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Abstract:

Here we look up the similarity between the Chern-Simons gauge field theory and the general quan-
tum mechanical model. We also have a view on the zero-mass approach of this model.

Introduction:

The Chern-simons gauge theory is one of the special models needed to describe the topolog-
ical phenomena in odd dimensional space-time. This play a vital role for 3-D dynamics in high
temperature Quantum Hall Effect and String Theory in cosmology. This paper discusses the
connection of the (2+1) dimensional Chern-Simons theory with the 1-dimensional space-time
phenomena (i.e. our common quantum mechanics). It also shows that this relation holds even
in the reduced (zero-mass) theory.

1 A Comparative study:

Consider the case of Landau Level Problem where a particle of m and charge e executes motion
under crossed electromagnetic field.Its equation of motion can be written as:

L=%4+%qA(q) —eV(a) (1)
Here magnetic field, B = V x A i.e. B = 9,47 — §;A" and electric field, E = —VV ..
E'= -9,V



Now consider the gauge field A to be rotationally symmetric in (2+1) dimensional space
time[ i.e.A’(q) = €7/ A(q) ] and so we take A’(q) = —3€¢/ B as we one can choose for uniform
magnetic field B, A = —%q x B

Also take V(q) = kq2/2 i.e. harmonic potential
__ B eq _ geqlqz

= 24'¢" — 2¢' — Leg'q’ [ Choosing e=c=1 ]
= 24* - Zgxq-4q?
ie. L=2¢+2qxq-%q? (2)
Now Lagranglan density in Weyl (A° = 0) gauge:
L=1A2+EA2 _L(VxA? (3
Setting A — \/;,
C:%ﬁAZ%—gAxA—ff(VxA)

%

Therefore L = 3¢ 't

Therefore Log = gA x A as p — oo (4) where “CS” stands for pure Chern-Simons
term which occur on a reduced phase-space

For m — 0, Lagrangian in (2) can be written in reduced form:
Lo=§q><€1—§q2 (5)

If £ — 0 also,
L= gq X @ which is similar to eq.(4)

2 Hamiltonian formulations:

Now we are going to formulate the Hamiltonian from the above Lagrangian expressions:

From (2)

D=2 + S

= 3@ - By

Therefore canonically conjugate momentum,

p= G =mii - By (©
gives the Hamiltonian,
H = piq'i — L
=p'q' — 34'¢ — 54 + 5d'd’
= p'¢’ — 5 (md")(mg') + g/ + §q'q’
= (p +5€7¢)q — %(mq )(md') + 54'q’
= (0 + 5@ ) (M) — 5 (0" + 59 (p' + Gt ’“)+ 50'q
=50+ B ) (' + 5 ““qk) (P + 5 ”qJ)(p +5eq") + 5d'q’




(p + B zgqj)<p + B quk:> +§qiqi (7)
Smce the Hamlltoman is obtained by Legendre transform of the Lagrangian the following
conventional commutation relations hold:

4, @1 =0, [p,p], [¢"p]=07 (8

Now, p' = i[H, p']

=iz [(p' + i) (p + Sk b), p') + ik [d'd, p']

= iz (p' + Zeigh)[(p' + ? ), P+ g [(ph + B, p] (pf + etk
+ikq'lq', p']

—z—(p i B quJ)B lkékz_{_z (p +§€lqu)B (i i

= 3, (¢ +B )3 =5 (p +5€lq) e — kg

= im ”(p +5€7¢)) + et (p' + 3eteh) — k'

= B 0l (p) 4 Selkgh) — kq (9a)

andq = i[H, q] i (0" + Beig) (p + ek qb), ¢!l + ik, ')

=it (pt+ Big)p, ¢')

(' + B g?)(—id")

(' + B €lgl)  (9b)

L
m
L
m

Therefore p! = B €9 (p? + Ejk q*) — k¢t
(9a & 9b)
and ¢' =i (p' + Zelig)

To find out the solutions take

2z =q' +iq¢*

and p = p! + ip?

From (9b), ¢' = L(p' + 2¢*)& ¢* = L(p* — Z¢")
Therefore 2 = ¢' + ig?

= (0" +ip?) + 55 (¢° — ig)

= L(p' +ip®) — i (¢" —ig?)

ie. z=1_18; (10a)
From (92), p' = 2.(0* — §¢') — kq' = 320” — (£, + k)a’
& p?=—52 (0" +QQ) ki? = —Lp' — (£ + k)¢?

Therefore p = pt +ip?
= £ —ip") — (2 + k) (¢" +ig?)
=~ (0" + i) = (4 + k) (d" +ig?)



