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1. Introduction

The standard model based on the gauge group SU(3) x SU(2) x U(1) describes
all that is presently-known of high energy physics. Our aim in-this chapter is to
build it up from the beginning,

We start with the simplest notions of Abelian gauge field theory and the
breakdown of symmetry and gradually build up the various strands that make up
the SU(2) x U(1) electroweak theory. We then take up the strong interaction
sector and 'show how deep-inelastic scattering, asymptotic freedom and colour
lead up to quantum chromodynamics (QCD). The renormalization group
equation is shown to provide the foundation for asymptotic freedom and the
justification for QCD. Combining the electroweak and QCD sectors, the
complete standard model is then constructed. Its strengths and weaknesses are
briefly discussed and some views beyond the standard model are presented in the -
final section. ' :

This chapter is mainly intended for physicists who have not had much
exposure to high energy physics although it may also benefit other beginners in
high energy physics. The level is very elementary and technical details are
omitted. The other chapters in this volume on (pre-gauge-theoretic) particle
physics and on elements of quantum field theory may be regarded as prerequisites
for the understanding of the present chapter.

;-

2. U(1) Gauge Theory

Consider* the Lagrangian of a complex scalar field ¢:
L =8, ¢* " d — V(*$) 1y

Here V, called a potential, is a function of ¢*¢ and, in particular, for
a renormalizable theory, it is a quadratic function of ¢* ¢. We take

F’(ff?* ¢) = pu*d* ¢ + Ap* $). @)
Then the Euler-Lagrange equation becomes ([ + u?)p = —24(¢p* P)é.

* We use the metric ggg = 15 9,1 = gg; = g33 = — 1.
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Fig. 1.

For A = 0, this is the Klein-Gordon equation. Thus, u* ¢* ¢ in ¥ represents the
mass term while A(¢* ¢)* represents the guartic interaction vertex shown in
Figure 1. The quanta of the complex scalar field represent charged particles of

spin zero.
The Lagrangian in (1) is invariant under the global gauge transformations:
Plx) e P(x),  PHx) > e P¥(x), (3)

where o is an arbitrary constant. By applying Noether’s theorem, one finds
a conserved current:

J=¢*0,¢ — (0,99, (4)

87" =0 (or) %Idsxf’:o, (5)

where {d3xj® is the total charge.
We now try to enlarge the symmetry. Instead of the constant phase o, we
envisage a spacetime dependent phase a(x) in the transformation:

Px) > e P(x);  PHx) > e (). (6)

However, the important point is that the Lagrangian in (1) is nof invariant under
-this more general symmetry transformation, since the derivative term in (1) has
a more complicated transformation

HFp—e P —i(0"a)e . (N

In order to ensure invariance, we now have to add a vector field 4* to the
system with the transformation

A" — A" 4 u};aﬂ a, 8)

where eis a constant. Using (7) and (8), we find that the combination (0* + ieA*)¢
and its complex conjugate have simple transformation propertics*:
(0" + ieA")p — e (0" + ieAM)P, 9)
(0" — ied")p* — 7" — ieA*)P* (10)

* Hence (8% + ieA") is called the gauge-covariant derivative.
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and their product (0, — ied,)¢*(0" + ieA*)¢ is invariant. This product now
replaces the derlvatlve term 6 ¢* &* ¢ in the Lagrangian (1).
Since we have introduced a new field A into the system, we need derivative

terms (kinetic energy) for A*. If we define
FP = of AY — 0V A, _ (11)

we see that F*” is invariant under the transformation in Equation (8). Thus, we
have the complete Lagrangian:

L = —4F"F,, + (8, — ieA )" + ied) — V($* ¢). (12)

The beauty of this Lagrangian is that it is invariant under the transformation
defined by equations (6) and (8). We have thus achieved invariance under
spacetime dependent phase transformations and learnt that this necessitates the
introduction of a vector field. This vector field 4* is just the electromagnetic
vector potential and F*" is just the electromagnetic field. So, the Lagrangian
describes a charged scalar field interacting with the elecromagnetic field.

Tt must be noted that a mass term of the form $M? A4, A* added to the
Lagrangian (12) would violate the invariance under (8). So, thc gauge field’ A
describes.a massless vector boson and this is quite ok for the photon which is
known to be massless. :

The transformations of the type in Equation (3) with constant « belong to the
group U(1). The more general tranformations defined through equations (6) and
(8) are usually called gauge transformations. Sometimes the case of constant o is
called global or rigid gauge transformation, while that of spacetime dependent
« is called local gauge transformation. At this point, it is appropriate to note the
analogy with relativity. Rigid transformations of the coordinates lead to special
relativity while {arbitrary) x-dependent transformations lead to general relativity.
Following this analogy, we shall call the transformation with constant « as special
U(1) transformation and the case of x dependent « as general U(1) transformation.

3. Spentaneous Breakdown of Symmetry — Goldstone Model

s
The canonical momenta and Hamiltonian corresponding to the Lagrangian in
Equation (1) can be easily worked out

S -dn w—immd (herem‘;‘f) (13)

H = + T P* —
=qn*n + Vo* -V + V(d* ). (14)

So, the total energy of the system is

H = J%’ d3x = fd3x[ﬁ*n + VoV + V(q&*qf))} (15)
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Consider the nature of the potential function V(¢* ¢) given in Equation (2).
The constant 1 has to be positive, otherwise V will become negative for
sufficiently large ¢ and, hence, the energy in Equation (15) will become
unbounded from below. So, there are only two cases to be considered both of
which are plotted in Figure 2.

v v
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$ \/ | ¢

{a) !

(@ p* >0
b) ¥ <0

Fig. 2,

In case (a), V' is always positive, while in case (b) V is negative for small values of
¢ (where the p*¢*¢ term dominates), however ¥ becomes positive for
sufficiently large values of ¢. Case (a), corresponds to normal particles with
positive (mass)?, and there is nothing more to be said about it. Case (b) is the
interesting case. Although this apparently corresponds to tachyons {particles
with negatlve (mass)?), this is not the correct interpretation as is clear by looking
at the Figure 2. Whereas for case (a) the state with ¢ = 0 is a state of a stable
equilibrium and, hence, it is the ground state, in the case of (b), ¢ = 0 corresponds
to a maximum of the potential and, hence, is a state of unstable equilibrium. For
this latter case, excitations around ¢ = 0 have a tachyonic mass, corresponding
to the negative curvature 8% ¥ /8¢ ¢*. The true ground state must be identified
with the minimum of the potential, where ¢ has a nonvanishing value ¢, (see
Figure 2b). The curvature is positive here and so the tachyons do not exist. In
quantum field theory, ¢, must be interpreted as the vacuum expectation value of
¢ written as {¢). This must be independent of x, otherwise Poincaré invariance
of the theory will be lost.

We must now recognize that V is actually a function of two fields, the real and
imaginary parts ¢, and ¢, of ¢:

¢ =y +ip, ' (16)

So, in Figure 2 the abscissa may be regarded as ¢, and the full shape of the
potential ¥ is obtained by rotating the figure around the ordinate. Thus, we
obtain Figure 3 for the interesting case of (b). (We have added a constant to ¥ so
that V = 0.) We see that the minimum of the potential occurs all along a circle of
radius ¢, in the ¢, — ¢, plane. We can choose any one point along this circle as

|
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v

CIJ & = massless mode
2 f = massive mode

Fig. 3.

the ground state of the system; however once we choose it, the circular symmetry
(which is the U(1} or SO(2) symmetry) of the system is broken. This is the
mechanism of spontaneous breaking of symmetry.

An important consequence follows. Since it does not cost any energy to move
around the circular trough of minimum potential, there exists a massless particle.
As can be seen from Figure 3, movement along a direction normal to this circle
costs positive potential energy and this corresponds to a normal particle with
positive (mass)?. Thus, the choice of a proper ground state eliminates the two
tachyonic quanta (corresponding to ¢, and ¢,) and, instead, we end up with
a massless mode and a normal massive mode. This massless mode is called the
Nambu-Goldstone boson and this result is called the Goldstone theorem
(proved by Goldstone, Salam and Weinberg) which states that spontaneous
breakdown of any continuous symmetry is followed by the massless Nambu—
Goldstone boson,

[It is worth noting that if the symmetry which is broken is a discrete symmetry,
we do not get any massless Goldstone boson. Consider, for instance, the case of
a single-component real field ¢. If we choose V to be

V=p*d? + id%, (17)

the system has a discrete reflection symmetry ¢ — — ¢. For case (b} illustrated by
Figure 2b, there are just two possible ground states, corresponding to ¢ = ¢, and
¢ = —¢,. For either choice, the reflection symmetry is spontaneously broken,
but there is no Goldstone boson.]

We shall now transcribe the above physical description of spontaneous
symmetry breaking to analytical form. Adding a suitable constant to the
potential V¥ in Equation (2), it can be rewritten as

V= Mp* ¢ — ¢3) (18)
where ¢3 = — (u?/24) > 0, for case (b). We put
¢ = pev, (19)

where p and @ are real fields. In the ¢, — ¢, plane of Figure 3, § corresponds to
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angle, while p corresponds to length, These correspond, respectively, to the
modes along the circle, and perpendicular to it. In terms of these real fields, the
Lagrangian in (1) becomes,

L =0,p0"p + p*0,00"0 — Ap* — $3)*. (20)
Note that the ground-state value or the vacuum expectation value of p is given by
{p> = ¢y = constant. 2n

The excitations around this ground state are described by the field # defined by
px) — ¢ = n(x). (22)

In view of (21), n has zero vacuum expectation value. Substituting (22) into
Equation (20), we get

L = 0,n0"n + (1 + bo)*0,00"0 — MApEn* + 4don® + ). (23)

This Lagrangian describes two real scalar fields 5 and 0. Their masses can be read
off from the coefficients of #* and 02, respectively

m, =2/2¢o,  my=0. (24)

Thus, # is the massive mode and 8 is the Nambu--Goldstone boson.

4. Higgs Model

This is the model for spontaneous breakdown of general U(1). We now take the
Lagrangiatr-of Equanon (12) and again assume case (b) for the potent1al V. Using
the form of V given in Equation (18), we have

= (0, — ieA,)p*(0" + ieA")p — 30,4, — 0, A,V — M¢p* b — ¢>%)2- (25)
We again introduce the two real fields- p and @ defined by

b =pe®, (26)
but the new trick is to transform A# also

4, mBn—-éauf). 27

We substitute these into the Lagrangian of Equation (25). Since ¢ looks like the
gauge function « of equations (6) and (8) and since .# is now gauge invariant, the
result of the calculation is obvious. We get the same form of % asin (25) but with
p and B, replacmg @ and A,

= (9, — ieB)p(@" + ieB")p — 43, B, — 8, B — Ap* — 3. (28)

The ‘gauge function’ § does not appear and, hence, there is no massless boson!
Again, translating the field p by its vacuum expectation value ¢, and defining # by

—

bl
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Equation (22), we get
L = 0,no"n + (¢, + n*B,B* — %(0,B, — 8,B,)* —

— MAPSn* + 4don® + 1*). (29)
The masses of the fields # and B, can be identified
m, = 2./ 22 ¢, . (30)

Thus, not only has the massless Goldstone boson disappeared, but the vector
boson also has acquired mass. The original massless vector boson A, had only
two (transverse) components; what has happened is that the 4, swallowed the
massless Goldstone boson § and, thus, became the massive vector boson B,. The
Goldstone boson has supplied the longitudinal component required by the
massive vector boson. This is the celebrated Higgs mechanism.

