Zhang’s group’s calculation shows that the dispersion relation for the edge
states in 2D TT is linear which is exactly a characteristic of massless Dirac
fermions. If this can be generalized to 3D then one should expect a Dirac
cone. Fu and Kane [11] estimated the Z, invariants from the knowledge



of the parity of the TR invariant momenta ['; in the BZ. Based on their
calculation they predicted that the alloy Bi;_,Sb, and a-Sn and HgTe under
uniaxial strain could be good candidates for STI. Zahid Hasan’s group [12]
first found topological surface states (Dirac cone) in Bi;_,Sb, alloy. The
search moved forward to other materials, e.g. BisTez, BisSes, and ShyTes
following later prediction by Zhang’s group [13]. Further STM and spin-
ARPES measurement on BisSe; samples by Robert Cava’s group [14] in
collaboration with Hasan’s group confirmed that the spins indeed lie on the
surface where backscattering is found to be absent despite strong atomic scale
disorder.

5 Applications

5.1 Axion electrodynamics

In electromagnetic field theory the Lagrangian density can be written as

1 1
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Now the question arises: what happen when we have electro-magnetic cou-
pling, i.e. an additional term
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arises with invariance under # — 6 + 2w. This additional term is known as
the axion field term which has been introduced in order to solve strong CP
violation problem in particle physics [16, [15]. Since E is TR invariant and B
is odd to TR symmetry, the Lagrangian loses the TR symmetry unless 6 is
odd to TR as well. Now Qi et al. [I7] and Essine, Moore and Vanderbilt [1§]
argued that the trivial TT and STI belong to the special choices of § = 0
and 0 = 7 respectively. Hence they belong to the Z5 invariant class and 6 /7
is identical to the invariant r. This particular choice of 6 arises due to its
periodicity over 27 and can be understood from the analogy with magnetic
field in a 1-D ring where the electron wavefunction picks up a phase depending
on two special choices of the magnetic flux ® = 0 or & = hc/(2e) after
completing a full circular path. According to the topological field theory the
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coefficient in the axion term (after the second equality in the above eq.) gives
the value of the Hall conductance [19]. Thus 6 = 7 gives rise to 1/2(e?/h)
which can only be shifted by an integer due to disorders. This measurement
of surface Hall conductivity in STI can become a confirmation topological
robustness and the axion electrodynamics as well.

5.2 Majorana fermions

Majorana fermion is a fermion which is its own antiparticle. A particle
to be its own particle is true for spin-1 photon and spin-0 neutral pions.
However, this has not been yet observed in any known half-spin integral
particle. Majorana fermion state appears when the Dirac equation is treated
for real field solutions instead of complex field for electrons/positrons [20].
The possibility for Majorana particle is first thought for the neutral neutrino
or anti-neutrino and the double-beta decay is being quested for a long time.
The other possibility is in the supersymmetry partner of neutral bosonic
fields, e.g. the superpartner photino for photons, may be confirmed in recent
large hadron collider (LHC) experiment going on in CERN, Geneva.

Jackiw with Rebbi [2I] and Rossi [22] showed that, apart from the positive
an negative energy eigen values, a bound isolated zero energy mode can exist
with a Dirac-type equation in presence of a topological defect, e.g. soli-
ton/domain wall in polyacetylene (1D), vortex in a 2D superconductor, and
't Hooft magnetic monopole in 3D. In case of conventional Dirac representa-
tion this zero mode gives rise to charge fractionalization (41/2), whereas in
Majorana representation [20] that treats the field operator to be real, zero
mode with chargeless (neutral) Majorana fermion emerges.

Realization of such bound Majorana states (MBS) is first proposed by Read
and Green [23] for the p, +ip, wave superconductor, e.g. in SroRuO, [24] and
in cold-atoms [25]. They found that the Bogolioubov-de Genes (BdG) equa-
tion for weak pairing superconductor can be deduced to Dirac equation with
real fields and presence of vortex leads to bound Majorana state. Though
conventional s-wave superconductor does not show zero modes, the presence
of MBS can be found in topological superconductors which can arise in a
strong T1 due to proximity effect when the TT’s surface is close to that of a
superconductor. Fu an Kane [26] suggested some methods to engineer them
in real experiments.



5.3

Next generation computer

The protected surface/edge states promise to get rid of decoherence in the
spin current which is very crucial for next generation quantum computa-

tion.

Also if bound Majorana fermions ever been found, their non-Abelian

statistics will build the qubits necessary for quantum calculation [27].

6

Open challenges

Despite my short-term visit through literature, I believe the following issues
still persist.

6.1

1.

Experimental

More and efficient T1s, specially with large band gap in the bulk with-
out mixing to the edge/surface states.

. Measure magnetoelectric effect.

Optimize proximity effect.
Suitable superconductor which makes good interfaces.

Create and detect Majorana bound states.

Theoretical

. Theory for protected edge states considering interaction.

Effect of disorder and interaction.

Effect of superconductivity.

Role of topological defects (e.g. dislocation [28§]).
Predict other TIs.

Enhance figure of merit in thermoelectric TTs [29].
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