TOPOLOGICAL (CHERN-SIMONS) QUANTUM MECHANICS IN REDUCED FORM

(Project Report)

Project Student:Himadri Barman
Dept. of Physics,University of Pune
Ganeshkhind,Pune 411007.
and Project Guide:Biswajit Chakraborty
S. N. Bose National Centre for Basic Sciences
JD Block, Sector III, Salt Lake City, Kolkata -700 098, India

July 7, 2004

Abstract:

Here we look up the similarity between the Chern-Simons gauge field theory and the general quantum mechanical model. We also have a view on the zero-mass approach of this model.

Introduction:

The Chern-simons gauge theory is one of the special models needed to describe the topological phenomena in odd dimensional space-time. This play a vital role for 3-D dynamics in high temperature Quantum Hall Effect and String Theory in cosmology. This paper discusses the connection of the (2+1) dimensional Chern-Simons theory with the 1-dimensional space-time phenomena (i.e. our common quantum mechanics). It also shows that this relation holds even in the reduced (zero-mass) theory.

1 A Comparative study:

Consider the case of Landau Level Problem where a particle of m and charge e executes motion under crossed electromagnetic field. Its equation of motion can be written as:

$$L = \frac{m}{2}\dot{\mathbf{q}}^2 + \frac{e}{c}\dot{\mathbf{q}}.\mathbf{A}(\mathbf{q}) - e\mathbf{V}(\mathbf{q})$$
 (1)

Here magnetic field, $\mathbf{B} = \nabla \times \mathbf{A}$ i.e. $B = \partial_i A^j - \partial_j A^i$ and electric field, $\mathbf{E} = -\nabla \mathbf{V}$ i.e. $E^i = -\partial_i V$

Now consider the gauge field $\bf A$ to be rotationally symmetric in (2+1) dimensional space time [i.e. $A^i({\bf q})=\epsilon^{ij}A(q)$] and so we take $\bf A^i({\bf q})=-\frac{1}{2}\epsilon^{ij}q^jB$ as we one can choose for uniform magnetic field $\bf B, \bf A=-\frac{1}{2}{\bf q}\times \bf B$

Also take $V(q) = kq^2/2$ i.e. harmonic potential

Therefore
$$L = \frac{m}{2}\dot{q}^{i}\dot{q}^{i} - \frac{B}{2}\frac{e}{c}\dot{q}^{i} - \frac{k}{2}e\dot{q}^{i}\dot{q}^{i}$$

 $= \frac{m}{2}\dot{q}^{i}\dot{q}^{i} - \frac{B}{2}\dot{q}^{i} - \frac{k}{2}e\dot{q}^{i}\dot{q}^{i}$ [Choosing e=c=1]
 $= \frac{m}{2}\dot{\mathbf{q}}^{2} - \frac{B}{2}\dot{\mathbf{q}} \times \mathbf{q} - \frac{k}{2}\mathbf{q}^{2}$

i.e.
$$L = \frac{m}{2}\dot{\mathbf{q}}^2 + \frac{B}{2}\mathbf{q} \times \dot{\mathbf{q}} - \frac{k}{2}\mathbf{q}^2$$
 (2)

Now Lagrangian density in Weyl $(A^0 = 0)$ gauge:

$$\mathcal{L} = \frac{1}{2}\dot{A}^2 + \frac{\mu}{2}\dot{\mathbf{A}}^2 - \frac{1}{2}(\nabla \times \mathbf{A})^2 \qquad (3)$$

Setting $\mathbf{A} \to \sqrt{\frac{\kappa}{\mu}}$,

$$\mathcal{L} = \frac{1}{2} \frac{\kappa}{\mu} \dot{\mathbf{A}}^2 + \frac{\kappa}{2} \dot{\mathbf{A}} \times \mathbf{A} - \frac{1}{2} \frac{\kappa}{\mu} (\nabla \times \mathbf{A})^2$$

Therefore $\mathcal{L}_{CS} = \frac{\kappa}{2} \dot{\mathbf{A}} \times \dot{\mathbf{A}}$ as $\mu \to \infty$ (4) where "CS" stands for pure Chern-Simons term which occur on a reduced phase-space

For $m \to 0$, Lagrangian in (2) can be written in reduced form:

$$L_0 = \frac{B}{2}\mathbf{q} \times \dot{\mathbf{q}} - \frac{k}{2}\mathbf{q^2} \qquad (5)$$

If $k \to 0$ also,

 $L = \frac{B}{2}\mathbf{q} \times \dot{\mathbf{q}}$ which is similar to eq.(4)

2 Hamiltonian formulations:

Now we are going to formulate the Hamiltonian from the above Lagrangian expressions:

From (2)

$$L = \frac{m}{2}(q^i)^2 + \frac{B}{2}\epsilon^{ij}q^i\dot{q}^j$$
$$= \frac{m}{2}(q^i)^2 - \frac{B}{2}\epsilon^{ij}q^j\dot{q}^i$$