The moral is that if the symmetry which is broken is a general, (i.e. gauge)
symmetry then there is no Goldstone boson left in the system.,

5, SU(2) Gauge Theory

The U(1) transformations considered so far form an Abelian (ie. commuting)
group of transformations. Qur aim is to generalize the U(1) theory to symmetries
based on non-Abelian groups such as SU(2} or SU(3). We proceed in parallcl
steps. We take ¢ to be a complex doublet of scalars

m)
= . 32
¢ (% (32)
Under an SU(2) rotation, ¢ transforms as

¢ — ei‘r,ﬂ'l-a ¢" (33)

where © = (t,,7,,1,) are the three Pauli matrices and o = (o, ®,,0,) are three
real constants. Note that ¢'¢ is invariant under the transformation in (33).
A Lagrangian invariant under this ‘special SU(2) transformation’ is

Y =0,'0"¢ — V(¢'9), : (34)

where ¢! refers to the Hermitian conjugate ¢' = (¢%, ¢%).
Next, let us try to generalize the above to the ‘general SU(2) transformation’:
¢ — cit,ﬂ'Z'a(x) ¢’ (35)

where the a(x) are now functions of spacetime. In order to achieve general SU(2)
invariance for our Lagrangian, quite a bit of nontrivial algebra is necessary. First
note

6#(,{) — el"r,u'z-a(:fc) a,ud’ + (ay ei‘tlz’m(x))¢,_ (36)

b e o mr et et~ o e,
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In order to cancel the second term in (36), we have to introduce vector fields.
We introduce a triplet of vector fields Wi(a = 1,2, 3) which transform as

Wi - [ ] Wi — — e, [(0, 6" e "], 37)

1
29
where I (a = 1,2, 3) are the SU(2) generatorsin 3 x 3 matrix representation given
by their matrix elements

(Ia)bc = —i€ abcs (38)

where ¢, is +1 or —1if abc is an even or odd permutation of 123, respectively,
and it is zero if any two of the indices abc are the same. Combining (36) and (37),
one finds

. T itf2 . T ‘ ‘
(6# — ng'W”)q') -y f/2 (6,‘ — g3 Wﬂ)qb, (39)
where we have introduced the vector notation for the SU(2) triplet: W, =
(W, W2 W3It is clear that this combination has a simpler transformatxon

property and so can be used for forming the invariant Lagrangian.
We next need the kinetic terms for W&, Define

Giv = 0, W3~ 0, Wi + ge,, Wi WS, - (40
This transforms as
Gy > [€7*1,, Gl | 1)
Hence, the generaily invariant Lagrangian is*
L = =30, — 0, W, + gW, ><W)2
+ ¢*(6u +ig2+W ) (a ~ g )d: V(d' ) @)

Just as in the case of the Abelian gauge theory, the gauge field W, is massless. The
mass term im W, W, if added to the Lagrangian in Equatlon (42), would
violate the general SU(2) invariance.

The theory of the non-Abelian gauge field W, was first constructed by Yang
and Mills in 1954. Note that, even in the absence of other fields such as ¢, the
Yang-Mills field W, is self-interacting. The Lagrangian (42) contains terms cubic
and quarticin W, describing the cubic and quartic vertices of Figure 4. In this
respect, the Yang—Mills field differs from the electromagnetic field and is more
like gravitation, Since the gravitational field couples to everything which carries
encrgy-momentum and since the gravitational field itself carries energy-
momentum, it has to be coupled to itself. Similarly, the Yang-Mills field W,

* Henceforth, we will not be very careful in raising or lowering mdlces W, W, really stands for
W, W,
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Fig. 4.

couples to everything which carries SU(2) quantum numbers and since W, is
a vector under SU(2), it has to interact with itself.

The SU(2) non-Abelian gauge theory given above can be easily gcncrahzed to
any compact Lie group such as SU(n), SO(n), Sp(n) or even an exceptional group
or direct products of these.

6. Spontaneous Breakdown of SU(2) Symmetry

Special SU(2): We take the potential ¥ to be always of the (b) form. The analogue
of Figure 3 must now be plotted in terms of four real fields contained in the
complex doublet ¢. We again separate these into the length type and angular type
of fields by using

0= eewz»e(o), @)
o

where p and @ = (8,,8,,8,) are four real fields, taking the place of two complex
fields ¢, and ¢, . Since V is an SU(2)-invariant function of ¢, it depends only on
p and not on . It is clear that the region of minimum potential {the analogue of
the one-dimensional minimum circle of Figure 3) is now a three-dimensional
manifold, corresponding to the three angles 6,,60,,8,. Thus, there are three
massless Goldstone bosons in this case and one massive boson corresponding to
p, or rather, to the shifted field p — {p>.

General SU(2): We take the generally invariant Lagrangian of Equation (42) and
make the substitution of ¢ in terms of p and # through Equation (43). We also
transform W, into W, with the gauge function chosen to be 6:

+ "L*’Jabc[(t%u e e ], (44)

Wz = [e“'ﬂ]ab W;‘b 29

As a consequence of general invariance, the Lagrangian has an identical form to
that in Equation (42), except that W, is replaced by W), and ¢ is replaced by (9 )
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and the ‘gauge function’ 8 disappears.
L= —40,W,— 0, W, + gWi x W)+

| (a-wgw) ()]
x [(a - ig’-w;) (2)] — A(p? — $3P. 49)

Hence, the Goldstone bosons have disappeared and all the three vector bosons
have become massive. The mass terms for the vector bosons are easily obtained
from the relevant part of Equation (45) by the replacement of p by its vacuum
expectation value ¢,

A E))

W W, —iwW
12 3 1 2y
29°(0 ¢0)(W1 LW, -W, )

X .
Wl '+' iWZ ““W3 q{)o
=19° 93 (W1 + Wi + W3). (46)

We have ignored the Lorentz vector index u as well as the prime on the W fields.
We thus find that all the three vector fields acquire the same mass given by

~o

o

ey =--~vﬁg¢o. @)

7. One More Model

In the SU(2) model considered above, the scalar field was a complex doublet field
and this led to a system with all three vector bosons gaining mass after symmetry
breakdown, We next consider a SU(2) model with a real triplet scalar field. In this
case, all the vector bosons do not become massive.

Special SU(2)
L =1%8,4-0,¢ — V(g ), (48)

where ¢=(¢,, $,, P,) is a triplet (vector) representation of SU(2) and it is taken
to be real. We put

0
¢ =eilitn+ioa | o ) | ' (49)
, .



Standard Gauge Model of High Energy Physics 195

where we have used the three-dimensional (column) matrix notation for ¢, and I,
are the 3 x 3 matrix representation of the SU(2) matrices, already given in
Equation (38). The fields p, 8, and @, are three real fields replacing ¢,, ¢,, and ¢;.
By following the same reasoning as before, when SU(2) symmetry is broken
as a consequence of the nonvanishing vacuum expectation value of the scalar
field, 6, and 6, will become massless Goldstone bosons, while p will become
massive.

General SU(2)
L =—Ho,W,— o, W, +gW, x W ) +

+30,¢ —gW, x ¢)* — V(¢ ¢), (50)

where we have used the SU(2) vector notation for both W, and ¢. Again,
following the same argument, we see that ¢, and ¢, will become the longitudinal
components of two of the vector bosons which will, therefore, emerge as massive
vector bosons. The third vector boson will remain massless. This can be worked
out from the piece 3g*(W, x ¢)? contained in the above Lagrangian by replacing
¢, by its vacuum expectation value ¢,38,;. Thus,

2

—(W x ¢)F = 2 Eabe Bdfcd’ GW, W,

2

g
“*_2'¢(z)ssbc33fc W, W, (51)

2
= L HW, W, + W, W) (52)

where we have dropped the Lorentz index on the vector field W for notational
convenience, Thus, W, and W, have masses equal to g¢,, while Wy remains
massless.

8. General Case of Non-Abelian Symmetry Breakdown

Let us consider any compact Lie Group and work out the symmetry breaking.
Let g be the number of generators of the group, which is also the number of gauge
bosons and let ¢ contain n real components.

Writing ¢ in the form

d) — eiEaI"Bap, (53)
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where I are the generators in the representation of ¢, we take v nonvanishing
components for p and r = n — v nonvanishing components for @:

0\

0 ' |
p: > n, 0=(Qa,,.9r,0...0). (54)

Pa ey

. v \:_ﬂg,f_—/

Py J

This split-up between the angle-type variable 0 and length-type variable p is
completely determined by the representation to which ¢ belongs. The number of
length-type variables v is, in fact, equal to the number of independent invariants
one can construct out of ¢. This number v is called the canonical number of the
representation. The @ fields are massless while the p fields lead to massive
excitations. Hence, the number of Goldstone bosons is given by the difference:
r=n - v: This is also the number of gauge bosons which will become massive
and so the number of massless gauge bosons is g — n + v.

- In tne examples already considered above, for the doublet ¢, the only invariant
is ¢ ¢ and for the real triplet also, there is only one invariant ¢ ¢ and so v = 1
for both. Hence there is only one p field in both these examples of SU(2) breaking
and the rest of the field components must be accommodated in the angle-type
variables 6 each leading to a Goldstone boson.

We may.also write down the general mass matrix for the vcctor bosons,
resulting from a spontaneous breakdown of symmetry

M3 = g* Iip 15,{pp><p,> (55)
This is a generalization of the mass calculation in Equations (51) and (52).

9. SU(2) x U(1) Model

We are now ready to face a more realistic model (needed in high energy physics),
which is obtained by combining the U(1} and SU(2} models already discussed
above. _

We start with the Lagrangian of a scalar field ¢, which is a doublet under SU(2),
and being complex,has a nonvanishing U(1) charge also

?,
= 6

& =0,"0"¢ ~ Up' ¢ — $3). (57)

This Lagrangian has special SU(2) x U(1) invariance. Substitution of the form
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— s
P

reveals the presence of three massless Goldstone bosons 6,68, and 6; and
a massive scalar boson p. (Since ¢ ¢ is the only invariant, the canonical number
V== 1)

To achieve general SU(2) x U(1) invariance, we need a triplet of SU(2) gauge
bosons W, and a singlet of U(1) gauge boson B,. The generally-invariant
Lagrangian is

cg = *ﬂauwv - avwﬂ + gw_u X wv)2 - i(a.ﬂB” - avB”)z +

+q§*(5# + ig%‘W# - %B#)(éu — ig%-W# — E“g—'BM_)qi)
~ NPt ¢ — ¢), (59)

which is a combination of the Lagrangians in Equations (25} and (42). We have
called the SU(2) gauge coupling constant as ¢ and the U(1) gauge coupling
constant as g’. Now, since there are four gauge bosons, whereas the number of
Goldstone bosons is only three, one massless gauge boson survives and along
with that/a general U(1) symmetry (which need not be the same one we started
with) remains unbroken.

After making the gauge transformation with the gauge function 0, the field
6 gets eliminated and the final form of the Lagrangian is obtained from Equation
{59} by the simple substitution

0 )
b= (p) b= do+n, ‘ (60)

where ¢, is a constant and # is the massive scalar field. Thus, we have

g = ““-flf(a,uwv - av w,u + gwlu X W\’)z - %‘(ava - avB#)z +

—gW; +¢'B —g(W, — in))z( 0 )
+40 . +
3 d)0)<_ g(Wy + IW2) gW, +4g'B do
+ n-dependent terms. (61)

The vector boson mass term which can be read off from this equation, is
292 GF(W, +IW,)(W, — iW,) + 163(gW, + ¢’ B)*. (62)

We thus identify the massive fields and their masses as follows

1 : 2
wi= Ve Wa e 1420
_ \/5 (63)
gW? +g'B )
Z, =2k L mi=1¢g* + g
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The fields defined here are the normalized fields. Wi are complex fields and
correspond to massive charged vector bosons, while Z, is a real field and
corresponds to a massive neutral vector boson. The combination orthogonal to
Z, remains massless and so we shall identify it with the photon field A,
(electromagnetic vector potentiai):

—g’Wﬁ + gBu.
# Igz + gr?.
It is convenient to define the weak mixing angle 8y, by

!

tan 6y, = % (65)

A

If

my=0. (64)

so that, part of Equations (63) and (64) can, be rewritten as

Z, = cosy W; + sinfy, B,

A, = —sinfy W} + cos 6y B, (66)
and

méy = m# cos? Gy, (67)

This model is, in fact, the successful electroweak model of Glashow, Salam and
Weinberg, which unifies the weak and electromagnetic interactions through
SU(2) x U(1) gauge theory. After symmetry breakdown, a U(1) gauge symmetry
remains unbroken and it is identified with electromagnetic U(1), with the
corresponding massless gauge boson, namely the photon. The three massive
vector bosons Wiand Z, mediate the short-ranged weak interactions such as
p-decay.

