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Outline

Elastic string driven through quenched disordered medium

Used for modelling of dynamics of various physical
phenomena: charge density waves, vortices in
superconductors, domain walls in ferromagnents and also in
fracture front propagation.

Pinned to depinned state studied as phase transition:
Universality classes

Our models

Summary



Dynamics of driven elastic string

Forces acting on a elastic string driven through a quenched
disordered medium

‘Elastic’ force (short, long
or infinite range) that tries
to restore minimum length

Pinning forces (correlated
or uncorrelated) due to
quenched disorder

Externally applied driving
force (uniform).

Equation of motion (discrete)

f toti = f elastici + f pinningi + f exti .

hi (t + 1) = hi (t) + 1 if f toti > 0

= hi (t) otherwise



Depinning transition: exponents and scalings

Depinning is said to have occurred when final velocity of the string is
non-zero.

Velocity is the order parameter

v(t) = 1
L

L∑
i=1

(hi (t + 1)− hi (t)).

Usual scaling relations are valid for
velocity

v(t →∞) ∼ (f ext − f extc )θ, where θ is
order parameter exponent.
Also v(f ext , t) ∼ t−δF (t|f ext − f extc |ν),
with ν = θ/δ.
At critical point v(t) ∼ t−δ.

Width of the surface is also of interest

W (t) = 〈 1L
L∑

i=1
(hi (t)− 〈hi (t)〉)2〉1/2.

It satisfies W (L, t) ∼ LαG (t/Lz) (Family-Viscek scaling), with
G (x) = const. when x >> 1 and G (x) ∼ xβ when x << 1, with
α = zβ.
It is also argued that v(t) ∼W (t)/t, giving δ + β = 1.



Depinning transition: Universality classes

Depinning transitions are classified into several universality
classes:

Universality classes depend upon nature of the elastic force

∇2h → Edwards-Wilkinson class.
∇2h + (∇h)2 → Kardar-Parisi-Zhang class.
∇4h → Mullins-Herring class.
Long range models

∑
i 6=j

hi−hj
|i−j|α .

Model I: 1
L

L∑
j=1

[√
(hj(t)− hj+1)2 + 1− 1

]
Ĉi , where

Ĉi = sgn(hi+1 + hi−1 − 2hi ).
Model II: F Ĉi .
S. Biswas and BKC arxiv:1108.1707



Model I: Critical point

Height variables are updated following the rule

hi (t + ∆t) = hi (t) + Gi (t)∆t if Gi (t) > 0

where Gi (t) = f elastici + f pinningi (hi (t)) + f ext . The pinning
force is a random variable distributed uniformly and
continuously between [-1:0].

Depinning would imply moving the strongest pinned site, so
depinning condition is f ext + f elastic = f pinningmax = 1.

Pinning would imply pinning the weakest pinned site, so
pinning condition is f pinningmin + f elastic = f ext .

When f pinningmin and f elastic both are to minimised for the above

equation, one would have f pinningmin = f elastic = 1
2 f

ext . Implying,

f extc = 2
3 f

pinning
max . Verified using numerical simulations.



Model I: Results

Results of numerical simulations:

β = 0.50 ± 0.01, θ = 0.83 ±
0.01, ν = 1.35 ± 0.05, δ =
0.60 ± 0.01, α = 0.75 ± 0.05,
z = 1.5± 0.1.
δ + β ≈ 1.1, θ/δ ≈ 1.38, βz ≈
0.75.



Model II: Critical behavior

In this case
∂hi
∂t

= F Ĉi + f pinningi + f ext ,

we take f pinningi to be independent of hi (t).
Applying this model for flock of birds flying in a line.
It is well known that birds often form a ‘V’ shape patterns in
order to increase their efficiency (upto 70%) (Lissaman,
Shollenberger, Science 168, 1003 (1970)).



Model II: Results

Results of numerical simulations:

β = 0.65 ± 0.05, θ = 1.00 ±
0.01, ν = 2.95 ± 0.05, δ =
0.34 ± 0.01, α = 1.8 ± 0.1,
z = 2.9± 0.1.
δ + β ≈ 0.99, θ/δ ≈ 2.94,
βz ≈ 1.885.



Comparisons with other univ. classes

Comparison with other universality classes:

Models β θ ν δ α z
EW 0.85± 0.03 0.24± 0.03 1.73± 0.04 - 0.92± 0.04 1.45 ±

0.07
KPZ 0.67± 0.05 0.64± 0.12 1.35± 0.04 - 0.63± 0.03 1.01 ±

0.01
1/r2 0.495± 0.005 0.625± 0.005 1.625± 0.005 - - 0.770(5)
MH 0.841± 0.005 0.289± 0.008 1.81± 0.1 0.160± 0.005 1.50± 0.06 1.78
Model I 0.50± 0.01 0.83± 0.01 1.35± 0.05 0.60± 0.01 0.75± 0.05 1.5± 0.1
Model II 0.65± 0.05 1.00± 0.01 2.95± 0.05 0.34± 0.01 1.8± 0.1 2.9± 0.1

References:
1. A. L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge
University Press, 1995).
2. D. Bonamy, E. Bouchaud, Phys. Rep. 498, 1 (2011).
3. L. A. N. Amaral, A. L. Barabási, H. A. Makse, H. E. Stanley, Phys. Rev. E 52, 4087
(1995).
4. A. Tanguy, M. Gounelle, S. Roux, Phys. Rev. E 58, 1577 (1998).
5. S. Biswas, BKC, arXiv:1108.1707



Fluctuating external force

In earlier studies external force at every site was kept constant.

Here we keep total external force constant but it can vary
from site to site.

Fluid applying pressure at the base

External force at every site f exti = ρhi

The external force becomes correlated in the long range.



Fluctuating external force (contd.)

For the elastic force we keep EW term (k∇2h).

The velocity of the front is plotted against time



Phase boundary

The depinning takes place much before power-law decay of
velocity

For a given initial volume, there is a phase boundary in k − ρ
plane and for given k there is one in the h − ρ plane.

In the limit ρ→ 0, we expect the non-monotonic behavior of
velocity to disappear.



Considering overhangs

Considering fracture by fluid pressure, one has to take care of
transverse growths, hence overhangs.
In its simplest form, we consider that any wet site can wet any
one of its four neighbors if the surface can overcome (i)
quenched pinning force at that point and (ii) linear elastic
force directed towards the average height.

To keep height as a single valued function, the effect of
overhangs can be taken into account in two ways. The
difference between these two estimates maximizes at critical
point in random field Ising model (Zhou and Zheng (2010)).



Effect of overhangs

We measure velocity as number of sites moving forward at
every step.

At transition point it decays as t−0.63, the ‘width’ of the
surface also scales in a power-law.

The effect of overhang is maximum at the transition point.



Summary

We study the effect of fluctuating external force in elastic
depinning transition.

The ‘depinning’ takes place much before the power-law decay
of front velocity with time.

The best power-law fit agrees with corresponding constant
force model.

For fluid pressure one has to consider effect of overhangs.

In a simple model of elastic string depinning, the effect of
overhang is seen to be maximum at depinning transition.



Thank You!