= =4 (p" i) —mlm + E)(¢' + ig?)
ie. p=—8p—mQ%  (10b) where Q? = (2, + &)
If we choose z = e~ 2m'{z(0) cos QO + %Q sin Ot} (11a)
and p = e~ 2 {p(0) cos Qt — mQz(0) sin Q¢ } (11b)
then
i = e amt{z(0)sin Qt + p )Q cos Qt} — 1B e~ amt{2(0) cos Qt + p )()sin Qt}
i = Lp— 1B Isatisfies (10a)
and p = e~ 2n'{—Qp(0) sin QU — mN22(0) cos Ut} — iB e’éfmt{z( ) cos Qt + p L) sin Qt}
= —mQQG_%t{% sin Ot + 2(0) cos Qt} — 22 e_ﬁt{z( ) cos Qt + p )Q)sin Qt}
= —mO?z — L p lsatisfies (10b)
Now the case where m — 0 will be observed
Reduced Hamiltonian for m — 0
Hy = %q? (12) [because p' + Z¢g7 = 0 as m — 0 and so does not contribute in eq.(7)]
Also from (5)
Hy=p'q' = Lo =p'q' — 5€7¢'¢/ + 5q'q’ [since Lo = Se7q'¢/ — 5¢'q]
=Beigig — Beigigj+ & : ¢'q" [since p’ = ke = %6”617]
=%4'q’ [since iglgd = e”q]
Thus Ho = 4q? (12)
and Ly =2 ”q i —Eq'q
= 5¢'(e ”)q” — Hy
Comparing with the symplectic form of Lagrangian
=50¢{d" . ¢} ¢ - H
we have,
{¢.dY ' =e"B={¢,¢} =1/(¢"B) = —7/B
= ¢, ¢l =i{d, ¢t =—ie"/B  (13)
Therefore, ¢' = i[Ho, q'] = i%[(¢)% ¢']

=i5.2¢l¢/, 4]

= qu]( 5€7)

ie. ¢ = —Ee”qj (14)

which means ¢' = —£¢* & ¢* = £q1

therefore 2 = ¢! + iq?
= ig(q" +iq°)



=Lz (15)

which has the solution

2= Ae'Bt = z(O)elBt (16)[since A = z(0)]

(6) = p’' =mq’ — 5

()= H =50 + Zelg)(p' + Se*gh) + §q'q’
Asm—0, p'— —Zig)

iLe. p'+ Zeligl) — 0

Let C' = p' + Seligi(= mqi) (17)

Therefore [C7, C] = [p' + Zetkgh), pl 4 Bellgh)
=[]+ 3¢’ ¢ + ?6"’“[(1 P+ relkefl[qk,ql]
= —iZeldil + iLe*ok;

= —deﬂ + @geij

ie. [C',C7)=iBe? #0  (18)

So Dirac bracket commutation for operators O, and O, can be written as
[O', 0% = [0Y,0?] — [0, C[C, C7) 7Y, O

= (0.0 - [0", ¢ 5(C7, 07

since [C7,C9)"! = 1/(iBeV) = —i(—€9.1/B) = &
Considering C* = 0 i.e. p' = =S¢/ (20)

Lo =p'q" — Hy
5 Rl T4
—54xq— ’;qzqz
le. Ly = gq X { — §q (5)
Asm — 0
Q ~ lim,,_o (4m2 + )1/2

~ limy, 0 2 (1+ £. 4;”2 )1/

~ limyy, g o (1 4 2E)1/2
m m 2
B 00+ 12+ 42 0%

%—i- E (21)

3 Energy Spectrum for complete theory:

Now we shall see that both Hamiltonian and rotation generator posses simultaneous eigenstates
which show an interesting picture in their energy spectra.



Agular momentum, M = q X p = €¢ip’ (22)

Therefore [M, ¢'] = [ ¢'p?, ¢']
=il q'] + €ld ¢’
= gl (—i67%)

— _idigl
— jeilg

ie. [M,q'|=¢e9¢q (23a)

And [M,p'] = [y p'] =g p]p’
= 9 gilp

ie. [M,p'] =iep (23b)

indicating that M is the generator of rotation with the commutators in (8)

From (20),
p'=—5elqp

Therefore My = e¥igkp’
= — Bekigiigigh
= 50M¢/q"
= Bhgh

iLe. My=2q? (24)

Also i[My, ¢'] = iZ[¢"¢", ¢']
= i%.2¢*[¢", ¢']
= —iBlq', ¢"|¢"
= —iB(—iB)e* [from(14) ]