Therefore canonically conjugate momentum,

$$p^{i} = \frac{\partial L}{\partial \dot{q}^{i}} = m\dot{q}^{i} - \frac{B}{2}\epsilon^{ij}q^{j} \tag{6}$$

gives the Hamiltonian,

$$\begin{split} H &= p^i \dot{q}^i - L \\ &= p^i \dot{q}^i - \frac{m}{2} \dot{q}^i \dot{q}^i - \frac{B}{2} \epsilon^{ij} q^i \dot{q}^j + \frac{k}{2} q^i q^i \\ &= p^i \dot{q}^i - \frac{1}{2m} (m \dot{q}^i) (m \dot{q}^i) + \frac{B}{2} \epsilon^{ij} q^j \dot{q}^i + \frac{k}{2} q^i q^i \\ &= (p^i + \frac{B}{2} \epsilon^{ij} q^j) \dot{q}^i - \frac{1}{2m} (m \dot{q}^i) (m \dot{q}^i) + \frac{k}{2} q^i q^i \\ &= \frac{1}{m} (p^i + \frac{B}{2} \epsilon^{ij} q^j) (m \dot{q}^i) - \frac{1}{2m} (p^i + \frac{B}{2} \epsilon^{ij} q^j) (p^i + \frac{B}{2} \epsilon^{ik} q^k) + \frac{k}{2} q^i q^i \\ &= \frac{1}{m} (p^i + \frac{B}{2} \epsilon^{ij} q^j) (p^i + \frac{B}{2} \epsilon^{ik} q^k) - \frac{1}{2m} (p^i + \frac{B}{2} \epsilon^{ij} q^j) (p^i + \frac{B}{2} \epsilon^{ik} q^k) + \frac{k}{2} q^i q^i \end{split}$$

$$= \frac{1}{2m} (p^i + \frac{B}{2} \epsilon^{ij} q^j) (p^i + \frac{B}{2} \epsilon^{ik} q^k) + \frac{k}{2} q^i q^i \tag{7}$$

Since the Hamiltonian is obtained by Legendre transform of the Lagrangian the following conventional commutation relations hold:

$$[q^i, q^j] = 0, \quad [p^i, p^j], \quad [q^i, p^i] = \delta^{ij}$$
 (8)

Now,
$$\dot{p}^i = i[H, p^i]$$

 $= i\frac{1}{2m}[(p^l + \frac{B}{2}\epsilon^{lj}q^j)(p^l + \frac{B}{2}\epsilon^{lk}q^k), p^i] + i\frac{k}{2}[q^lq^l, p^i]$
 $= i\frac{1}{2m}(p^l + \frac{B}{2}\epsilon^{lj}q^j)[(p^l + \frac{B}{2}\epsilon^{lk}q^k), p^i] + i\frac{1}{2m}[(p^l + \frac{B}{2}\epsilon^{lj}q^j), p^i](p^l + \frac{B}{2}\epsilon^{lk}q^k) + ikq^l[q^l, p^i]$
 $= i\frac{1}{2m}(p^l + \frac{B}{2}\epsilon^{lj}q^j)\frac{B}{2}\epsilon^{lk}\delta^{ki} + i\frac{1}{2m}(p^l + \frac{B}{2}\epsilon^{lk}q^k)\frac{B}{2}\epsilon^{lj}\delta^{ji}$
 $= -\frac{1}{2m}(p^l + \frac{B}{2}\epsilon^{lj}q^j)\frac{B}{2}\epsilon^{li} - \frac{1}{2m}(p^l + \frac{B}{2}\epsilon^{lj}q^j)\frac{B}{2}\epsilon^{li} - kq^i$
 $= \frac{B}{4m}\epsilon^{il}(p^l + \frac{B}{2}\epsilon^{lj}q^j) + \frac{B}{4m}\epsilon^{il}(p^l + \frac{B}{2}\epsilon^{lk}q^k) - kq^i$
 $= \frac{B}{2m}\epsilon^{ij}(p^j + \frac{B}{2}\epsilon^{jk}q^k) - kq^i$ (9a)
and $\dot{q}^i = i[H, q^i] = i\frac{1}{2m}[(p^l + \frac{B}{2}\epsilon^{lj}q^j)(p^l + \frac{B}{2}\epsilon^{lk}q^k), q^i] + i\frac{k}{2}[q^lq^l, q^i]$
 $= i\frac{1}{m}(p^l + \frac{B}{2}\epsilon^{lj}q^j)[p^l, q^i]$
 $= i\frac{1}{m}(p^l + \frac{B}{2}\epsilon^{lj}q^j)(-i\delta^{li})$
 $= i\frac{1}{m}(p^i + \frac{B}{2}\epsilon^{ij}q^j)$ (9b)

Therefore
$$\dot{p}^i = \frac{B}{2m} \epsilon^{ij} (p^j + \frac{B}{2} \epsilon^{jk} q^k) - kq^i$$

and
$$\dot{q}^i = i\frac{1}{m}(p^i + \frac{B}{2}\epsilon^{ij}q^j)$$

To find out the solutions take

$$\begin{split} z &= q^1 + iq^2 \\ \text{and } p &= p^1 + ip^2 \\ \text{From (9b), } \dot{q}^1 &= \frac{1}{m}(p^1 + \frac{B}{2}q^2)\&\ \dot{q}^2 = \frac{1}{m}(p^2 - \frac{B}{2}q^1) \\ \text{Therefore } \dot{z} &= \dot{q}^1 + i\dot{q}^2 \\ &= \frac{1}{m}(p^1 + ip^2) + \frac{B}{2m}(q^2 - iq^1) \\ &= \frac{1}{m}(p^1 + ip^2) - i\frac{B}{2m}(q^1 - iq^2) \\ \text{i.e. } \dot{z} &= \frac{1}{m} - \frac{iB}{2m}z \end{split} \tag{10a}$$

From (9a),
$$\dot{p}^1 = \frac{B}{2m}(p^2 - \frac{B}{2}q^1) - kq^1 = \frac{B}{2m}p^2 - (\frac{B^2}{4m} + k)q^1$$

& $\dot{p}^2 = -\frac{B}{2m}(p^1 + \frac{B}{2}q^2) - kq^2 = -\frac{B}{2m}p^1 - (\frac{B^2}{4m} + k)q^2$

Therefore
$$\dot{p} = \dot{p}^1 + i\dot{p}^2$$

$$= \frac{B}{2m}(p^2 - ip^1) - (\frac{B^2}{4m} + k)(q^1 + iq^2)$$
$$= -\frac{iB}{2m}(p^1 + ip^2) - (\frac{B^2}{4m} + k)(q^1 + iq^2)$$