In terms of W, Z,and A, the Lagrangian becomes

L= AW W, + mE W W, — 4F2, 472 +miZ, 7, —
— [2ig sin Oy (A (Wo, WS — W W)} —
— g sin? Og {A, A, Wi Wy — A A, W) Wy )] —
— 2ig sin 6y F,, W W, + 2ig cos Oy {Z, (W, W) — W, Wi} +
+ g2 08> 0w{Z,Z, W, Wy — Z,Z, WS Wy} +
+ 2ig cos Oy Z,, W, W — g% cos by, sin 8y,
(AZ,WWy +A,Z, W)W, —24,Z, Wi W, )+

2
+%{W; Wi W, W, — Wi WHW, W+ n-dependent terms,

(68)
where we have put
Wi =0uWs — 0, WE; Z,=0,Z,—0,Z,
F,,=0,A,—dA, (69)
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We make the following observations on the structure of Equation (68).

(1) The coupling of the charged vector bosons Wi to the electromagnetic field
A, is automatically contained in the Lagrangian, provided we identify

gsin By, = e. (70)

(2) In particular, all the terms within the square brackets [ ...] in the above
equation arise from the so-called ‘minimal’ electromagnetic coupling
arising from the replacement

8, WE (0, T ieA )W, (71)

(3) However, there is a nonminimal term also. This is the piece FMW,,+ W,
which, in fact, ascribes an anomalous magnetic moment to the W bosons.
The value of the anomalous magnetic moment kyy is unity, thus giving 2 for
the g-factor of the W boson:

gw =1+ Ky = 2. (72)

This feature is a consequence of the symmetry of the cubic Yang-Mills
vertex between the three vector bosons and is a characteristic of any theory
in :which charged vector bosons are incorporated into a Yang—Mills
theory. .

(4) There exists a perfect A, —» Z, symmetry. As a consequence, the charged
particles are coupled to Z, exactly in the same manner as to A,,, the only
difference being the replacement of g sin 8y, by —g cos Oy, (see Figure 5).

(5) Our last comment is on the W* W™ W~ W~ term, which implies a direct
coupling among the charged bosons without involving the electromagnetic
field. It is, in fact, the presence of this term which makes this theory of
massive charged vector bosons a consistent one; without such a term, the
theory of massive charged vector bosons was known to be an inconsistent

theory [1].
Au Zy,
g sin e, - g c§s 9w

Fig. 5.

10. ‘Standard Model’ before Gauge Theory

Our aim is to construct the standard model of gauge theory. Before doing that, it

is useful to have a brief glance at the standard model of high energy physics that
existed (say, in the late 60’s) before the advent of gauge theory. This pre-gauge
theoretic standard model can be described by the Lagrangian
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L = —3F, F,, + &[iy, (0" — ieA*) — m Je + iV,7,0"v, +
+ ALy, (0* — ieA®) — mJu + i7,7,0%v, +

+ @iy (0" + }icA") — m,Ju + a[iy#(a‘“ — %eA“) — m,,]d -+

G
+8[iy (0" — LieA*) — m s + ~E4{JF, T} +

NG

+ strong interactions among the quarks, (73)
where 7
Jy == %én(l — s, + %ﬂ?a(l - ?5)"# +
+(dcos 8, + §sin Bc)y,l(1 EYS)uI, (74)
Ji =W (75)

This Lagrangian describes the electromagnetic and weak interactions of the
quarks u,d,s, with respective electric charges %, —4 and —% (in units of the
electronic charge e) and the leptons e, u, v,, v,, with electric charges —1, —1,0,0,
respectively. The existence of these quarks as the constituents of the hadrons had
already been guessed from hadron spectroscopy. However, nobody knew the
precise form of the ‘strong interaction’ among the quarks which is responsible for
the binding of the quarks inside the composite hadrons. So, we have left it
unspectfied in Equation (73).

The weak interaction, however, was rather precisely known to be the current
x current form of Feynman and Gell-Mann given in Equation (73), with the
weak current being given by the V' — A form of Sudarshan and Marshak given in
Equation (74). In this equation, the strength of the weak interaction has been
distributed among the ordinary-f-decay transition (described by the du piece of
the weak current) and the strangeness-changing decay (described by the §u piece
of the weak current) in the proportion cos 6, and sin 6, respectively. This is called
Cabibbo universality and the empirical value of the Cabibbo angle is given by

sin 8, ~ 0.22.

Violation of CP invariance was experimentally well-established by that time,
but not theoretically understood and so the above Lagrangian in Equation (73)
does not incorporate CP violation. It is also worth pointing out that standard
axioms of quantum field theory require the symmetrized form of the current
X current interaction, given by the anti-commutator of currents in Equation (73)
otherwise even CPT theorem will be violated [2].

What is the connection of the weak and electromagnetic interaction given in
Equation (73) to the SU(2) x U(1) model developed in the earlier section? This
connection is made through the algebra of the weak and electromagnetic currents
which we discuss below.
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11. Current Algebra and SU(2) x U(1) Charges of the Fermions

The electromagnetic interaction contained in the covariant derivatives of
Equation (73) can be regrouped in the form of eJ§™ 4,, where the current J{™ is
given by

Ji™ = —&y,e — @y, + iy, u — 3y, d — 35y, (76)
We shall now show that the weak and electromagnetic currents of the quarks and
leptons given by Equations (74) — (76) satisfy the SU(2) x U(1) algebra. To do this,
let us split the currents into the leptonic and hadronic (quark) parts

Ji =@ +ji(w +ji @), | (77)

I§m = 5O + ™) + 5 (78)
and let us write these currents in matrix notation with the lepton pairs and quark
pairs collected into doublets

70 = 5o, ! ( )( ) | (19)

Ji (ét) e (ﬁa’)h( yS) ( )( ,), (80)
s R (1 -7 ) 01 €

i ) = @8y (0 O) ;) 81)
-+ S U (1 _ ) 0 1

it @) =@y, (0 0)(3) (82
. . 0 0

j5™(e) = 6, e)}u(o ‘_1)(26), (83)
£.m i1 ! -2- 0

Ji™@ = @d), (; _ %)(3) (84

where we have defined the Cabibb?—rotatcd quark
d"=dcosf, +ssinb,. (85)

The muonic currents are similar to the electronic currents and, hence, are not
written separately. We, thus, see that the weak currents involve the raising and
lowering matrices of SU(2} algebra

ﬁ:(g (1)) and 'c”=((1) g). (86)

The electromagnetic current involves a diagonal matrix which is not the third
SU(2) matrix

, (1 0
e=(y _1) @)
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but can be written as a linear combination of t> and the unit matrix. So, by taking
the difference between the electric charge matrix Q and the ‘weak isospin’ matrix
I, =473, we get a unit matrix (muitiplied by a number), which we shall call the
weak hypercharge Y:

Y=0 -1, (88)

So, for leptons, we have

0 0\ 1/t 0\_ 1/1 0
Yz(o —1)“5(0 —1)“”5(0 1) )

while for quarks

(4 oy 1/t 0\ 1/1 0
Y”’(o -%)*5(0 —1)“6(0 1)' 0

This hypercharge matrix ¥ commutes with all the SU(2) matrices t* and 2 and,
hence, can be taken to be the generator of the independent U(1) symmetry. We
thus have the SU(2) x U(1). The hypercharge values for the leptonic and quark
doublets can be inferred from Equations (89) and (90) to be —4and 4, respectively.

To be more precise, we must split the leptonic and quark fields into their
left-handed and right-handed parts by the definition:

' fﬁ, =31 Fvs)f (91)
for all the fermionic fields. The weak currents involve only the left-handed fields
and so these fields form the doublets under SU(2) while the right-handed fields
must be regarded as singlets under SU(2). The right-handed fields have
nonvanishing hypercharge, however, and their values are equal to their electric
charges Q (by Equation (88)). "

The SU(2) and U(1) quantum numbers of all the fermions are given in Table L.
The right-handed neutrino vy is a singlet under SU(2) and has Y = 0 and so does
not participate in the weak as well as the electromagnetic interactions. Hence, it
has been dropped from the table. It may not even exist; in any case it has not been
detected so far.

Table I,
Fermion SU(2) Y
u .
q = ( ,) doublet 1
d L
ve
I(e) = doublet -3
€/L
Up singlet %
dy singlet |
g singlet —1

We may now write the zeroth components of the leptonic and quark currents in
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the form
jole) =3l <1, (92)
jo@ =%qf r'qy, (93)
joley= —iI'l, —eleg, (94)
74(@ = balq, + $ul vy — i k. ©3)
where i = 1, 2, 3 and we have defined the Cartesian components
k=Gl = —iGE 0D (%)
and also defined the hypercharge current
i =J5™ =i | o7

In quantum field theory, in general one has the commutation relation
LT )AW(x), ¢ (y)Bi(y)]
=y (x)[4, By (x)3*(x — y) | (98)

which follows from the canonical equal-time anticommutation relation for Dirac
fields

{0 H(5)} = 0°(x — ¥)op- (99)
In equation (98), y(x) is a multicomponent Dirac field, A and B are matrices and
matrix multiplication is implied. Use of Equation (98) allows one to trivially
verify the SU(2) x U(1) algebra for the leptonic currents and quark currents
separately and also for the total currents:

T, =je) + j2(w) + j:{a), (100)

[J5(x), 3] = ie* 508> x — ¥),

[J3(x), Jo(y)] = O. (101)
By integrating these equatioﬁs over x and y, we also get the algebra of charges:

(I, I] = igt* I*, [Y,I'] = 0, (102)

where we have defined the SU(2) x U(1) fermionic charges:

I'= j Bxlix) (i =1,2,3),

Y = Jd"x.]é’(x). (103)

12. The Electroweak Gauge Theory

We are now ready to discuss the Glashow—Salam—Weinberg electroweak theory.
In fact, the Lagrangian of this theory is simply obtained by adding the leptonic
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and quark terms to the Lagrangian of the SU(2) x U(1} model given in Equation
(59). Thus, we get

&= —40,W,— 8, W, +gW, x W) —40,B, ~ 0,B,) +
+ iqu"(aﬂ + ig—z--W# + —6—»13#)(;[L +

+ ity y*(0,, + %’;l’g’BM)uR e g p# (6 — gg 'B )d +

. LT i,
+ IZL’}J“(a” + lgz-W# — ~2—g B#)ZL +
+ 8 y"(0, — ig’' B, Jeg +

T g’
+Ka# gz W, + ;g—Bp};s

¥

2

— Mot b — 3)*

2
—(hy gy ¢ ug + hydy, Ppdg + h. 1) dpeg + hc), (104)
where
b, = it* p* = ( M*), © (105)
— ¢t

) )

[

conjugatc :

There are two groups of additlonal terms in the above Lagrangian — invariant
kinetic energy terms for the quarks and leptons and terms of the type ff¢p which
couple the Fermi fields fwith the Higgs fields ¢ and which are called Yukawa
terms, The former contain the couplings of the fermions with the gauge fields
W and B with couplings specified by their SU(2) and U(1) quantum numbers
given in Table I and, hence, are invariant under the general SU(2) x U(1) group.
The Yukawa couplings with the Higgs field ¢ also are invariant under the same
group. By construction, they are SU(2) scalars and they also conserve the U(1)
quantum number. In fact, the Lagrangian in Equation (104) contains all the terms
allowed by general SU(2) x U(1) invariance and renormalizability. The term
renormalizability will be explained below, |

Note an important omission: the fermionic mass terms mff are missing. It is
impossible to add any fermionic mass terms without violating SU(2) x U(1)
symmetry. The only SU(2) x U(1) invariant terms are of the type §, d,, Gig uy etc.
but these are zero:
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and similarly for f;fz. There are no f, fi type of térm which conserves
SU2) x U(1) quantum numbers. Hence, ail the fermions at this stage are
massless. Fermion masses will be generated by the spontaneous breaking of
symmetries. .

