| DFN model |  |  |
|-----------|--|--|
|           |  |  |
|           |  |  |

## Fracture networks

#### Sigmund Mongstad Hope

Norwegian University of Science and Technology

Polytec R & D Institute

22 - 01 - 2013



## Background

#### Topology of Fracture Networks

#### C. A. Andresen, A. Hansen, R. Le Goc, P. Davy & S. M. Hope

arXiv:1203.4510

|       | DFN model |  |  |
|-------|-----------|--|--|
|       |           |  |  |
|       |           |  |  |
| Topic |           |  |  |

# Use of network theory to compare real and artificial fracture outcrops

Table of contents

- 1 Fracture outcrops
- **2** DFN model
- **3** Transform
- **4** Network Properties



## Outcrops

#### Data

- Fracture in the rock surface
- A 2D map of fracture lines
- Reconnected data

#### Hornelen basin



## Reconnected data



## Reconnected data



## Swedish outcrops

#### Data

- Eight outcrop samples
- Supplied by Svensk Kärnbränslehantering AB
- From Laxemar and Simpevarp areas in south-east Sweden
- Samples cover between 250 and 600  $m^2$
- Includes all fractures longer than 0.5 m

#### Sample outcrop



## DFN model

#### Properties

- Position
- Length
- Angle

#### Generated outcrop



Darcel, Bour, Davy, & de Dreuzy (2003), Water Resour. Res. 39 (10), 1272-1284

## Position

- Generate a multi-fractal structure
- Subdivide the system, in several layers, and assign a probability to each subdivision
- Use the mass-dimension, D<sub>2</sub>, to control the probability assignment



| P <sub>1</sub> P <sub>2</sub> | $P_1P_3$                      | P <sub>3</sub> P <sub>1</sub> | P <sub>3</sub> P <sub>3</sub> |
|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| P₁P₄                          | P <sub>1</sub> P <sub>1</sub> | P <sub>3</sub> P <sub>2</sub> | P <sub>3</sub> P <sub>4</sub> |
| P <sub>2</sub> P <sub>1</sub> | P <sub>2</sub> P <sub>4</sub> | P <sub>4</sub> P <sub>2</sub> | P <sub>4</sub> P <sub>4</sub> |
| P <sub>2</sub> P <sub>3</sub> | P <sub>3</sub> P <sub>2</sub> | P <sub>4</sub> P <sub>3</sub> | P <sub>4</sub> P <sub>1</sub> |

Fracture outcrops DFN model Transform Network Properties Results
Length

## Generate the lengths of the fracture based on a power-law distribution

$$p(l) = Cl^{-\alpha_l}.$$
(1)

## Different angular distribution

#### Angular distribution

- Uniform
- Outcrop based

## Different angular distribution

# Angular distributionUniformOutcrop based

#### Swedish data



## Generated data



From outcrop to graph



From outcrop to graph



From outcrop to graph



## Outcrop with corresponding graph



## Outcrop with corresponding graph



## Network Properties

- Degree
- Clustering
- Efficiency
- Small-world networks
- Degree-degree correlation matrix

| DFN model | Network Properties |  |
|-----------|--------------------|--|
|           |                    |  |
|           |                    |  |

#### Clustering

Clustering gives a measure of how nodes are interconected.

$$C = \frac{1}{N} \sum_{i=1}^{i=N} C_i = \frac{1}{N} \sum_{i=1}^{i=N} \frac{2K_{nn,i}}{k_i(k_i - 1)}.$$
 (2)

#### Efficiency

Efficiency is a global measure of how well connected different parts of the network are.

$$E = \frac{1}{N(N-1)} \sum_{(i,j) \in N, i \neq j} \frac{1}{d_{ij}},$$
(3)



### Small-world networks



$$C(k_1, k_2) = \frac{P(k_1, k_2)}{P_R(k_1, k_2)} \quad (4)$$

Maslov-Sneppen Disa
$$C(k_{1},k_{2}) = \frac{P(k_{1},k_{2})}{P_{R}(k_{1},k_{2})} \quad (4)$$



## Swedish outcrops

| Sample    | Nodes | Links | $k_{max}$ | $\bar{k}$ |
|-----------|-------|-------|-----------|-----------|
| AMS000025 | 787   | 858   | 23        | 2.18      |
| AMS000026 | 716   | 520   | 20        | 1.45      |
| AMS000205 | 973   | 1188  | 32        | 2.44      |
| AMS000206 | 737   | 487   | 11        | 1.32      |
| AMS000208 | 955   | 1297  | 31        | 2.72      |
| AMS000209 | 955   | 1162  | 27        | 2.43      |
| AMS100234 | 946   | 1549  | 44        | 3.27      |
| AMS100235 | 785   | 1392  | 44        | 3.55      |
| Average   | 857   | 1057  | 29        | 2.42      |

## Swedish outcrops

| Sample    | C    | $C_{RW}$ | $C_{RA}$ | E     | $E_{RW}$ | $E_{RA}$ |
|-----------|------|----------|----------|-------|----------|----------|
| AMS000025 | 0.17 | 0.0048   | 0.0018   | 0.046 | 0.10     | 0.10     |
| AMS000026 | 0.09 | 0.0033   | 0.0009   | 0.019 | 0.05     | 0.03     |
| AMS000205 | 0.19 | 0.0043   | 0.0017   | 0.032 | 0.12     | 0.12     |
| AMS000206 | 0.12 | 0.0013   | 0.0007   | 0.004 | 0.03     | 0.02     |
| AMS000208 | 0.23 | 0.0067   | 0.0021   | 0.079 | 0.14     | 0.14     |
| AMS000209 | 0.18 | 0.0050   | 0.0018   | 0.068 | 0.12     | 0.12     |
| AMS100234 | 0.24 | 0.0138   | 0.0029   | 0.133 | 0.16     | 0.17     |
| AMS100235 | 0.24 | 0.0180   | 0.0039   | 0.141 | 0.18     | 0.19     |
| Average   | 0.18 | 0.0072   | 0.0020   | 0.065 | 0.11     | 0.11     |
|           |      |          |          |       |          |          |

## DFN generated outcrops

| $\alpha_l$ | C    | $C_{RW}$ | $C_{RA}$ | E     | $E_{RW}$ | $E_{RA}$ |
|------------|------|----------|----------|-------|----------|----------|
| 2.00       | 0.08 | 0.019    | 0.047    | 0.028 | 0.042    | 0.11     |
| 2.25       | 0.11 | 0.013    | 0.031    | 0.027 | 0.049    | 0.11     |
| 2.50       | 0.17 | 0.013    | 0.019    | 0.037 | 0.083    | 0.10     |
| 2.75       | 0.26 | 0.014    | 0.014    | 0.050 | 0.134    | 0.09     |
| 3.00       | 0.31 | 0.013    | 0.008    | 0.050 | 0.154    | 0.07     |













| DFN model |  | Results |
|-----------|--|---------|
|           |  |         |
|           |  |         |

Conclusion

• Significant difference between real and artificial outcrops (dissassortative/assortative)

## Conclusion

- Significant difference between real and artificial outcrops (dissassortative/assortative)
- DFN model must be improved with correlations between position, length and angle.

| DFN model |  |  |
|-----------|--|--|
|           |  |  |

#### Thank you