(9a & 9b)

$$\begin{split} &= -\frac{iB}{2m}(p^1 + ip^2) - m(\frac{B^2}{4m^2} + \frac{k}{m})(q^1 + iq^2) \\ &\text{i.e. } \dot{p} = -\frac{iB}{2m}p - m\Omega^2z \qquad (10b) \text{ where } \Omega^2 = (\frac{B^2}{4m^2} + \frac{k}{m}) \\ &\text{If we choose } z = e^{-\frac{iB}{2m}t}\{z(0)\cos\Omega t + \frac{p(0)}{m}\Omega\sin\Omega t\} \qquad (11a) \\ &\text{and } p = e^{-\frac{iB}{2m}t}\{p(0)\cos\Omega t - m\Omega z(0)\sin\Omega t\} \qquad (11b) \\ &\text{then} \\ &\dot{z} = e^{-\frac{iB}{2m}t}\{z(0)\sin\Omega t + \frac{p(0)}{m}\Omega\cos\Omega t\} - \frac{iB}{2m}e^{-\frac{iB}{2m}t}\{z(0)\cos\Omega t + \frac{p(0)}{m}\Omega\sin\Omega t\} \\ &\dot{z} = \frac{1}{m}p - \frac{iB}{2m}z \text{ !satisfies } (10a) \\ &\text{and } \dot{p} = e^{-\frac{iB}{2m}t}\{-\Omega p(0)\sin\Omega t - m\Omega^2 z(0)\cos\Omega t\} - \frac{iB}{2m}e^{-\frac{iB}{2m}t}\{z(0)\cos\Omega t + \frac{p(0)}{m}\Omega\sin\Omega t\} \\ &= -m\Omega^2 e^{-\frac{iB}{2m}t}\{\frac{p(0)}{m\Omega}\sin\Omega t + z(0)\cos\Omega t\} - \frac{iB}{2m}e^{-\frac{iB}{2m}t}\{z(0)\cos\Omega t + \frac{p(0)}{m}\Omega\sin\Omega t\} \\ &= -m\Omega^2 z - \frac{iB}{2m}p \text{ !satisfies } (10b) \end{split}$$

Now the case where $m \to 0$ will be observed

Reduced Hamiltonian for $m \to 0$

$$H_0 = \frac{k}{2} \mathbf{q^2}$$
 (12) [because $p^i + \frac{B}{2} \epsilon^{ij} q^j = 0$ as $m \to 0$ and so does not contribute in eq.(7)] Also from (5)

$$H_{0} = p^{i}q^{i} - L_{0} = p^{i}q^{i} - \frac{B}{2}\epsilon^{ij}q^{i}\dot{q}^{j} + \frac{k}{2}q^{i}q^{i} \quad [\text{since } L_{0} = \frac{B}{2}\epsilon^{ij}q^{i}\dot{q}^{j} - \frac{k}{2}q^{i}q^{i}]$$

$$= \frac{B}{2}\epsilon^{ji}q^{j}\dot{q}^{j} - \frac{B}{2}\epsilon^{ij}q^{i}\dot{q}^{j} + \frac{k}{2}q^{i}q^{i} \quad [\text{since } p^{i} = \frac{\partial L_{0}}{\partial \dot{q}^{i}} = \frac{B}{2}\epsilon^{ji}q^{j}]$$

$$= \frac{k}{2}q^{i}q^{i} \quad [\text{since } \epsilon^{ji}q^{j}\dot{q}^{j} = \epsilon^{ij}q^{i}]$$
Thus $H_{0} = \frac{k}{2}\mathbf{q}^{2}$ (12)
and $L_{1} = \frac{B}{2}\epsilon^{ij}a^{i}\dot{q}^{j} - \frac{k}{2}a^{i}a^{j}$

and
$$L_0 = \frac{B}{2} \epsilon^{ij} q^i \dot{q}^j - \frac{k}{2} q^i q^i$$

= $\frac{1}{2} q^i (\epsilon^{ij}) \dot{q}^j - H_0$

Comparing with the symplectic form of Lagrangian

$$L = \frac{1}{2}q^{i}\{q^{i}, q^{j}\}^{-1}\dot{q}^{j} - H$$

we have,

$$\{q^i, q^j\}^{-1} = \epsilon^{ij}B \Rightarrow \{q^i, q^j\} = 1/(\epsilon^{ij}B) = -\epsilon^{ij}/B$$

$$\Rightarrow [q^i, q^j] = i\{q^i, q^j\} = -i\epsilon^{ij}/B$$
 (13)

Therefore,
$$\dot{q}^i = i[H_0, q^i] = i\frac{k}{2}[(q^j)^2, q^i]$$

$$=i\tfrac{k}{2}.2q^j[q^j,q^i]$$

$$= ikq^{j}(-\frac{i}{B}\epsilon^{ij})$$

i.e.
$$\dot{q}^i = -\frac{k}{B}\epsilon^{ij}q^j$$
 (14)