The muonic terms which have been omitted in the above Lagrangian, are
exactly similar to the electronic terms. Note that we have used the d quark rather
than the Cabibbo-rotated quark d’ = d cos 6, + s sin §,. In effect, we have put
0, = 0 and omitted the strange quarks. This omission of the strange quark terms
in the Lagrangian is deliberate. If we had used d’ instead of d, this would have led
to the derivative terms in the Lagrangian

d’y,0*d’ = cos® 8,dy, 0*d + sin® 6,5y, &*s +
+ cos 0, sin 0,(dy, 0*s + &y, 9*d), (108)

as compared to the correct derivative terms for full-fledged Dirac particles d and
8! : :

dy*0,d + §*0,s. (109}
This defeét is due to the fact that the other orthogonal combination,
s'= —dsinf, +scosd,, (110)

has so far been ignored. Including this in the Lagrangian would restore the
derivative terms in full measure for the two particles d and s -

d'y, *d’ + §'y, 0% = dy, 0*d + §y, &*s. (111)

However, what about the SU(2) x U(1) invariance of §'y, 6“s'? One simple way
of ensuring this is to assume that s’ is a singlet under SU(2), since there is no
partner for s’ to make up a doublet. Its Y value must be assumed to be equal to 0,
for consistency with the relation:

Q=1I,+Y. (112)

However, we shall not pursue this rather asymmetrical assignment of quantum
numbers, for there is a more serious phenomenological problem with the strange
quarks, which we shall discuss soon. At that point, we shall give the correct
treatment for s quarks. For the present, we shall carry on with 8, = 0 and ignore s.

The Higgs potential A(¢T¢ — ¢3)* in the Lagrangian of Equation (104)
implies a nonvanishing vacuum expectation value ¢, for ¢ which leads to
breaking of SU(2) x U(1) symmetry and generation of mass for three of the vector
bosons, leaving the fourth vector boson massless, exactly as in the earlier section.
For the present Lagrangian, nonvanishing ¢, has one more consequence arising
from the Yukawa terms ff¢. It is clear that the replacement of ¢ with its constant
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vacuum expectation value ¢, leads to mass terms for the fermions. We have

b,y ¢ ug + haqpodg + I deg + he.

— hu(ﬁLHL)(d)o)uR + hg(ly, aL)( 0 )d + h, (7, eL)( )eR + h.c.
0 Po b0
= h,$o U U + hypody dg + h Po8Leg + he.
= h, o Ty ug + Gguy) + hy(dy dg + dgdy) + he(Erep + Eey)
= h, ¢oliu + hy¢ydd + h,d,ee, (113)

where we have assumed that ¢, and the Yukawa coupling constants h are all real
and used the following relations for the chiral Fermi fields f; and fy:

(ﬁ,fR)T :];th’ '

_Al+ys) (L4 ys) o o(1+ys)
foR_f 2 : 2 f”‘“}\ 2 fa

R A b

- AR RA=TTL (114)
We thus identify the masses of the quarks and leptons:
h,do = my; hy®o = myg; ho¢o =m; hu Po = My, (115)

where the last equation has been added to make it more complete. The moral is
- that spontaneous breaking of SU(2) x U(I) generates masses not only for the
gauge bosons, but also for the fermions. :
This completes the construction of the electroweak gauge theory

13. Consequences of the Electroweak Theory

The interactions of the quarks and leptons with the gauge bosons W, and B, are
all contained in the covariant derivatives occurring in the Lagrangian of
Equation (104). They can be collected together and written in the alternate form:

L' =gW,J, + g BJy™ —J3), (116)

where J, and J ~ are, respectively, the currents of the weak isospin group SU(2)
and weak hypercharge group U(1):

3, = @dy, (1 2}’5)() ey (1 '}’5) (e) 117

Jr=Jgm =T, (118)
On re-expressing the fields W, and B,, in terms of the physical fields W}, Z, and
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A, using Equations (63) and (66), we get

9
2/2

(J3 - 2sin? 6y, TS} Z, (119)

P = gsin Oy JE™ A, A+ —L= (I W+ JF W)+

cos 9

The first piece in %' is the familiar electromagnetic interaction with the

identification already made {70)

gsind, =e. (120)
The second piece containing interaction of the ‘charged currents’ J* with the
charged bosons W *, must be compared to the old current x current form of the
weak interaction in Equation (73).

We see that the Fermi contact interaction of the old form of the weak
interaction describing processes like f-decay are replaced by the W-exchange
form (See Figure 6). The Fermi coupling constant Gy get related to g* multiplied
by 1/m? which is the propagator of W boson for small momentum-transfers. The
relation is

(2 \/)2 _ =?i | | . (121)

Hence, combining Equations (70), (121) and (67} and using the known values of
Gy and e, we get

" m37'.4Go::V {122)
v sind,,
m
- 123
“ cos@, (123)

The third piece in Equation (119) describes the ‘neutral current’ {J} —
2sin? 8, J5™} interacting with the neutral vector boson Z,. This is a new weak
interaction predicted by the electroweak gauge theory which was not present in
the old ‘standard model’ Lagrangian of Equation (73). This leads to the current
x current form:*

ngL(;Neutrgl — ELJQ’JQ’; Jﬁ = J?‘ — 28in2 ijz-m-' (124)

effective
V2

Fig. 6.

* We have used 1/m? for the Z propagator at low momentum-transfers and replaced m cos? 6, by
mZ (by Equation (123)).
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v - scallering

Fig. 7.

The existence of neutral-current weak interaction, which will lead to processes
such as elastic v-scattering (Figure 7) with a strength comparable to that of the
usual charged current weak interaction responsible for f-decay (Figure 7), can be
regarded as a natural consequence of unifying weak interaction with electro-
dynamics. Neutral current acts something like a bridge between conventional
weak and electromagnetic phenomena. Hence, the discovery of the neutral-current
wedk interaction in the neutrino reactions in 1973 and the subsequent detailed .
studies which showed the properties of the neutral-current interaction to be
exactly those predicted by the SU(2) x U(1) model, helped to confirm the model.
Note that the neutral-current is not of the V--A form, the relative strengths of
V and A4 being determined by the mixing angle 8. Detailed analyses have shown
that all the neutral-current interactions among the leptons and quarks, so far
studied, are in agreement with the predictions of the form in Equation (124), with

sin? 8, ~ 0.21. (125)

In this volume devoted to the interface between astrophysics and high energy
physics, it is particularly relevant to point out the astrophysical significance of
the neutrai=current interaction of the neutrinos. This interaction (Figure 7) leads
to coherent scattering of neutrinos on nuclei and, hence, to neutrino; pressure,
(Without neutral currents, such coherent scattering of neutrinos is not pos-
sible.) Possible importance of this neutrino pressure on supernova explosion has
been considered in recent literature,

Let us now go back to the expressions in Equations (122, 123) for m,, and m,.
Determination of the weak mixing angle 6, in neutral current processes, allows us
to determine the masses of W and Z bosons. Using Equation (125), we get

m,, ~ 82 GeV, (126)
m, ~ 94 GeV. ‘ (127)

We thus see that the weak bosons are very massive, almost 100 times the mass of
the nucleon. This is the reason for the apparent weakness of the weak interaction
at low energies. (See Equation (121) for Gz} At energies much larger than
100 GeV, the strength of the weak interaction is measured by g? and so becomes
comparable to that of the electromagnetic interaction.

A proton-antiproton collider with centre-of-mass energy of 540 GeV was
specially constructed for the discovery of the weak bosons W and Z and the
search culminated in their actual discovery in 1983 with masses predicted in
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Equations (126, 127) thus providing a spectacular confirmation of the electro-

weak SU(2) x U(1) gauge theory.
Let us now come back to the problem of the strange quark encountered in the

last chapter. Introduction of the Cabibbo-rotated quark d' = dcos 8, + ssin 8,
into the charged currents J will describe the decays of strange hadrons correctly,
but the problem is in the neutral current. The contribution of d’ to the neutral

current J} is
dOd =@cosf, +5sin8) O (dcosb, +ssinb,), (128)

where O is some linear combination of y, and y,y5. The cross-term Qs and
§Od lead to strangeness-changing neutral-current weak decays such as

Kf sgptete,
K° .
Ko}“‘*“ Mo
with the same strength as the usual charged-current weak decays. Experimentally,
such strangeness-changing decays are not seen and, hence, the problem.
The solution of this phenomenological problem was provided by Glashow,

Iliopoulofs and Maiani (GIM). They suggested that the unused orthogonal
combination s’ = --d sin 8, + s cos 6, be combined with an yet-to-be-discovered

charmed quark c to form a new SU(2) doublet

)

in addition to the old SU(2) doublet of quarks:

(@)

So, the neutral-current contribution from both d’ and s’ 1s

Id0d+50Qs=d0Qd+:0s. (129)
This equality can be regarded as a manifestation of the invariance of the norm of
the two-dimensional vector with components d and s under a two-dimensional

(Cabibbo} rotation:

(d)=( Cf)SBc smﬁc)(d) (130)
s’ —sinf, cosf,/\s
The important point is that in Equation {129), the strangeness-changing pieces
ds and 8d have disappeared. This is the famous GIM mechanism.

But, then, where is the hypothesized charmed quark? Remarkably enough,
hadrons with certain peculiar properties which could be interpreted if they were
identified as bound states of charmed quark and charmed antiquark (cC) (just as

7, K, ¢, etc. are bound states of the form ui, us, s§, etc.) were discovered in a series
of exciting experiments in October 1974. Subsequent analysis established the
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correctness of this identification and this, in turn, established the correctness of
the GIM conjecture. These ¢¢ bound states are called . More will be said on
yr particles in Section (24).

Apart from the four quark ‘flavours’ u,d,s and ¢, a fifth flavour b (called
‘bottom’ or ‘beauty’) was discovered in 197778 by a repetition of history, namely
through the observation of the bound state bb. To complete the SU(2) doublet
structure, one more quark flavour t (called ‘top’ or ‘truth’) must exist. If it exists
then, the three quark doublets (referred to as three generations):

@) € ¢)

would be in parallel with the three generations of lepton doublets which are
already known to exist:

() G) ()

The 1 lepton (with mass 1.78 GeV) was discovered in 1975; the existence of its
associated neutrino v, has been inferred indirectly from the decay properties of 7.

14. Renormalizability

The Lagrangian in Equation (104) describing electroweak theory is exactly
invariant under the general SU(2) x U(l) symmetry. Of course, the physical
solutions of the theory describe massive W and Z and massless photon and,
hence, the-general SU(2) x U(1) is broken. But the distinguishing feature of the
mechanism of spontaneous breaking of symmetry through the noﬁlvanishing
vacuum expectation value of ¢, is that although the solutions break the
symmetry, the Lagrangian as well as the equations of motion remain invariant.

This symmetry is not merely a matter of aesthetics. It turns out that it is this
invariance under general transformations which is directly responsible for the
renormalizability of this theory.