— _eihgh
= —elq’ (25)

generates rotations with the commutator in (13)

Now, [M, H] = 3 [M. (5?] + SmQ2(M. (¢'?] — L3, 1]
= 2 UM, PP’ + P [M, P} + gmQ*{[M, ¢'l¢" + ¢'[M, ¢']}
= 5 (ie7p7p’ +ie7p'p?) + 3mQ*(ieV g " +ieVq'q)
=0 (26)

i.e. M and H have simultaneous eigenkets represented as:

M|N,n) =n|N,n) (27a)

H|N,n) = E(N,n)|N,n)  (27b)

E(N,n) =Q@2N +|n|+1)—2n  (27c)

and the eigen function in coordinate representation :



<q|N > ((N%'lnl))1/2(mQ)(1+|n\)/2r\n|ez‘nee—(m/z)m?Llﬁ\(mQTZ) (27d)

This is known as Fock-Darwin spectra??

Here L‘n‘ is the associated Laguerre polynomial,satisfying the differential eq.
w L LW w) + (Jn] +1 - w) L LR (w) + NI (w) =0 (27¢)

Here N is a non-negative integer and n is any integer.

4 Energy spectrum for reduced theory

Now we come back to our reduced theory (m — 0) and we shall find out simultaneous eigenkets
of My and Hj since it is obvious from (12) and (24) that they commute.

Choose creation and annihilation operators as defined below:

a= /2" —i¢®)  (28a)
at = /E(¢' +ig®)  (280)
Using eq.(13) for m — 0 we get,
la,at] = $l¢" —iq®, ¢" + iq”]
= 2" "1 +ild", ¢’ = il®, @' + [ 1}

= §2Z[q17q2]
= iB(4€'?)
i = ata = 5(¢" +ig*)(q" — iq?)
= 20+ 2 - 2+ i)
B TRV ToS N T
= 5((¢") + (6*)?) —i5 (=5
— B+ B =} [since ) g7 or >0
1
=%+ 5@ -3 (30)
Hy = %(q1)2 + §<q2)2
= 50 + 50
= 250"+ 5(¢")
142
= 5+ 3(d'))
k

Therefore Hyln) = £(n + 1)|n
and so My|n) = gq

(31) where n=0,1,2,...etc.



= 2 Holn)
T+ 3)n) =(n+3)ln) (32)
We can choose ¢! = fa:& ¢ = sz— satisfying eq.(13)

e. ¢ ¢l = (¢'¢* — ¢ )

:\Bffxa_g\T(dxxw—i_x )
S |
ie. [q'¢*) = —5

Now recall our wellknown harmonic oscillator expressions:
a=1/vV2(v/mwz + z\/%p) (33) where —i-L =
which gives wave function
P(x) = (Q”n!)*lﬂ(%)1/46*1/2’”“9”2[{”( mwz) (34) [considering h = 1]
Now in our case
a=1/v/2(vBq' — ivV/Bg?)
= 1/v2(VB.Yf +i¥Ep) [Here ¢* = — - (—ik) = —1p]
=1/v2(\/Ex +i

Therefore mw <> £ [7 4> “implies ”corresponds to”]

\}%p) (35)

Therefore the wave function in our current problem will be

u(z) = (2rl) V2 (A Ve 35 H ([ Ex)  (36)

5 Review of The Complete Theory:

Now we return to our complete theory and we want to see that if it agrees in the limit m — 0
with our previously obtained results for the reduced theory.
As m — 0 eqgs.(27c)gives
E(N,n) ~ Q2N+ |n|+1) — £n
~(E+E) N+ nf+1) - En
~ 2N+ n|—n+1)+E£2N+|n|+1) (37a)
For N =0 & n > 0(i.e. n is non-negative integer)
E(N,n) ~ + £(n+1) (37b)

m—0 2m

Now to reach eq. (30) [i.e.Eg(n) = £(n+1/2)] we have to subtract an infinite term 2 and
a finite term % from eq. (37b)and so there lies a discrepancy!

Also in eq.(32) an extra 1/2 factor comes the eigenvalue of M, compared to that of M in
eq. (27a) i.e. discrepancy arises here too.



The wave functions in (27d) become,in the zero-mass limit,
(@0, o) 1 ) V2l + 4102 B B 1

= ( | |)1/23(1+|n|)/2 Il gilnl0 o —Fr?

:( )‘"|/2(2 )1/2 1 T‘n|el|n‘96_17"2
T v Inl!