which means $\dot{q}^1 = -\frac{k}{B}q^2 \& q^2 = \frac{k}{B}q1$

therefore $\dot{z} = \dot{q}^1 + iq^2$

$$= -\frac{k}{B}q^2 + i\frac{k}{B}q^1$$

$$= i \frac{k}{B} (q^1 + i q^2)$$

$$\begin{split} &= \frac{k}{B}z \qquad (15) \\ \text{which has the solution} \\ &z = Ae^{i\frac{k}{B}t} = z(0)e^{i\frac{k}{B}t} \quad (16)[\text{since } A = z(0)] \\ &(6) \Rightarrow p^i = mq^i - \frac{B}{2}\epsilon^{ij} \\ &(7) \Rightarrow H = \frac{1}{2m}(p^i + \frac{B}{2}\epsilon^{ij}q^j)(p^i + \frac{B}{2}\epsilon^{ik}q^k) + \frac{k}{2}q^iq^i \\ &\text{As } m \to 0, \quad p^i \to -\frac{B}{2}\epsilon^{ij}q^j) \quad (17) \\ &\text{Let } C^i = p^i + \frac{B}{2}\epsilon^{ij}q^j (= mq^i) \quad (17) \\ &\text{Therefore } [C^i, C^j] = [p^i + \frac{B}{2}\epsilon^{ik}q^k), p^j + \frac{B}{2}\epsilon^{il}q^l) \\ &= [p^i, p^j] + \frac{B}{2}\epsilon^{jl}[p^i, q^l] + \frac{B}{2}\epsilon^{ik}[q^k, p^j] + \frac{B^2}{4}\epsilon^{ik}\epsilon^{jl}[q^k, q^l] \\ &= -i\frac{B}{2}\epsilon^{il}\delta^{il} + i\frac{B}{2}\epsilon^{ik}\delta kj \\ &= -i\frac{B}{2}\epsilon^{il}\delta^{il} + i\frac{B}{2}\epsilon^{ik}\delta kj \\ &= -i\frac{B}{2}\epsilon^{il}\delta^{il} + i\frac{B}{2}\epsilon^{ij} \quad (18) \\ &\text{So Dirac bracket commutation for operators } O_1 \text{ and } O_2 \text{ can be written as } [O^1, O^2] = [O^1, O^2] - [O^1, C^i][C^i, C^j]^{-1}[c^j, O^2] \\ &= [O^1, O^2] - [O^1, C^i]\frac{\epsilon^{ij}}{6}[C^j, O^2] \\ &\text{since } [C^i, C^j]^{-1} = 1/(iB\epsilon^{ij}) = -i(-\epsilon^{ij}.1/B) = \frac{\epsilon^{ij}}{B} \\ &\text{Considering } C^i \approx 0 \text{ i.e. } p^i \approx -\frac{B}{2}\epsilon^{ij}q^j \quad (20) \\ &L_0 = p^iq^i - H_0 \\ &= -\frac{B}{2}\epsilon^{ij} - \frac{k}{2}q^iq^i \\ &= -\frac{B}{2}\dot{q} \times q - \frac{k}{2}q^iq^i \\ &\text{i.e. } L_0 = \frac{B}{2}\mathbf{q} \times \dot{\mathbf{q}} - \frac{k}{2}\mathbf{q}^2 \quad (\mathbf{5}) \\ &\text{As } m \to 0 \\ &\Omega \sim \lim_{m \to 0} (\frac{B^2}{4m^2} + \frac{k}{m})^{1/2} \\ &\sim \lim_{m \to 0} \frac{B}{2m}(1 + \frac{2km}{B^2})^{1/2} \\ &\sim \lim_{m \to 0} \frac{B}{2m}(1 + \frac{2km}{B^2})^{1/2} \\ &\sim \lim_{m \to 0} \frac{B}{2m}(1 + \frac{1}{2}\frac{2km}{B^2} + \frac{2km}{B^2} + 0(\frac{2km^2}{B^2})) \\ &\sim \frac{B}{2m} + \frac{k}{B} \quad (21) \\ \end{cases}$$

3 Energy Spectrum for complete theory:

Now we shall see that both Hamiltonian and rotation generator posses simultaneous eigenstates which show an interesting picture in their energy spectra.

Agular momentum,
$$M=\mathbf{q}\times\mathbf{p}=\epsilon^{ij}q^ip^j$$
 (22) Therefore $[M,q^i]=[\epsilon^{lj}q^lp^j,q^i]$ $=\epsilon^{lj}q^l[p^j,q^i]+\epsilon^{lj}[q^l,q^i]p^j$ $=\epsilon^{lj}q^l(-i\delta^{ji})$ $=-i\epsilon^{li}q^l$ $=i\epsilon^{li}q^l$ i.e. $[M,q^i]=\epsilon^{lj}q^lp^j,p^i]$ $=\epsilon^{lj}[q^l,p^i]p^i$ $=\epsilon^{lj}\delta^{il}p^j$ i.e. $[M,p^i]=[\epsilon^{lj}q^lp^j,p^i]$ $=\epsilon^{lj}[q^l,p^i]p^i$ $=\epsilon^{lj}\delta^{il}p^j$ i.e. $[M,p^i]=i\epsilon^{ij}p^j$ (23b) indicating that M is the generator of rotation with the commutators in (8) From (20), $p^i=-\frac{B}{2}\epsilon^{ij}q^lp^j$ Therefore $M_0=\epsilon^{ki}q^kp^i$ $=-\frac{B}{2}\epsilon^{ki}\epsilon^{ij}q^jq^k$ $=\frac{B}{2}q^ki\epsilon^{ij}q^jq^k$ $=\frac{B}{2}q^ki\epsilon^{ij}q^jq^k$ $=\frac{B}{2}q^ki\epsilon^{ij}q^jq^k$ i.e. $M_0=\frac{B}{2}q^2$ (24) Also $i[M_0,q^i]=i\frac{B}{2}[q^kq^k,q^i]$ $=i\frac{B}{2}.2q^k[q^k,q^i]$ $=-iB[q^i,q^k]q^k$ $=-iB(-iB)\epsilon^{ik}$ [from(14)] $=-\epsilon^{ik}q^k$ $=-\epsilon^{ij}q^j$ (25) generates rotations with the commutator in (13) Now, $[M,H]=\frac{1}{2m}[M,(p^i)^2]+\frac{1}{2}m\Omega^2[M,(q^i)^2]-\frac{B}{2m}[M,M]$ $=\frac{1}{2m}[[M,p^i]p^i+p^i[M,p^i]\}+\frac{1}{2}m\Omega^2[M,q^i]q^i+i\epsilon^{ij}q^iq^i)$

i.e. M and H have simultaneous eigenkets represented as:

$$\begin{split} M|N,n\rangle &= n|N,n\rangle \qquad (27a) \\ H|N,n\rangle &= E(N,n)|N,n\rangle \qquad (27b) \\ E(N,n) &= \Omega(2N+|n|+1) - \frac{B}{2m}n \qquad (27c) \end{split}$$