What is renormalizability? Relativistic local quantum field theory is, in
general, afficted with ultraviolet divergences, i.e. the higher-order loop diagrams
give divergent conributions from the ultraviolet end (k — co) of the virtual
momenta. However, fortunately there is a class of quantum field theories in which
finite meaningful results can be obtained for physical quantities in spite of the
presence of these divergences in the intermediate steps of the calculation. This is
done by absorbing these divergences into a few parameters of the theory such as
masses and coupling constants occurring in the theory and, thus, renormalizing
these parameters. In the class of renormalizable theories, after this renormaliza-
tion of the parameters, no more divergences remain; but for nonrenormalizable
theories infinitely more types of divergences remain.
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Examples of renormalizable theories are:

QED: ry, i A,
Yukawa Coupling: o,
Self coupling of ¢: Ag?
and examples of nonrenormalizable theories are:

Fermi theory: iy,
" Derivative coupling: Jyngg—,

Massive vector boson theory: ¢y, yV*.

In perturbation theory, the elementary criterion of renormalizability is simply
that the degree* of divergence D of any Feynman diagram be independent of the
number of vertices or of the number of internal lines. For instance, in the case of
QED as well as Yukawa coupling, the degree of divergence is

D=4-4F, —B,, . (131)

where F, and B, are, respectively, the number of external fermion and boson lines.
This is independent of the number of vertices or the number of internal lines in the
diagram. After renormalization of a few simple processes with small values for F,
and B,, for which D is positive, we see that D becomes negative for the rest of the
theory, thus leading to a renormalizable theory.

On the other hand, for Fermi theory,

D=4—3F, +2V, (132)

where V is the number of vertices in the diagram. Here D increases with the
number of interaction vertices which is the same as the order of perturbation
theory. A finite number of renormalizations is not enough and so this is
a nonrenormalizable theory.

Our interest is in the massive vector boson theory. The coupling for this theory
¥y, ¥ V*is the same as in QED. Why is this nonrenormalizable then? The reason
lies in the difference between the propagators:

massive boson: (g, — k,k,/m¥)/(k* — m3), (133)
photon: g,,/k>. (134)

For k— oo, because of the extra term involving k, k', the massive-boson
propagator has two additional powers of momenta as compared to the photon
case. Hence, for the massive boson case, we have to add two times the number of
internal boson lines B, to the degree of divergence D in QED given by Equation

* Defined as the overall power of momenta in the numerator minus that in the denominator in the
Feynman integral.
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(131) and we get
D =4 —3F, — B, + 2B,. (135)

Into any given Feynman diagram with specified numbers of external lines F, and
B,, we can easily introduce any number of additional internal boson lines B,
which will correspond to higher-order processes. Thus, the degree of divergence
again increases arbitrarily and we end up with a nonrenormalizable theory.

General invariance comes to our rescue here. In a generally-invariant theory,
one can change the gauge. (We had an example of this while doing Higgs
mechanism.) There exists a gauge in which the k k, term of the massive vector
propagator can be dropped so that the propagator becomes g, /(k* — m$) whose
high-momentum behaviour is the same as that of the photon propagator g,,,/ k2.
Thus, the theory becomes renormalizable.

If we had added explicit mass terms im% W,-W, to the Lagrangian in
Equation (104), this would break the general SU(2) invariance of the Lagrangian
and we would not be able to remove the k, k, term in the propagator by a gauge
tranformation. It is only because we left the Lagrangian generally-invariant and
brought masses for the vector bosons through spontaneous symmetry breaking,
that we are able to remove the k, k, term and achieve renormalizability*. Hence,
the importance of spontaneous symmetry breaking in the construction of the
electroweak theory. |

The proof of renormalizability of non-Abelian gauge theory with spontaneous
symmetry breaking is not as simple as we have indicated; ours is only a heuristic
argument. The proof was first given in 1971 by 't Hooft. In fact, it was 't Hooft’s
work which revived interest in the generally-invariant SU(2) x U(1) electroweak
model, which had been ignored by most physicists although it had been
constructed four years earlier. The subsequent experimental discovery of the
neutral-current gave a further boost to the theory, as we have already discussed.

As mentioned above, Fermi’s theory which was the basis of weak interaction
physics, belongs to the class of nonrenormalizable theories and the construction
of a renormalizable weak interaction theory had remained as one of the
fundamental problems in high energy physics. General invariance followed by its
spontaneous breaking has solved this problem.

However, there is an obstacle. The axial vector coupling of fermions which is
a chief feature of weak interactions creates a quantum-field-theoretical anomaly
in the higher orders of perturbation theory (See Figure 8) and destroys the
renormalizability of the theory. This subject of axial vector anomaly, as well as
other anomalies, has become an important topic of research in modern quantum
field theory and we cannot do justice to that topic here. For our purposes, it is
sufficient to note that although the anomaly exists for leptons and quarks

* It turns out that for a massive neutral vector boson coupled to a conserved current, the k,k, term
can be dropped, even if the mass term 3m$ ¥, V, is introduced explicitly (i.e. not by spontaneous
symmetry breaking). However, for weak mteractlons involving charged massive vector bosons,
explicit mass term would lead to a nonrenormalizable theory.
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V¥
oo gauge fields

leptons or quarks

Fig. 8.

separately, it turns out that the SU(2) and U(1) quantum numbers of the leptons
and quarks are so arranged that the coefficient of the anomalous term is equal
and opposite for the leptons and quarks and, hence, the total contribution to the
anomaly is zero. Hence, renormalizability of the theory is saved. Note that for this
to be valid the exact correspondence between leptons and quarks is essential; the
number of generations of the leptons and quarks has to be equal and the top
quark must exist!

15. Spontaneous Symmetry Breaking and Phase Transitions

There exists a similarity between the spontaneous breakdown of symmetry and
the phenomenon of phase transition. In particular, Kirzhnitz and Linde [3] in
1972 pointed out the close analogy between the Goldstone—Higgs Lagrangian of
sections 3 and 4 with V chosen to be type (b) and the free energy expression in the
[.andau-Ginzburg phenomenological theory of phase transitions. As a conse-
quence of this analogy, there exists a critical temperature T,, above which the
symmetry between weak and electromagnetic interactions is restored. So,
a collection of leptons and quarks with conventional weak and electromagnetic
interactions will behave entirely d:ﬂerentiy if their temperature is raised above T..
The sriking physical differences are as given in Table II.

Table 1L

T<T, T>T,

m,, = 82GeV m,

m, = 94 GeV m, »=0

m, =0 m,

Weak interactions weak and Both weak and electro-
short ranged; Electromagnetism magnetic interactions have
stronger and long-ranged same strength and are

long-ranged.
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However, the critical temperature T, is of the order
T, ~ (> ~ %ﬁ ~ 500 GeV ~ 1016 9K, (136)

This is certainly too hot for terrestrial physics, but not for the physics of the early
universe. In fact, phase transitions in the early universe is now a hot topic of
research where high energy physics and astrophysics come together.

Let us return to the analogy between spontancous symmetry breaking and
phase transitions and consider, in particular, phase transition of a normal metal
to super-conducting state. Here, the correspondence is very close and, in fact, the
Higgs Lagrangian of Equation (25) can be regarded as the relativistic generaliza-
tion of the Landau—Ginzburg model for the superconductor. The superconduct-
ing state with a nonvanishing order parameter is the analogue of the broken
symmetry state with nonvanishing vacuum expectation value for the Higgs field.
It is known that magnetic fields cannot penetrate inside a superconductor for
large distances beyond the London penetration length. This is known as the
Meissner effect. An equivalent statement is that, the photon has become massive
inside a superconductor (the mass being given by the inverse of the penetration
length), which agrees with our result in Section 4 that the U(1) gauge boson of the
Higgs model becomes massive as a result of symmetry breaking.

- This analogy with superconductivity may throw further light on the mechanism
of spontaneous symmetry breaking which is a crucial ingredient in our
construction of the electroweak theory. In this construction, the spontanecous
breaking of symmetry was facilitated by the introduction of the ‘elementary’
Higgs scalar field ¢. The analogue of ¢ in superconductivity is the ‘Cooper pair’
formed by-the composite of two electrons. Can the elementary ¢ field of the
electroweak theory also be replaced by some composite ff(where f is a Fermion
field)? We do not know at present.

We may also raise here a related question. Note that the electroweak theory
described by the Lagrangians of Equations (104) or (68) contains the ‘physical
Higgs boson’ # which is the remnant of ¢. Does this 5 particle exist in nature?
Again, we do not know the answer at present. Results of searches for # in the
ongoing experiments as well as experiments projected for the future, may lead us
to a better understanding of the electroweak symmetry breaking.

So much for electroweak theory. We now turn to QCD.

16. Deep Inelastic Scattering, Asymptotic Freedom and Colour SU(3)

Remember the gap in Equation (73) of Section 10, namely, the unspecified ‘strong
interactions among the quarks’. We now specify that thesc interactions are to be
described by a non-Abelian gauge theory based on SU(3), the so-called colour
group. The theory is known as quantum chromodynamics (QCD). According to
this theory, each of the quarks (u, d, ...ctc.) is a triplet under colour SU(3); since
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SU(3) has eight generators, there are eight colour gauge vector bosons and they
are called gluons. The QCD Lagrangian is

& = —§3,Gi — 8,Gh — gf *GLGY +

+ Q[ir“(au - ig%Gil) - m}q, (137)

where q is a quark field (u,d, ... etc.), G} is the gluon field, g is the gauge coupling
constant, i goes over 1 to 8, £/ are the structure constants of SU(3) group and 4'/2
are the SU(3) generators in the triplet representation of the quarks. The colour
index of the quark (going over 1,2,3) is suppressed. The QCD Lagrangian
contains the interaction vertices shown in Figure 9.

? W

gluon - gluon vertices quark - gluon vertex

Fig. 9.

Colour denotes a new degree of freedom which actually had its origin in old
quark physics — namely the conflict of the apparent total symmetry of the
three-quark wave function in the baryonic ground state with Fermi-Dirac
statistics. As a simple example, consider the baryon A**(1238) which is
a doubly-charged spin-3/2 baryon occurring as a resonance in the pz™* system at
amass of 1238 MeV. It is made up of three u quarks each of electric charge 2/3, so
that the total charge is 2. The wavefunction of the three u quarks in the ground
state contains a spatial part which is symmetric, corresponding to zero relative
orbital angular momenta and a spin-part which is also symmetric corresponding
to total spin 3/2. There is good phenomenological support for this assumption.
But then the total wavefunction. of the three quarks is symmetric under
interchange of their space and spin labels, thus violating the antisymmetry
requirement of fermionic wave functions. Antisymmetry is restored by the
invention of a new quantum number, called colour, which is three-valued and
assigning an antisymmetric colour wavefunction for the three bound quarks.
Now the total wave function made up of spatial, spin and colour parts is
antisymmetric.

Why QCD?: For a long time, physicists had given up field theory as a useful
approach for understanding strong interactions and taken to the S-matrix
approach. So, what caused the resurgence of ficld theory in strong interaction
physics and what is the reason for going for this non-Abelian gauge field theory
(QCD)?
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e

—y Virtual photon of large qz

™3 hadrons

Fig. 10.

The reason comes from an experiment-the so-called deep inelastic scattering of
leptons on the nucleon: (See Figure 10)

It was found that, as observed by a high g2 probe, the nucleon behaves as if it
were composed of free, point-like constituents (called partons by Feynman). The
lepton scatters off each parton, elastically and incoherently. The incoherent sum
of all parton cross-sections gives a very good description of the experimental
results. Thus, the complete cross-section for the electron scattering off the
nucleofl can be written (schematically) as :

1
on~ 2. L dx fi{x)a(x), (138)

where o,(x} is the electron-scattering cross-section of the ith parton with
fractional longitudinal momentum x and f{(x) is the probability for finding the ith
parton with fractional longitudinal momentum x inside the nucleon. Integrating
over all the fractions and summing ovér all the partons i incoherently, \}Ve get the
electron-nucleon cross-section. It was a remarkable discovery that such a com-
plicated process could be described by such a simple formula. This simple
behaviour of deep inelastic scattering is also known as Bjorken scaling and,
naively, it is related to the absence of a length-scale or momentum-scale at high
energies in local quantum field theory. Similar results were found also for the
neutrino-nucleon scattering processes:

v, +'N -» u + hadrons (charged-current weak interaction)
- v, + hadrons (neutral-current weak interaction).