= () Breret
BB VB T

() {alln))emee2 (38)

Here « is defined by the state (Ja as (a|af = (a|a = (a\\/grew and following this Holo-
morphic representation® we have (a|n) = %] (as we already know that |n) = 1< U=10))

Again this result tells us that the complete wave functions do not approach those of the re-
duced theory since the former involves two variables « and a*(or rather ¢'andq?)but the reduce
theory depends only one coordinate x. So there may be some anomaly in our representation.

6 New Representation of The Complete theory wave-
function :

Hamiltonian in (7)
H=3-0+% ”qj)(p +5e%q") + %qiqi

= ﬂ(plp’vL *pigt + B gy + Ferelgid) + Sd'q’
= 3PP’ + i (Mgt + e”qu )+ Q(m +k)g'q’
= Lpipi + B (cibpiqh + i (idij + pig?)) + 2Q2qiq
_ %pipi+%(eikpiqk+eijpiqj) mO2gigi
= Qmpzpz + o€ D' + 3mQq’ (39a)
=-p?+ 5m92q2 +2pxq  (39b)

Now we choose canonical pairs (p%, ¢g4) such that

py = (%)1/2291 + (%)1/2(]2 (40@)

and gy = (21)1/261 F (g PP (400)

where wy =Q+ 2 (40c¢)

Now /w_p; + Jwip- = 2\/55p" = \/W V2w w_pt (41a)
and /w_py — \Joip_ = 2\/7"9“*”‘ 2=ym \/2w+w q° (410)
Also ‘” -+ £ = 2,/2w+w ¢t = vm w+w




q— 9+ 1 2 1 2 2
and \F \F_ 2\/2mﬂw+w_p TVmQ” W+W—p

Thus the Hamiltonian expressed in co-ordinates and momenta,
H = ﬁ((pl)2 + ()% + 5mP((¢')* + (6)°) + 3. (' — ")

= 2m2w+w (Vwps + Joip-)? +L.mQW+;—(}— Rk

+5 LmQ2. ”*2“ (\}15_ + \qf )2 + m§22 mQ 2w+w (Vo_py — Jwip_)?

+50, (P —p2q1)
Qpip- + Qw, 2 + Quwy 2 QW

S SR v A seres T2 -t T4 4+9-
g2 4 QZ* G+ g+ P+ eyt -
+32(p'q —qul)

= 2w+p+ _|_ p + QW+ 2 Qiqz

B 2
o, Vm Wmm(wfm—ww-)
+%\/m “’*;”Wiﬁ = (

s+ ) s+ 5(Q - B)fj*+%(9——)w ¢+ 3+ 2w

2m

= (30} +qwed}) + (52 +qw-¢?)  [usng eq.s ]
Therefore H = H. + H_  (42) | considering m =1 |
Thus the wave functions of the complete problem can be presented in the "new coordinate”
representation:

(g |N,n) =ul (q)ut (qv)  (43a)

where u,_, is the harmonic oscillator wave functions(36) with frequencies wy and ny =
N+ (43p)

satisfies (27)

ie. E(N,n)=Q(ny +1/24+n_+1/2) — £n  [Look in eq. (39b) the last term equals to
—5=M follwing eq.(22)]

Now as m — 0, wy — B/m + k/B and w_ — k/B.So only the minus signed oscilator
contributes in eq.(43a)

Alternatively we can get the same wave function using the holomorphic representation of
the new coordinates i.e. here we take

ay = %(, /W+(q + qurtwi (44&)
and (ax|far = (a|ax(44b)
and so (og| N,n) = 2L o2 (44c)

Ve

10



7  Chiral oscillator problem -finding similarity:

From the previous discussions we can easily find out a nice similarity with the chiral oscillator
problem.

The Lagrangian for chiral oscillator can be written as:

Ly =3¢7¢'¢ — 5q'q"  (45)
which is smnlar to Lo of eq. (5) upto a factor B in the first term. Now the canonically conjugate

momentum: p’ = %Zj = Lelig (46) So the Hamiltonian,
Hy=p'q¢ — L,

=3¢ — (374 - quql)

=3¢ — (3¢7¢'¢ — 5d'¢)  (47)
This Hamiltonian is identical with Hy in eq.(12) Also it satisfies the noncommutative rela-
tion in eq.(13)°. Thus we can conclude that the Lagrangian and the Hamiltonian behave like a
chiral oscillator in the reduced theory(m — 0).

Conclusion:

Thus we observed an quantum mechanical analog of the gauge field theory.We also saw the
non-commutativity in the reduced phase-space.The shift in the zero-point eigen values agrees
the non-commutivity between phase-space reduction and quantization.This anomaly can be
removed by introduction of the operators in eqgs.(40)
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