=0

(26)

and the eigen function in coordinate representation :

$$\langle q|N,n\rangle = (\frac{N!}{\pi(N+|n|)!})^{1/2} (m\Omega)^{(1+|n|)/2} r^{|n|} e^{in\theta} e^{-(m/2)\Omega r^2} L_N^{|n|} (m\Omega r^2)$$
 (27d)

This is known as Fock-Darwin spectra 2,3

Here $L_N^{|n|}$ is the associated Laguerre polynomial, satisfying the differential eq.

$$w\frac{d^2}{dw^2}L_N^{|n|}(w) + (|n| + 1 - w)\frac{d}{dw}L_N^{|n|}(w) + NL_N^{|n|}(w) = 0$$
 (27e)

Here N is a non-negative integer and n is any integer.

4 Energy spectrum for reduced theory

Now we come back to our reduced theory $(m \to 0)$ and we shall find out simultaneous eigenkets of M_0 and H_0 since it is obvious from (12) and (24) that they commute.

Choose creation and annihilation operators as defined below:

$$\begin{split} a &= \sqrt{\frac{B}{2}}(q^1 - iq^2) \qquad (28a) \\ a &\dagger = \sqrt{\frac{B}{2}}(q^1 + iq^2) \qquad (28b) \\ \text{Using eq.} (13) \text{ for } m \to 0 \text{ we get,} \\ &[a, a \dagger] = \frac{B}{2}[q^1 - iq^2, q^1 + iq^2] \\ &= \frac{B}{2}\{[q^1, q^1] + i[q^1, q^2] - i[q^2, q^1] + [q^2, q^2]\} \\ &= \frac{B}{2}.2i[q^1, q^2] \\ &= iB(\frac{i}{B}\epsilon^{12}) \\ &= -i^2 = 1 \qquad (29) \\ \hat{n} &= a \dagger a = \frac{B}{2}(q^1 + iq^2)(q^1 - iq^2) \\ &= \frac{B}{2}(q^1)^2 + \frac{B}{2}(q^2)^2 - \frac{B}{2}(iq^1q^2 + iq^2q^1) \\ &= \frac{B}{2}(q^1)^2 + \frac{B}{2}(q^2)^2 - \frac{B}{2}[q^1, q^2] \\ &= \frac{B}{2}((q^1)^2 + (q^2)^2) - i\frac{B}{2}(-\frac{i}{B}\epsilon^{12}) \\ &= \frac{B}{2}(q^1)^2 + \frac{B}{2}(-\frac{2}{p^1})^2 - \frac{1}{2} \quad [\text{since } p^1 = -\frac{B}{2}q^2 \text{ for } m \to 0] \\ &= \frac{2p^1}{B} + \frac{B}{2}(q^1)^2 - \frac{1}{2} \quad (30) \\ H_0 &= \frac{k}{2}(q^1)^2 + \frac{k}{2}(q^2)^2 \\ &= \frac{k}{2}(q^1)^2 + \frac{k}{2}(-\frac{2}{B})(p^1)^2 \\ &= \frac{2k}{B^2}(p^1)^2 + \frac{k}{2}(q^1)^2 \\ &= \frac{k}{B}(\frac{2(p^1)^2}{B}) + \frac{k}{2}(q^1)^2 \\ &= \frac{k}{B}(\frac{2(p^1)^2}{B}) + \frac{B}{2}(q^1)^2 \\ &= \frac{k}{B}(\hat{n} + \frac{1}{2}) \quad [\text{from } (30)] \\ \text{Therefore } H_0 &|n\rangle &= \frac{k}{B}(n + \frac{1}{2})|n\rangle \qquad (31) \text{ where } n = 0,1,2,\dots \text{etc.} \end{split}$$

and so $M_0|n\rangle = \frac{B}{2}\dot{\mathbf{q}}^2|n\rangle = \frac{B}{k}\cdot\frac{k}{2}\dot{\mathbf{q}}^2|n\rangle$

$$= \frac{B}{k} H_0 |n\rangle$$

$$= \frac{B}{k} \cdot \frac{k}{B} (n + \frac{1}{2}) |n\rangle \qquad = (n + \frac{1}{2}) |n\rangle \quad (32)$$

We can choose $q^1 \equiv \frac{\sqrt{k}}{B} x \& q^2 \equiv i \frac{1}{\sqrt{k}} \frac{d}{dx}$ satisfying eq.(13)

i.e.
$$[q^1, q^2]\psi = (q^1q^2 - q^2q^1)\psi$$

 $= \frac{\sqrt{k}}{B} \frac{i}{\sqrt{k}} x \frac{d\psi}{dx} - \frac{\sqrt{k}}{B} \frac{i}{\sqrt{k}} (\frac{d}{dx} x \psi + x \frac{d\psi}{dx})$
 $= -\frac{i}{B} \psi$
i.e. $[q^1, q^2] = -\frac{i}{B}$