This phenomenon has a rather close resemblance to Rutherford’s famous
a-particle scattering experiments which led to the discovery of the nucleus inside
the atom. Thomson’s spread-out atomic model would lead to soft scattering (i.e.
small scattering angles) only. Experimentally, Rutherford and collaborators
found hard scattering (i.c. large scattering angles), thus showing the presence of
the point-nucleus inside the atom. In the same way in the deep inelastic
lepton-nucleon scattering, even for large ¢° (i.e. large scattering angle), scattering

" was observed to take place, in contrast to what would be expected for a spread
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out nucleon. This leads to the discovery of point-like constituents deep inside the
nucleon.

More detailed study of the experimental data revealed that these partons are in
fact quarks; they seemed to have the same spins and charges as expected for
quarks.

Attention should now be drawn to the adjective ‘free’. In addition to being
point-like, the quark-partons behave as if they are free. If they are interacting, the
cross-section formula would not be so simple.

‘Now, the quarks are bound by tremendous attractive forces to make up the
nucleon. So, the interaction between quarks should really be superstrong. And
yet, when observed through high ¢° probes, this superstrong 1nteract10n weakens
to such an extent that the quarks behave as free particles.

For quite sometime this was a mystery. On the other hand, this provided an
important clue about the nature of the strong interaction itself. We can now say
that any theory of strong interactions should satisfy this property, namely, it
should tend to a free particle theory or a free field theory at high ¢ Is there any
such theory?

Consider nonrelativistic potential scattering, ie. nonrelativistic particles
interacting through well-defined smooth potentials. Since the total energy cin be
written as E = T+ V, as the kinetic energy T increases, the potential energy
V becomes less and less important in comparison, so that for high energies the

theory does tend to a theory of free particles, for properly defined smooth

potentials.

But, of course, this is not useful for high energy physics which has to be
described by relativistic quantum mechanics. Here, particle-production domin-
ates at high energies and potential description fails.

So, we should ask the same question in the realm of relativistic quantum field
theories. Here it is renormalization group which provides the required technique.
By using renormalization group, one can define a momentum-dependent
coupling constant g(g?), also called effective coupling constant. So, what we need
is a theory in which

g(g?) — 0 for q* — oo. E (139)

Such a theory is called asymptotically free, i.e. the theory tends to a free field
theory for asymptotic momenta.

To cut the long story short, it was soon discovered that none of the
conventional field theories such as ¢*, Yukawa interaction Yy ¢ or QED ¥y, yr4*
is asymptotically free. Of all the renormalizable quantum field theories, only
non-Abelian gauge theory was found to possess the unique distinction of being
asymptotically free. The characteristic triple gluon vertex shown in Figure 11 is
the essential ingredient that makes this theory asymptotically free.

So, asymptotically free non-Abelian gauge theory emerged as a good choice for
a theory of strong interactions. Since the colour degree of freedom with three
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Fig. 11

colours was already available, as explained at the beginning of this section, the
gauge group was taken as the colour SU(3) and QCD was born.

In the next few sections some details on the theory of asymptotic freedom will
be given.

17. The Renormalization Group Equation [4]

Consider a renormalizable field theory such as ¢* theory described by the
Lagrangian

AL AW YR (140)

where ¢ is a real scalar field. This theory is characterized by a single dimensionless
coupling constant g and a single mass . i

Let I(p, ...p,) be a renormalized n-point Green’s function of this theory for
nexternal particles of momenta p, ... p,. Pictorially, I'(p, ... p,)is represented by
the sum of all the Feynman diagrams of the type indicated in Figure 12.

We take Green’s function to be single-particle irreducible and external-line
truncated, i.e. diagrams of the type in Figure 13 in which a single-particle line
connects two parts of the diagram are not included in I'(p, ... p,) and, further, the
external lines are not provided with propagators.

It is possible to show that for asymptotic momenta i.c. for p;...p, = 0,

Fig. 12.
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Fig. 13.

I" satisfies the renormalization group equation

ou

(This is also the asymptotic version of the so-called Callan~Symanzik equation.)
A quick derivation of this equation goes as follows: In the asymptotic region (p,,
p,...D, = p) one might be tempted to think that ali memory of the actual mass
¢ would jbe lost and all Green’s functions would be independent of u. This is
wrong. I is a Green’s function for renormalized fields expressed as a function of
the renormalized coupling constant. But the normalization of the field and the
value of the renormalized coupling constant are defined on the mass shell. So, the
Green’s functions remember the mass shell, no matter how far we go into the
asymptotic region. Therefore, the correct statement should be that, all memory of
the actual value of p is lost, except for that which is contained in the scale of the
fields and the value of g. In other words, in the asymptotic region, a small change
in mass can always be compensated for by an appropriate small change in g and
an appropriate rescaling of the fields (n fields for the n-point function). Equation
(141) is just the mathematical expression of this statement.

Another way of looking at the renormalization group equation is to observe
that for a renormalizable theory, once the (infinite} renormalizations of the bare
quantities render the theory finite, any further finite renormalizations do not
change the predictive content of the theory. The renormalization group equation
(141) simply expresses that fact.

For renormalizable theories, the renormalized Green’s function I" expressed as
a function of the renormalized mass u and renormalized coupling constant g is
a finite function of g and p and, hence, the coefficient functions f(g) and y(g) in the
partial differential equation (141) should also be finite functions of g. That they
are functions of ¢ alone, follows from dimensional argument. f(g) is the so-called
Callan-Symanzik function and it characterizes the field theory in a very
important way and y(g) is the anomalous dimension of the field operator ¢.

In (141), 1 need not be the actual mass of the particle; more generally, it is an
arbitrary mass at which fields and coupling constants are normalized. In this
form, Equation (141) is applicable even to a massless theory.

0 0
I:u* + ﬁ(g)a—g - m’(g):lr = 0, (141)
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18. Formal Derivation of the Renormalization Group Equation

Let g, be the bare coupling constant and u the arbitrary mass at which fields and
coupling constants are normalized. The renormalized coupling constant g is
a function of these

g = g(go, 1. (142)

g is actually a function of the ultraviolet cut-off A also, but we shall suppress its
dependence. We hold A fixed and do not consider variations in A. The
unrenormalized Green’s function I is a function of g,; expressing g, in terms of
g using the inverse of the equation (142) and performing a multiplicative
renormalization, we get the renormalized Green’s function I" (which is, in fact,
independent of A in renormalizable ¢* field theory):

(g, 1) = Z"*T'4(go), (143)

where Z is the field-renormalization constant. Since the u dependence enters only
after renormalization, (we are considering either the asymptotic region or
a massless theory) I', does not depend on u. Hence,

(%) _o (144)
O/ go |
Using (143) and multiplying by u, (144) becomes
az—"fz) or
I+ Z‘”’z(—) = (. (145)
g ( o Juw o F Ot / go

L8

For the renormalized Green’s function I'(g(gg, 1), 1), we convert the partial
derivative in the following way e

or\ _for\ . (ag\ (or
(50).~ (&), - @), 9

Thus, we get the desired equation:

d 0
{“(Eﬁ)g + B(9) (55)” — nv(g)}l"‘ =0

where we have defined

_ (% |
plg) = ,u( 5#)90 (147)
and
_ufdnZ
Pg) = 5(“’@“)90- (148)

Thus, the above derivation has also yielded the definitions of f(g) and y(g).
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19. Solution of the Renormalization Group Equation

Let us rewrite the RG equation:
0 0
— —— (g, Ap;, p) = 0, 149
{u o + B(g) 39 ,m)(g)} (g, Apy, 1) (149)

where we have put back all the dependences into I'. p; denotes the set of n external
momenta all of which are multiplied by a scale factor 2 and our aim is to
determine the behaviour of I" for large A.

If d is the canonical (or naive) dimension™ of the field (for scalar field, d = 1),
then the mass-dimension of our n-point Green’s function I" is nd. Hence, I can be
written as a product of, 4™ and a function of dimensionless quantities only

I'(g, pss 1) = u""f(g, %) | (150)
So, :
} . ﬂ' nd pi !
r )= AL 2y
(g, Apis 1) = A ( /1) f (g,ﬂ» u)
= A""cb(g, % p,-), (151)
therefore _
0 — nd %_ __and @
uaul"(g,zlpi,u) = A e A R (152)

where we have used the fact that the dependence of ¢ on p and 1 is through /A
only. We now define the variable &

t=Inl (153)
Combining (149), (152) and (153), we get
d 0
{— =+ B(g)ég}qa = mig). (154)

Equation (154) can be solved by making use of its similarity to hydrodynamic
equations, t and g playing the roles of time ¢ and position x and f(g) playing the
role of the velocity function at the point g. In hydrodynamics, one defines the

moving coordinate X in terms of which the partial differential equation gets

converted into a total differential equation which can then be solved. The same

*By dimension, we mean the mass-dimension which is equal to the negative of the length-dimension
since h =e¢ = 1. ‘
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trick is used here. One defines the moving coupling constant g(g, f) by
0g _ _
2,8 0=Hax 440 =9 | (155)

d(g, ) is also called the effective or momentum-dependent coupling constant
(note that ¢ contains the scaling factor for the momenta), and plays a very
important role in renormalization group analysis. In terms of g(g, t), the solution
of (154) can be directly obtained (see next section) and multiplication by ™ then
gives I™:

(g, Api, 1) = i"“l“(g(g, £), pi» 1) exp{n L Walg 1) dt’}- (156)

It can be seen that the essential dependence of I' on A or ¢ has been isolated;
apart from the factor 4™, it is contained in the exponent. The main point is that
the I" on the right-hand side of (156) contains p, and not the unknown dependence
on Ap,. It is true that there is still a A or t dependence of this I" through g(g, t), but
this is a mild dependence as will be clear from what follows. The crucial
dependence is in the exponent.

20. Hydrodynamic Analogy

This is essentially an appendix to the last section. Consider the hydrodynamic
equation

0 0 |
2%, 0+ 0x) 5 (% 1) = 5(p(x, 1) (157)

where p(x, t) = density of bacteria in a fluid moving in a pipe,
v(x) = velocity of the fluid in the pipe,
S(x) = some external influence (such as illumination)
affecting the bacterial population.

To solve such an equation, one first defines the ‘moving coordinate’ X(x, t) by the
equations:

%(x, ) = o(); %(x,0) = x. (158)

Then, Equation, (157) can be thrown into the form

%’?(i(x, 1), t) = S(x(x, t)) p(X(x, t), t), (159)

where the left-hand side now contains the total derivative in time. Equation (159)
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can be integrated to give
. i
p(x(x, 1), 1) = p(x, 0) EXPJ SC(x, t')) dt’. (160)
o

A similar technique can be used to get the result quoted in Equation (156).

21. Fixed Points and Asymptotic Freedom

From (155) and (156), it is clear that it is fi(g) which controls the asymptotic
behaviour of I'; for, f(g) determines § which then is used to construct the solution
in (156). Actually, it is the zeroes of f(g) called the fixed points which control the
asymptotic behaviour of I in a crucial way. This can be seen as follows:

For illustration, consider the example shown in Figure 14a where f(g) is
positive, but has a zero at g = g*. With this form of f(g), Equation (153) leads to
the behaviour of g shown in Figure 14b. g starts with the value g at ¢t = 0 (as

o
> o

gla)

/\ 9
g —» FEAY t=0 t —
(&) (b)

Fig. 14,

demanded by the boundary condition in (155)) and increases with ¢ since the
‘velocity' 0g/0t = B(§) is positive. But, as g* is approached the velocity becomes
smaller and smaller and so § changes less and less. At g*, the velocity f(g*)is zero
and that is the asymptotic value of g,

g(g,t) P g*. (161)

Ast — o0, Aand, hence, Ap; — 0. S0, g* is called the ultraviolet fixed point of f(g).

