Crack-initiation and fracture propagation in reservoir rocks

Srutarshi Pradhan

SINTEF Petroleum Research Fracture & Flow meeting, January 2013, IMSc, Chennai, India

Crack-growth in nano-materialsonset of earthquake

Fracturing during fluid injection

SINTEF Petroleum Research

- -

Methods:

- 1) Fracturing test on core samples
- 2) PFC at pore scale
- 3) Beam-lattice model at mesoscopic scale
- 4) MDEM at macro scale (even resorvoir scale)
- 5) FEM using Abaqus

Application:

- 1) Planning safe & efficient drilling (geothermal, shale-gas)
- 2) Reservoir characterisation (CO₂ storage)
- 3) Prediction of well collapse & leakage
- 4) Enhance production by increasing permeability.

SINTEF Laboratory

TerraTek system

MessTek system

Triaxial cell instrumentation

(fluid flow)

AE set-up

Vallen system

Max capacity => 16 channels Currently used => 9 channels

AE transducer

Diameter = 3.5 mm Centre frequency = 1.3 MHz

Samples

Sandstones

Chalk

Berea Vp ~ 2090 m/s Vp ~ 1830 m/s Vp ~ 1590 m/s

Red Wildmoor $\rho \sim \text{2150 kg/m}^3 \qquad \rho \sim \text{1920 kg/m}^3 \qquad \rho \sim \text{1930 kg/m}^3$

Mons chalk $\rho \sim 1520 \text{ kg/m}^3$ Vp ~ 2140 m/s

Size of samples: Length ~ 135 mm & Diameter ~ 51 mm/10.50 mm

Stress conditions

Initial load 2MPa confining pressure (Pc) & 1MPa borehole pressure (Pp) for AE calibration

Main test @ const. confinement (Pc = 5 MPa) & stepwise increasing borehole pressure (Pp increase until fracture)

Berea sandstones after test

Тор

Bottom

Berea sandstones AE results

Filter 60 dB

Position of acoustic events (channel threshold 19.3 dB)

Castlegate sandstones after test

Тор

() SINTEF

Bottom

Castlegate sandstones AE results

Filter 60 dB

Position of acoustic events (channel threshold 19.3 dB)

Castlegate sandstones AE results

Location of acoustic events indicates two symmetric fractures localized between AE sensors 6 and 8. This fracture is visible as a clear core damage.

Two additional (symmetric) fractures can be located in direction of AE sensor 5 and 7, but these are not visible with the bare eye.

Red Wildmoor sandstones after test

Тор

() SINTEF

Bottom

Red Wildmoor sandstones AE results

Filter 60 dB

Position of acoustic events (channel threshold 19.3 dB) SINTEF Petroleum Research

Mons chalk after test

Тор

() SINTEF

Bottom

Mons chalk AE results

Filter 40 dB

Position of acoustic events (channel threshold 19.3 dB) **()** SINTEF **SINTEF Petroleum Research**

AE events during the test

sandstone

limestone

Pore scale modeling: using **PFC**

- PFC (Particle Flow Code) is a code based on the Discrete Element Method (DEM).
- PFC solves the equations of motion directly.
- In each time step, the movements of all the particles are calculated according to the motion law, and the forces at all the contacts are calculated according to a contact law.

ITASCA, USA

PFC: Particle-fluid interaction

SINTEF Petroleum Research

Hydraulic fracture: PFC 2D

SINTEF Petroleum Research

Fracture modeling at mesoscopic scale Bjørn, NTNU

Elastic beam lattice model

Fracture pattern and pressure distribution

Macro-scale modeling: MDEM Haitham, SINTEF

Finite element modeling (ABAQUS) **Alexandre, SINTEF**

Fracture pattern for Gaussian dist. of tensile strength with different heterogeneity level

ABAQUS model of a hollow cylinder specimen with 18 built-in cohesive interfaces

50 %

AE bursts

Theory

More fracturing activities near breakdown point

Δ

Experiment

FBM: Avalanche statistics

Burst or avalanche

$$F_k = (N+1-k)x_k$$

$$D(\Delta) \propto \Delta^{-5/2}$$

Hemmer & Hansen, 1992

 $N = 10^6; avg = 20000$

Prediction of failure point

Crossover behavior

$$N = 10^6; avg = 50000$$

$$D(\Delta) \propto \Delta^{-5/2} (1 - e^{-\Delta/\Delta_c})$$
$$\Delta_c = \frac{1}{8(x_c - x_0)^2}$$

(Pradhan, Hemmer & Hansen; PRL 2005)

Single sample $N = 10^7$

Crossover behavior: In other systems

 $\underbrace{\underbrace{(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3},\mathbf{x}_{4},\mathbf{x}_$

10⁶

Seismic data prior to a mainshock (Kawamura et al, 2006)

Burst distribution in Fuse model

Failure dynamics: Two-sided divergence

Above critical stress $t_f(\sigma)$ is the failure time $t_f(\sigma) = \frac{\pi}{2}(\sigma - \sigma_c)^{-1/2}$

Below critical stress

 $t_f(\sigma)$ is the time to reach the fixed point

$$t_f(\sigma) = \frac{\ln(N)}{4} (\sigma_c - \sigma)^{-1/2}$$

(Pradhan & Hemmer; PRE 2007)

The Fiber Bundle

Modeling Failure in Materials

A. Hansen, P. C. Hemmer and S. Pradhan

In the book series

"Fracture, Breakdown & Earthquake"

Edited by B. K. Chakrabarti and P. Ray

INDNOR project activity

Collaborators

Jørn, Anna, Hans, Eyvind, Haitham, Alexandre, Erling SINTEF

Alex Hansen, Per C. Hemmer, Bjørn Skjetne, NTNU

Bikas K. Chakrabarti, P. Bhattacharyya, SINP

FUNDING: RESEARCH COUNCIL OF NORWAY (NFR) THROUGH CLIMIT AND INDNOR (RENERGI)