Now recall our wellknown harmonic oscillator expressions:

$$a = 1/\sqrt{2}(\sqrt{m\omega}x + i\frac{1}{\sqrt{m\omega}}p)$$
 (33) where $-i\frac{d}{dx} \equiv p$

which gives wave function

$$\psi(x) = (2^n n!)^{-1/2} (\frac{m\omega}{\pi})^{1/4} e^{-1/2m\omega x^2} H_n(\sqrt{m\omega}x)$$
 (34) [considering $\hbar = 1$]

Now in our case

$$a = 1/\sqrt{2}(\sqrt{B}q^{1} - i\sqrt{B}q^{2})$$

$$= 1/\sqrt{2}(\sqrt{B} \cdot \frac{\sqrt{k}}{B} + i\frac{\sqrt{B}}{\sqrt{k}}p) \text{ [Here } q^{2} \equiv -\frac{1}{\sqrt{k}}(-i\frac{d}{dx}) = -\frac{i}{k}p]$$

$$= 1/\sqrt{2}(\sqrt{\frac{k}{B}}x + i\frac{1}{\sqrt{\frac{k}{B}}}p) \quad (35)$$

Therefore $m\omega \leftrightarrow \frac{k}{B}$ [" \leftrightarrow "implies "corresponds to"]

Therefore the wave function in our current problem will be

$$u(x) = (2^{n} n!)^{-1/2} \left(\frac{k}{\pi B}\right)^{1/4} e^{-\frac{k}{2B}x^{2}} H_{n}\left(\sqrt{\frac{k}{B}}x\right)$$
 (36)

5 Review of The Complete Theory:

Now we return to our complete theory and we want to see that if it agrees in the limit $m \to 0$ with our previously obtained results for the reduced theory.

As $m \to 0$ eqs.(27c)gives

$$E(N,n) {\sim \atop m \to 0} \Omega(2N + |n| + 1) - \frac{B}{2m} n$$

$$\sim (\frac{B}{2m} + \frac{k}{B})(2N + |n| + 1) - \frac{B}{2m} n$$

$$\sim \frac{B}{2m}(2N + |n| - n + 1) + \frac{k}{B}(2N + |n| + 1) \quad (37a)$$

For $N = 0 \& n \ge 0$ (i.e. n is non-negative integer)

$$E(N,n) {\mathop{\sim}\limits_{m\to 0}} {\mathop{B}\limits_{2m}} + {\mathop{k}\limits_{B}} (n+1) \qquad (37b)$$

Now to reach eq. (30) [i.e. $E_0(n) = \frac{k}{B}(n+1/2)$] we have to subtract an infinite term $\frac{B}{2m}$ and a finite term $\frac{k}{2B}$ from eq. (37b)and so there lies a discrepancy!

Also in eq.(32) an extra 1/2 factor comes the eigenvalue of M_0 compared to that of M in eq. (27a) i.e. discrepancy arises here too.

The wave functions in (27d) become, in the zero-mass limit,

$$\langle \mathbf{q} | 0, | n | \rangle_{m \to 0}^{\longrightarrow} (\frac{1}{\pi |n|})^{1/2} [m(\frac{B}{2m} + \frac{k}{B}]^{(1+|n|)/2} r^{|n|} e^{in\theta} e^{-\frac{m}{2} (\frac{B}{2m} + \frac{k}{B}) r^{2}} \times 1$$

$$= (\frac{1}{\pi |n|})^{1/2} \frac{B}{2}^{(1+|n|)/2} r^{|n|} e^{i|n|\theta} e^{-\frac{B}{4} r^{2}}$$

$$= (\frac{B}{2})^{|n|/2} (\frac{B}{2\pi})^{1/2} \frac{1}{\sqrt{|n|!}} r^{|n|} e^{i|n|\theta} e^{-\frac{B}{4} r^{2}}$$

$$= (\frac{B}{2\pi})^{1/2} \frac{1}{\sqrt{|n|!}} (\sqrt{\frac{B}{2}} r e^{i\theta})^{|n|} e^{-\frac{B}{4} r^{2}}$$

$$= (\frac{B}{2\pi})^{1/2} \frac{1}{\sqrt{|n|!}} (\sqrt{\frac{B}{2}} r e^{i\theta})^{|n|} e^{-\sqrt{\frac{B}{2}} r e^{i\theta}} \sqrt{\frac{B}{2}} r e^{-i\theta}$$

$$= (\frac{B}{2\pi})^{1/2} \langle \alpha | |n| \rangle e^{-\alpha^{*} \alpha/2}$$
(38)

Here α is defined by the state $\langle |\alpha| \text{ as } \langle \alpha| a^{\dagger} = \langle \alpha| \alpha = \langle \alpha| \sqrt{\frac{B}{2}} r e^{i\theta}$ and following this Holomorphic representation⁵ we have $\langle \alpha| n \rangle = \frac{\alpha^n}{\sqrt{n!}}$ (as we already know that $|n \rangle = \frac{\dagger a^n}{\sqrt{n!}} |0 \rangle$)

Again this result tells us that the complete wave functions do not approach those of the reduced theory since the former involves two variables α and α^* (or rather $q^1 and q^2$) but the reduce theory depends only one coordinate x. So there may be some anomaly in our representation.