We may next consider the infrared limit A — 0 which corresponds to ¢ — — o0

(see (153)). By running the above argument for negative f, one can convince
oneself that

g(g,t)~———>0. (162)

Hence, in Figure 14a, the origin g = 0 is an infrared fixed point of f(g).



224 G. Rajasekaran

plg} gr

o 4”,/”\\9rl g;///ﬂ\\?: __dsz//’///
IR WN__IR VN, -o0 <= t =0 t—s
g

{a) {b)

Fig. 15.

Just for fun, we may consider a theory with a number of fixed points as shown
in Figure 15a. The corresponding behaviour of § is indicated in Figure 15b.

The fixed points of §(g) alternate between ultraviolet and infrared. As shownin
Figure 15b, the ultraviolet {¢ - co) and infrared {t - — 00} asymptotic limits of
g depend on the starting values of g at t = 0.

Let us now go back to (156). The uitraviolet asymptotic behaviour of I" can be
now easily obtained by making the replacement § — g*, where g* is an ultraviolet
fixed point:

I'(g, Ap:s #)T‘——? Z”dr(g*, Pis 1) e
00

~ AMETYEIE(g*, py, p). (163)

rur

important point is that the exponent is not the naive or canonical dimension d,
but the dynamical dimension d + y(g*) evaluated at the UV fixed point g*. The
ultraviolet asymptotic behaviour of Green’s function for ¢ fields is dictated by the
anomalous dimension y of the ¢ field at the UV fixed point g* of the f function.

This anomalous dimension would spoil the Bjorken scaling of deep inelastic
structure functions. But, as already noted in Section 16, experiment suggests that
Bjorken scaling is valid. What is the way out? The answer is that we need a theory
in which the origin g = 0 is an ultraviolet fixed point. In contrast to Figures 14
and 15, our f function should start negatively near the origin, as shown in Figure
16. In this case, the ‘velocity’ is negative and g decreases to zero asymptotically in

B (g} ‘-_JT
Qe \\\\\N\\“=ﬁ“~
> o - o

Fig. 16.
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the ultraviolet region

g(g, t)—> 0. (164)
t—co

This is the ‘asymptotically free’ theory. The asymptotic behaviour of I' is now
governed by free field theory (i.e. g = 0). The asymptotic anomalous dimension is
zero: y(0) = 0. Such a theory can provide a framework for understanding Bjorken
scaling and parton-structure.

‘As already mentioned, non-Abelian gauge theory alone possesses the unique
distinction of being asymptotically free and, hence, QCD.

22. Asymptotic Freedom of QCD

The QCD Lagrangian is given in Equation (137). Our aim is to calculate f(g) and
w(g) to the lowest nontrivial order in g. Rather than use the formal definitions of
(147) and (148), we proceed as follows. We ignore the quark fields first and
calculate the renormalized Green’s functions in perturbation theory for a few
values of n, say n = 2 and n = 3 (number of external gauge boson lines). For
n =2, one gets*

0.
-8 (p):ivw»b-t- -~O- + +

v [SFAY

-

e~y 4 higher order diagrams

5§ —g,,p* + PP )1+ }EC g Zlngi + 0(g) (165)
p2—+oo kY #pv 3 ¢ 47E ﬂz g)

Here, C,, is the quadratic Casimir operator for the adjoint representation of the
group and it is defined by

f;wdfbcd =2Cq ap- (166)

Since the Green’s functions are truncated ones, two inverse propagators have
been multiplied into our Green’s function and so I"® is actually the inverse of the

propagator. For n=3,

{3)abc *
r - -
ALy (p,-p,0) + g:,’i::}, +

+ other diagrams

* The dotted lines in the fourth diagram represent the so-called ‘ghosts’ whose existence in the virtual
states of non-abelian gauge theory was discovered by Faddeev and Popov. Another technical point is
that the Landau gauge has been chosen in the calculations.
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These perturbative expressions for I'® and I'® are substituted into the
renormalization group equation

2

In p—z} + 0(g%). (167)
7

0 0
{#5‘; + ﬁ(g)@ - 1%(9)} =0 (n=23),

where y;{g) is the anomalous dimension of the gauge field and the values of 8(g)
and y;(g) are determined from the requirement that the renormalization group
equation be satisfied. The results are the following:

22 g \? s
B = “?CGQ(E) + 0(g°),

13 2
Ve = —3—06(%) + 0(g*). (168)
Note C,; defined by (166} is positive. As already advertised, f is negative near the
origin g = 0 and, hence, non-Abelian gauge theory is asymptotically free. It is the
cubic vertex characteristic of the non-Abelian gauge field that is responsible for
the negative f.

We may now include the quarks. The quark-gluon vertex is of the asympto-
tically nonfree type like the electron-photon vertex in QED, and adds a positive
contribution to . The results are

y) o \2
p = —m{gcs—gcq}g(f;) +0(6°),

13 8 g \* 4
Vo= {—g“ce —gcq}(;i;) + O(g*),

.= 0+ 0(g*) (169)
where C, is defined by
i g
Tr(% %) _2¢,5, (170)

The anomalous dimension of the quark field y, remains zero in order g>.
From the expression for § in (169), it follows that the condition for asymptotic
freedom or ultraviolet stability of the origin is

C, <4C; (171)

g
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For the SU(3) group relevant for QCD,

3 N

Co=3  Co==L, (172)
where N is the number of flavours (N ; enters because the trace in (170) should be
taken over all the quark degrees of freedom including flavour). Hence, (171)

becomes
N, < 16. (173)

In other words, as long as the number of flavour quantum numbers is less than or
equal to 16, the quark contribution does not destroy the asymptotic freedom of
QCD. (At present, we have three generations of quarks, which implies N, = 6,
and so asymptotic freedom appears to be safe.) ‘

The situation with respect to Higgs bosons is more complicated. Once the
Higgs scalar field is added to the system further independent coupling constants
such as the ¢* coupling constant enter the picture and the origin is generally
unstable with respect to these coupling constants. So Higgs bosons are avoided in
the QCD sector and we have the central dogma of high energy physics, namely
SU3)cotony Symmetry is exact. The price we have to pay for keeping asymptotic
freedom is a theory with massiess gluons, which leads to terrible infrared
divergences. We shall come back to this a little later.

Let us write (using (169) and (172))

B = -2 b LN,y >0 (174)
9P=""4n " 1tn ! .
and solve the equation for the effective coupling constant
age) b, | |
o = " an? (®). (175)

To solve this, it is better to rewrite it in the form

d 1 b
— =, 176
dt g4t 2n (176)
The solution is
1 bt 1
2, 177
70 2 T 70 77
Or
=2
) = —2 20— (178)
=2
1+ o )

For deep inelastic lepton-hadron scattering, we may make the following
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identification
1. 42
t=InA=-In—, 179
27 4 (17)

where g is the momentum transfer to the hadron and 43 is a reference value. Let
us also define

=2
2y 0
(g =% (180)
Then, Equation (178) can be rewritten as
2 .
1,(g?) = —2s40) (181)

g
I+ bay(qf)In—
do

Thus, the effective coupling constant goes to zero for g* — oo, however, the
approach to zero is rather slow, only logarithmic. Defining

: 1
A2 =43 exp(m bata?) (q%)) (182)
we get
1
L) P — 183

Since b is a known constant (apart from the slight uncertainty in the number of
flavours, we see that QCD is characterized by one unknown constant A, which is
to be determined by experiment, Unfortunately, there is considerable uncertainty
in the empirical determinations of this parameter. A recent analysis gives

Ao = 1507133 MeV. (184)
For A, = 100 MeV, .
as(q® = 1GeV?) ~ 0.2, (185)

Thus, even at, 1 GeV, the QCD coupling constant is fairly small, thus justifying
perturbative calculations. '

23. Infrared Problem and Colour Confinement

It is illuminating to consider the contrasting behaviour of the effective coupling
constant in QED and QCD as a function of t = 41n(¢?/q3). This is illustrated in
‘Figures 17 and 18.

In QED, the § function is positive near e ~ 0 and so the effective coupling
constant e(t) increases with t or with g2. So, it is not asymptotically free. But for
g* — 0,1i.e. t -» — o, the problem is very well controlled. This means that in the
infrared region, there is no real difficulty with QED, as is well-known.
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e(t)

=
/ QED
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Fig. 17.

; But in a non-Abelian gauge theory such as QCD, the behaviour is completely
reversed. The theory is asymptotically free in the ultraviolet region and, thus, is
a good candidate for a theory of strong interactions, as we have already discussed.
However, the infrared region is really catastrophic for non-Abelian gauge theory.
Hence, QCD does not really exist as a theory on the mass-shell.

It is hoped this can be turned to our advantage. The infrared catastrophe can
perhaps be used to solve another problem-namely the problem of colour
confinemeént. What the sketch in Figure 18 shows is that a single non-Abelian
quantum on the mass shell (g =0) has infinitely large colour charge
g(— c0) — o0, and so will copiously emit virtual quanta. These virtual quanta may
surround and completely screen the original quantum. So, a single non-Abelian
quantum {i.e. the gluon) with g*> = 0 cannot exist as a free particle outside the
hadron. :

The situation inside the hadron is different; short distances correspond to high
q* for which the effective coupling goes to zero, because of asymptotic freedom
and so the quanta do behave as massless particles inside hadrons.

What is described above is the infrared mechanism for colour confinement.
This mechanism can also work for quarks, since the interaction of the quarks with
gluons are governed by the same effective coupling constant g(z).

There are many other mechanisms which have been discussed in the recent
literature for confining colour. However, in spite of much work, the dogma of
| colour confinement remains an unproved hypothesis.

| B git)
: . = <
i

-0 =t 0 t >

Fig. 18,

N
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24, Tests of QCD

This is still an important area of experimental and theoretical activity in high
energy physics, but we shall be very brief.

(i) Parton Model and Scaling. As already mentioned in Section 16, the
motivation for QCID came from observed scaling in deep inelastic lepton-hadron
scattering. Quantum chromodynamics via asymptotic freedom provides the
theoretical foundation for scaling and the parton model. So, the many early
successes achieved in the confrontation of the parton model with experimental
data, can be regarded as tests of QCD.

(i) Logarithmic Corrections. Since the approach of the QCD coupling
constant to zero for asymptotic momenta is logarithmic (see Equation (183)),
there are logarithmic corrections to the parton model and scaling. Such
corrections appear to have received experimental support. However, by their
very nature, logarithmic variations are hard to see clearly, as is evidenced by the
large uncertainties in the experimental determination of the QCD scale
parameter A, occurring in the logarithm {see Equation (184)).

(i) Narrow Widths of ¥ and Y. As remarked in Section 13, the charmed
quark ¢ was discovered through a certain peculiar property observed for the
particle which was being interpreted as a bound state of ¢ and &. This peculiar
property is the strikingly narrow decay width observed for :

T, = 60KeV (186)

which is in sharp contrast to the large w1dths expected for strongly 1nteractmg
hadrons. For instance, p meson has width

=-150 Mev. | f. (187)

Since the mass of Y which is 3.1 GeV, is much higher than the mass of p which is
770 MeV, the available phase space is much more for ¥ decay and, hence, the
expected width of i is several hundred MeV. This was the puzzle of the y particle.
It was resolved by asymptotic freedom; the momentum-dependent coupling
constant of QCD evaluated at 3.1 GeV is small enough to provide an explanation
for the small width of y. For, decay width or decay probability is a product of the
coupling constant and phase space apart from other kinematic factors.

Thus, the correct interpretation of ¥ and its properties not only requires
a crucial ingredient of electroweak theory, namely the existence of a new quark c,
but also asymptotic freedom which is a characteristic of QCD.