6 New Representation of The Complete theory wavefunction:

Hamiltonian in (7)

$$\begin{split} H &= \frac{1}{2m} (p^{i} + \frac{B}{2} \epsilon^{ij} q^{j}) (p^{i} + \frac{B}{2} \epsilon^{ik} q^{k}) + \frac{k}{2} q^{i} q^{i} \\ &= \frac{1}{2m} (p^{i} p^{i} + \frac{B}{2} \epsilon^{ik} p^{i} q^{k} + \frac{B}{2} \epsilon^{ij} q^{j} p^{i} + \frac{B}{4} \epsilon^{ik} \epsilon^{ij} q^{j} q^{k}) + \frac{k}{2} q^{i} q^{i} \\ &= \frac{1}{2m} p^{i} p^{i} + \frac{B}{4m} (\epsilon^{ik} p^{i} q^{k} + \epsilon^{ij} q^{j} p^{i}) + \frac{1}{2} (\frac{B^{2}}{4m} + k) q^{i} q^{i} \\ &= \frac{1}{2m} p^{i} p^{i} + \frac{B}{4m} (\epsilon^{ik} p^{i} q^{k} + \epsilon^{ij} (i \delta i j + p^{i} q^{j})) + \frac{m}{2} \Omega^{2} q^{i} q^{i} \\ &= \frac{1}{2m} p^{i} p^{i} + \frac{B}{4m} (\epsilon^{ik} p^{i} q^{k} + \epsilon^{ij} p^{i} q^{j}) + \frac{m}{2} \Omega^{2} q^{i} q^{i} \\ &= \frac{1}{2m} p^{i} p^{i} + \frac{B}{2m} \epsilon^{ij} p^{i} q^{j} + \frac{1}{2} m \Omega^{2} q^{i} q^{i} \qquad (39a) \\ &= \frac{1}{2m} \mathbf{p}^{2} + \frac{1}{2} m \Omega^{2} \mathbf{q}^{2} + \frac{B}{2m} \mathbf{p} \times \mathbf{q} \qquad (39b) \end{split}$$

Now we choose canonical pairs $(p\pm, q\pm)$ such that

$$p_{\pm} = \left(\frac{\omega_{\pm}}{2m\Omega}\right)^{1/2} p^{1} \pm \left(\frac{m\Omega\omega_{\pm}}{2}\right)^{1/2} q^{2} \qquad (40a)$$
and $q_{\pm} = \left(\frac{m}{2\omega_{\pm}}\right)^{1/2} q^{1} \mp \left(\frac{1}{2m\Omega\omega_{\pm}}\right)^{1/2} p^{2} \qquad (40b)$
where $\omega_{\pm} = \Omega \pm \frac{B}{2m} \qquad (40c)$
Now $\sqrt{\omega_{-}} p_{+} + \sqrt{\omega_{+}} p_{-} = 2\sqrt{\frac{\omega_{+}\omega_{-}}{2m\Omega}} p^{1} = \frac{1}{\sqrt{m\omega}} \cdot \sqrt{2\omega_{+}\omega_{-}} p^{1} \qquad (41a)$
and $\sqrt{\omega_{-}} p_{+} - \sqrt{\omega_{+}} p_{-} = 2\sqrt{\frac{m\Omega\omega_{+}\omega_{-}}{2}} q^{2} = \sqrt{m\omega} \cdot \sqrt{2\omega_{+}\omega_{-}} q^{2} \qquad (41b)$
Also $\frac{q_{+}}{\sqrt{\omega_{-}}} + \frac{q_{-}}{\sqrt{\omega_{+}}} = 2\sqrt{\frac{m\Omega}{2\omega_{+}\omega_{-}}} q^{1} = \sqrt{m\omega} \cdot \sqrt{\frac{2}{\omega_{+}\omega_{-}}} q^{1}$

and
$$\frac{q_-}{\sqrt{\omega_+}} - \frac{q_+}{\sqrt{\omega_-}} = 2\frac{1}{\sqrt{2m\Omega\omega_+\omega_-}}p^2 = \frac{1}{\sqrt{m\Omega}}.\sqrt{\frac{2}{\omega_+\omega_-}}p^2$$

Thus the Hamiltonian expressed in co-ordinates and momenta,

$$\begin{split} H &= \frac{1}{2m}((p^1)^2 + (p^2)^2) + \frac{1}{2}m\Omega^2((q^1)^2 + (q^2)^2) + \frac{B}{2m}(p^1q^2 - p^2q^1) \\ &= \frac{1}{2m}\frac{m\Omega}{2\omega_+\omega_-}(\sqrt{\omega_-}p_+ + \sqrt{\omega_+}p_-)^2 + \frac{1}{2m}.m\Omega\frac{\omega_+\omega_-}{2}(\frac{q_-}{\sqrt{\omega_+}} - \frac{q_+}{\sqrt{\omega_-}})^2 \\ &+ \frac{1}{2}m\Omega^2.\frac{1}{m\Omega}\frac{\omega_+\omega_-}{2}(\frac{q_+}{\sqrt{\omega_-}} + \frac{q_-}{\sqrt{\omega_+}})^2 + \frac{1}{2}m\Omega^2.\frac{1}{m\Omega}.\frac{1}{2\omega_+\omega_-}(\sqrt{\omega_-}p_+ - \sqrt{\omega_+}p_-)^2 \\ &+ \frac{B}{2m}(p^1q^2 - p^2q^1) \\ &= \frac{\Omega}{4\omega_+}p_+^2 + \frac{\Omega}{4\omega_-}p_-^2 + \frac{\Omega p_+p_-}{2\sqrt{\omega_+\omega_-}} + \frac{\Omega \omega_-}{4}q_-^2 + \frac{\Omega \omega_+}{4}q_+^2 - \frac{\Omega\sqrt{\omega_+\omega_-}}{2}q_+q_- \\ &+ \frac{\Omega\omega_+}{4}q_+^2 + \frac{\Omega\omega_-}{4}q_-^2 + \frac{\Omega\sqrt{\omega_+\omega_-}}{2}q_+q_- + \frac{\Omega}{4\omega_+}p_+^2 + \frac{\Omega}{4\omega_-}p_-^2 - \frac{\Omega p_+p_-}{2\sqrt{\omega_+\omega_-}} \\ &+ \frac{B}{2m}(p^1q^2 - p^2q^1) \\ &= \frac{\Omega}{2\omega_+}p_+^2 + \frac{\Omega}{2\omega_-}p_-^2 + \frac{\Omega\omega_+}{4}q_+^2 + \frac{\Omega\omega_-}{4}q_-^2 \\ &+ \frac{B}{2m}\sqrt{m\Omega}\frac{1}{\sqrt{2\omega_+\omega_-}}\frac{1}{\sqrt{m\Omega}}\sqrt{\frac{\omega_+\omega_-}{2}}(\omega_-p_+^2 - \omega_+p_-^2) \\ &+ \frac{B}{2m}\sqrt{m\Omega}\sqrt{\frac{\omega_+\omega_-}{2}}\frac{1}{\sqrt{m\Omega}}\sqrt{\frac{\omega_+\omega_-}{2}}(\frac{q_-^2}{\omega_+} - \frac{q_+^2}{\omega_-}) \\ &= \frac{1}{2}(\Omega + \frac{B}{2m})\frac{p_+^2}{\omega_+} + \frac{1}{2}(\Omega - \frac{B}{2m})\frac{p_-^2}{\omega_-} + \frac{1}{2}(\Omega - \frac{B}{2m})\omega_-q_-^2 + \frac{1}{2}(\Omega + \frac{B}{2m})\omega_+q_+^2 \\ &= (\frac{1}{2}p_+^2 + \frac{1}{2}\omega_+q_+^2) + (\frac{1}{2}p_-^2 + \frac{1}{2}\omega_-q_-^2) \quad \text{[usng eq.s]} \end{split}$$

Therefore $H = H_{+} + H_{-}$ (42) [considering m = 1]

Thus the wave functions of the complete problem can be presented in the "new coordinate" representation:

$$\langle q \pm | N, n \rangle = u_{n_+}^+(q_+)u_{n_+}^+(q_+)$$
 (43a)

where $u_{n_{\pm}}$ is the harmonic oscillator wave functions(36) with frequencies ω_{\pm} and $n_{\pm} = N + \frac{|n| \mp n}{2}$ (43b)

satisfies (27)

i.e. $E(N,n) = \Omega(n_+ + 1/2 + n_- + 1/2) - \frac{B}{2m}n$ [Look in eq. (39b) the last term equals to $-\frac{B}{2m}M$ following eq.(22)]

Now as $m \to 0$, $\omega_+ \to B/m + k/B$ and $\omega_- \to k/B$. So only the minus signed oscilator contributes in eq.(43a)

Alternatively we can get the same wave function using the holomorphic representation of the new coordinates i.e. here we take

$$a_{\pm} = \frac{1}{\sqrt{2}} \left(\sqrt{\omega_{\pm}} q + i \frac{p_{\pm}}{sqrt\omega_{\pm}} (44a) \right)$$

and $\langle \alpha_{\pm} | \dagger \alpha_{\pm} = \langle \alpha | \alpha_{\pm} (44b) \rangle$
and so $\langle \alpha_{\pm} | N, n \rangle = \frac{\alpha_{+}^{n_{+}}}{\sqrt{n_{+}!}} \frac{\alpha_{-}^{n_{-}}}{\sqrt{n_{-}!}}$ (44c)

Chiral oscillator problem -finding similarity: 7

From the previous discussions we can easily find out a nice similarity with the chiral oscillator problem.

The Lagrangian for chiral oscillator can be written as:

$$L_{+} = \frac{1}{2} \epsilon^{ij} q^i \dot{q}^j - \frac{k}{2} q^i q^i \tag{45}$$

 $L_{+} = \frac{1}{2} \epsilon^{ij} q^{i} \dot{q}^{j} - \frac{k}{2} q^{i} q^{i} \qquad (45)$ which is similar to L_{0} of eq.(5) upto a factor B in the first term. Now the canonically conjugate momentum: $p^{j} = \frac{\partial L_{+}}{\partial \dot{q}^{j}} = \frac{1}{2} \epsilon^{ij} q^{i} \qquad (46)$ So the Hamiltonian,

$$H_{+} = p^{i}q^{i} - L_{+}$$

$$= \frac{1}{2}\epsilon^{ji}q^{j}\dot{q}^{i} - (\frac{1}{2}\epsilon^{ij}q^{i}\dot{q}^{j} - \frac{k}{2}q^{i}q^{i})$$

$$= \frac{1}{2}\epsilon^{ij}q^{i}\dot{q}^{j} - (\frac{1}{2}\epsilon^{ij}q^{i}\dot{q}^{j} - \frac{k}{2}q^{i}q^{i})$$
(47)

This Hamiltonian is identical with H_0 in eq.(12) Also it satisfies the noncommutative relation in eq. $(13)^5$. Thus we can conclude that the Lagrangian and the Hamiltonian behave like a chiral oscillator in the reduced theory $(m \to 0)$.

Conclusion:

Thus we observed an quantum mechanical analog of the gauge field theory. We also saw the non-commutativity in the reduced phase-space. The shift in the zero-point eigen values agrees the non-commutativity between phase-space reduction and quantization. This anomaly can be removed by introduction of the operators in eqs. (40)

Acknowledgement:

I would like to thank Prof. Rabin Banergee, S. N. Bose National Centre for Basic Sciences, Kolkata and the research associates of him.

References:

¹1.G.V.Dunne, R.Jackiw, and C.A. Trugenberger, Phys. Rev. **D** 41,2(1990)

²V. Fock: Z.Physik **47**,446(1928), C.G.Darwin: Proc. Cambridge Philos. Soc. **27**,86(1930)

³P.A.Maksym and T.Chakrabarty, Phys.Rev.Lett**65**,1(1990)

⁴L.Fadeev, Methods in Field Theory

⁵R.Banergee, Mod. Phys. Lett. A, Vol. 17, N.o. 11 (2002)