The phenomenon of small width repeats itself for bb bound states called ¥
(upsilon), occurring at mass ~ 10 GeV, where the width is

I, ~42KeV, (188)

The same phenomenon may occur with a vengeance for tf bound states (called
toponium), whose mass is expected to be very high (>80 GeV). At such high
energies or momenta, the strong QCD coupling constant would have become so
small that weak and electromagnetic decays may dominate over strong decays!
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(iv} Jets and Gluon Radiation. At high energies, electron-positron annihilation
is known to produce hadrons in the form of two jets and this has been understood
to be due to the production of a quark-antiquark pair which subsequently
materializes in the form of a pair of jets made up of hadrons (see Figure 19a). If
QCD is right, one must also see events with three jets, the third jet coming from
a gluon radiated away from a quark or an antiquark {see Figure 19b). Such

AN

/|

Fig. 19,

a three-jet phenomenon was discovered in the e*e™ collider, PETRA, at
Hamburg (with a c.m. energy ~ 30GeV or higher). This is generally taken to be
the evidence for the existence of the gluon which, in turn, supports QCD. After the
advent of the pp collider at CERN (with a c.m. energy of the order of 500 GeV or
higher), jet phenomena and gluon physics have received further experimental
support. )

However, one must keep in mind that all the above tests of QCD are indirec
and are to be contrasted with the direct test of electroweak theory, such as the
discovery of the neutral current or the discovery of W and Z bosons. In fact,
because of the dogma of colour confinement, QCD is doomed to indirect verification
only.

25. The Standard Model of High Energy Physics

‘We have now built up all the elements of the standard model and we assemble

them here. The standard model is based on the gauge group SU(3) x SU(2) x
U(1). While SU(3) leads to quantum chromodynamics (QCD) and decribes strong
interactions among the quarks, SU(2) x U(1) leads to quantum flavour dynamics
(QFD) and describes electroweak interactions among the quarks and leptons.
The gauge bosons of QCD are the eight gluons Gi,(i = 1. .. 8). The gauge bosons
of QFD are Wi(a = 1,2,3) and B,.

The colour symmetry SU(3) is supposed to be unbroken, leaving the gluons
massless, paving the way for colour confinement. The electroweak symmetry
SU(2) x U(1), on the other hand, is broken and the breaking is presumed to be
induced by the nonvanishing vacuum expectation value of the Higgs scalar field
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¢ which is chosen to be a doublet under SU(2). The vacuum expectation value
{¢> is chosen to be ~300GeV in order to obtain consistency with the observed
value of G and Equations (63) and (121).

The particle sector comprising leptons and quarks is taken to be the three
generations of fermions

In the above, a denotes the colour index of the quarks. Among these fermions, the
top quark, t, which is the heaviest, has remained elusive, although the UAI
experiment at the pp collider has obtained some evidence for its existence around
a mass of about 40 GeV. '

Since the weak interaction is helicity-dependent, it is necessary to separate the
helicities of fermions, as already explained. Counting the L and R helicities as
distinct particles, we have 15 particles for each generation. For the first
generation, they are the same as before

v, u, _
(e—)La (da)L’ eR ’ua[{s daR (“ = 1, 2: 3)3

where the doublets and singlets under SU(2) are explicitly indicated.

Now let us write down the Lagrangian of the standard model, which is
obtained by combining our Lagrangians of QCD and QFD (Equations (137) and
(104)).

@ = — 40,6}~ ,Gl — g/ GLGYY -
— gI-L(a,m Wg - av W.?l - gZSHbCWﬂW‘\:!)z - %-'(a,u Bv - avB,u)z -

) At .
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The first three terms describe the pure gauge field part of the SU(3) x SU(2) x
U(1) non-Abelian gauge theory. We now use g,,¢, and g, to denote the gauge
coupling constants for these three gauge groups, respectively. In the fermionic
terms, the SU(3) colour and the SU(2) flavour indices have been suppressed and,
instead, the index »n is used to denote the generation number. The left-handed
SU(2) doublet quark of the nth generation is denoted by q, and the
corresponding right-handed SU(2) singlets are denoted by u,z and d ;. For the
leptons, 1,; is the doublet while ¢, is the singlet.

The last group of terms describes the Higgs field ¢ and its interactions with
itself, with the gauge bosons and with the fermions which are, respectively,
responsible for the spontaneous symmetry breaking, generation of W and
Z masses and generation of the masses for the quarks and leptons. Note that

ok ( ¢§)
P° = ity p¥ = - (190)
— ¢t

The masses of the quarks and leptons arise from the Yukawa couplings of
¢ given in the last part of the Lagrangian in Equation (189), as briefly explained in
an earlier section. In contrast to the rest of the Lagrangian, the Yukawa coupling
constants T'%,, T and I'%, mix the generations. In fact, the mass terms are
nondiagonal with respect to parity, as well as flavour quantum numbers such as
strangeness, charm etc. These mass matrices can be diagonalized*, but then the
mixing between the generations enters through the charged-current weak
interactions (mediated by the W* bosons).The mixing is described by a unitary
matrix V called the Cabibbo-Kobayashi-Maskawa matrix which is a 3 x 3
generalization of the 2 x 2 Cabibbo rotation matrix already introduced earlier:

(cosﬁ'c ~——s1n9c)‘ (191)

sin 6, cos 6,

For the three-generation case, V can be written in terms of three rotation angles

#,,0, and 0, and a CP violating phase §. Such a CP-violating phase exists only if

the number of generations is >3, as was first pointed out by Kobayashi and

Maskawa. Thus, CP violation also can be introduced into the standard model.
The charged-current weak interaction is therefore modified to

Ty, (1 — y)VDW* + h.c, (192)
where U stands for (1 1) and D stands for
d
s
b

and the elements of the mixing matrix V control the various flavour-changing
charged-current weak transitions among the quarks. A similar mixing matrix will

* For details of this diagonalization procedure, see for instance reference [5].
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also exist in the leptonic sector if neutrinos have masses. For massless left-handed
neutrinos, suitable redefinition of the neutrino fields removes leptonic mixing (see
[5]).(If neutrinos have masses, they will mix and this will lead to neutrino
oscillations.)

The neutral-current weak interaction, on the other hand, is not modified and
remains diagonal in the generation space, because of the unitarity of the mixing
matrix. This is a generalization of the original Glashow-Iliopoulos—Maiani
mechanism which achieved the cancellation of the strangeness-changing neutral
current sector.

The diagonalization procedure finally yields expressions for the mixing matrix
V and the diagonal mass matrices in terms of the Yukawa coupling matrices
occurring in the standard model Lagrangian. So far, there is no theoretical
framework for fixing the values of the Yukawa coupling constants and, hence,
there exists no theoretical understanding of the values of the elements of the
mixing matrix or the diagonal mass matrices. They are purely empirically
determined.

As already mentioned, the standard model Lagrangian given in Equation (189)
is supposed to describe all that is known in high energy physics. That is the
achievement of two decades of work (the 60’s and 70%). )

Dirac, referring to his relativistic wave equation of the electron, is supposed to
have said that it describes all of chemistry and almost all of physics. In the same
vein, we are tempted to say that the standard model lagrangian describes all of
physics except gravitation. However, note the contrast in complexity. Whereas
the Dirac equation can be written down on one single line and there is no
adjustable constant, the standard model Lagrangian occupies almost half a
page and, further, there are more than 20 constants to be fixed by experiment. The
model lacks the simplicity which is the hali mark of any truly fundamental theory.
This supplies the chief motivation for going beyond the standard model.

26. Beyond the Standard Model

Let us first spell out in more detail the standard reasons usually given for
attempting to go beyond the standard model.

(i) Too many parameters: Counting the coupling constants, the boson masses,
the various quark and lepton masses and the quark mixing parameters, the total
number of independent parameters in the standard model is about 20, They are
all empirically determined and there is no fundamental theoretical understanding
of these numbers. As we have already mentioned, this is one of the weakest points
of the standard model and the strongest motivation for considering possible next
steps.

(i) Generation puzzle: The standard model contains no explanation for the
existence of several generations of quarks and leptons, nor any clue as to the
actual number of generations existing in nature.

e
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(iii) Pattern within one generation: The model does not explain why quark and
lepton charges are quantized in a related way: why does integer charge come with
colour singlets and noninteger charge with colour triplets? Also, the model does
not explain the apparent quark-lepton universality: why do the quarks and
leptons possess identical SU(2) properties? Since the same pattern repeats at least
three times (for the three generations), there must be a particularly good reason
for this pattern.

(iv) Unification: Theoretical physicists have an innate urge for unification. It
is felt that, in nature, the three interactions must be unified in some manner so
that the three gauge coupling constants g,,g, and g, are replaced by a single
unified coupling constant. The energy scale of this so-called grand unification
turns out to be ~10'* GeV.

(v} Inclusion of gravitation: Unification of other forces with gravxtatlon is, of
course, an important aim of physics. This becomes all the more compelling if the
other forces are already unified and that unification scale (10'* GeV)is so close to
the gravitational scale, given by Planck mass (10'° GeV).

(vi) Hierarchy problem: Assuming that there is an important energy scale

‘beyond the standard model such as the grand unification scale or the Planck
scale, it is:difficult to understand how particles with masses corresponding to the
low energy scales of the standard model can survive the enormous.self-energy
correction. Vector bosons and fermions may be protected from such corrections
by gauge symmetry or chiral symmetry, respectively. Scalars and their vacuum
expectation values (which generate the masses of the vector bosons and fermions)
are not generally protected. In the presence of the large energy scale (> 10'* GeV),
the small scale of the standard model (~ 100 GeV) cannot be maintained.

The various avenues open to high energy physicists in going beyond the
standard model are the following

(a) Grand unification,

(b) Preons,

(c) Induced gravity,

(d) Supersymmetry and supergravity,
(e) Higher dimensional unification,
(f) Superstrings.

For a brief introduction to these ideas, see, for instance, [6].

Grand unification solves problems (iii) and (iv) mentioned above. Preons do
not solve any of the problems (nevertheless, they may turn out to be the correct
next step!). Induced Gravity may provide a revolutionary solution to problem (v);
it claims that gravity and the geometry of spacetime may be derived from the
quantum effects of matter interacting through the other forces of nature (weak,
electromagnetic, strong, etc.), quite the opposite to what Einstein strove to
achieve.

The chief virtue of supersymmetry is that it provides an elegant solution to
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problem (vi). Supergravity coupled with grand unification is capable of solving
problems (iii), (iv), (v) and (vi). Higher dimensions offer a beautiful geometrical
understanding of the forces contained in the standard model; gravitation in
a ll-dimensional spacetime unifies four-dimensional gravitation with four-
dimensional SU(3) x SU(2) x U(1) forces.

Finally, superstrings in 10 dimensions offer the tantalizing hope of achieving
a finite or renormalizable theory of gravity, in which case superstring theory may
turn out to be the correct theory of quantum gravity. Current advertisements
claim that as a bonus, superstrings may solve all the problems of high-energy
physics (i){vi) mentioned at the beginning of this section,

To conclude, we must bear in mind that everything beyond the standard model
is a speculative idea. None of these ideas has an iota of experimental support at
present. In fact, many of these theories beyond the standard model have a bearing
on the super high-energy scales 10'*~10'° GeV and so their direct experimental
confrontation is not expected soon. This is very unfortunate. However, indirect
clues coming from lower-energy experiments in the immediate future may be of
great value in deciding the future course of the subject.

‘References

I. T. D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962);
N. Nakamura, Prog. Theor. Phys. 33, 279 (1965);
K. H. Tzou, Nuovo Cim. 33, 286 (1964);
2. G. Rajasckaran, Phys. Rev. 160, 1427 (1967).
. D. A. Kirshnitz and A, D. Linde, Phys. Lett. 42B, 471 (1972).
. 8. Colematt, Lectures at the ‘Ettore Majorana’ School, 1971,
. P. Langacker, Phys. Rep. 72C, 185 (1981). .
. G. Rajasekaran, in R. Ramachandran (ed.)), Recent Advances in Theoretical Physics, World
Scientific, Singapore, 1985, p. 89.

e

o Ln




