Solving the Discrete Logarithm of a 113-bit Koblitz Curve with an FPGA Cluster

> Erich Wenger and Paul Wolfger Graz University of Technology WECC 2014, Chennai, India

We solved...

- the discrete logarithm of a 113-bit Koblitz Curve.
- Challenge generated using SHA-256
- Extrapolated 24 days on 18 Virtex-6 FPGAs

ECDLP Records

- In 2000: Binary Koblitz curve - ECC2K-108 using 9,500 PCs in 126 days
- In 2004: Binary elliptic curve - ECC2-109 using 2,600 PCs for 510 days
- In 2012: Elliptic curve over 112-bit prime field using 200 Playstation 3 for 6 months

TU Graz Records

- IT-Security Lecture
 - 2012: 75 bit in days on quad-core
 - 2013: 80 bit in 17 days on Core i5-2400
- Master project:
 - Virtex 6 FPGA
 - 83 bit in (avg) 4.1 days
- Room for improvement...

BlueKrypt Cryptographic Key Length Recommendation

53

用

Q

In most cryptographic functions, the key length is an important security parameter. Both academic and private organizations provide recommendations and mathematical formulas to approximate the minimum key size requirement for security. Despite the availability of these publications, choosing an appropriate key size to protect your system from attacks remains a headache as you need to read and understand all these papers.

8 -

∠ C^I

This web site implements mathematical formulas and summarizes reports from well-known organizations allowing you to quickly evaluate the minimum security requirements for your system. You can also easily compare all these techniques and find the appropriate key length for your desired level of protection. The lengths provided here are designed to resist mathematic attacks; they do not take algorithmic attacks, hardware flaws, etc. into account.

The higher the security level...

...the lower the speed.

With knowledge on the best attacks...

... realistic security bounds are possible.

...potentially **smaller** parameters can be used.

...potentially faster algorithms can be used.

Elliptic Curve Discrete Logarithm Problem

Q = kP

Parallelized Pollard's Rho Algorithm

We are looking for...

$$X_{1} = X_{2}$$

$$a_{1}P + b_{1}Q = a_{2}P + b_{2}Q$$

$$(a_{1} - a_{2})P = (b_{2} - b_{1})Q$$

$$(a_{1} - a_{2})P = (b_{2} - b_{1})kP$$

$$\mathbf{k} = \frac{a_1 - a_2}{b_2 - b_1} \bmod n$$

Pollard's Rho Algorithm

Iteration function

Parallelized Pollard's Rho

 $\pi n/2$

Iteration Function

Iteration Function

41-bit Koblitz Curve

Reference	Iteration function	
Teske [29]	$f(X_i) = X_i + R[j]$	
Wiener and Zuccherato [31]	$f(X_i) = \min_{0 \le l < m} \left\{ \sigma^l (X_i + R[j]) \right\}$	
Gallant $et al.$ [14]	$f(X_i) = X_i + \sigma^l(X_i)$	
Bailey et al. [4]	$f(X_i) = X_i + \sigma^{(l \mod 16)/2 + 3}(X_i)$	

FPGA Development Board

ASIC Design

One NAND Gate:

- 4 Transistors
- 3.136 μm^2 @ UMC 90nm
- Register/Flip-flop:
 ~5 GE

FPGA Development Board

Multiple Small Cores

Point Addition and FF Inversion

Binary Field Multiplier

Method	Size
Parallel	5,497 LUTs
Mastrovito	7,104 LUTs
Bernstein's Batch Binary Edwards	4,409 LUTs
Recursive Karatsuba	3,757 LUTs

Point Automorphism

Details

- 210 pipeline stages
- Per default: canonical basis
- Normal basis used for point automorphism module
- Karatsuba Multiplier for \mathbb{F}_{2^m}
- Itoh-Tsujii \mathbb{F}_{2^m} Inversion
- \mathbb{F}_n Montgomery Multiplier based on DSP slices

Computation Time

Extrapolated: 24 days

Challenge Generation

```
import hashlib
PX = str_to_poly(hashlib.sha256(str(0)).hexdigest())
PY=PolynomialRing(K, 'PY').gen()
P_ROOTS = (PY^2+PX*PY+PX^3+a*PX^2+b).roots()
P=E([PX,P_ROOTS[0][0]]); P=P*h
```

```
QX = str_to_poly(hashlib.sha256(str(1)).hexdigest())
Q_ROOTS = (PY^2+QX*PY+QX^3+a*QX^2+b).roots()
Q=E([QX,Q_ROOTS[0][0]]); Q=Q*h
```

Different FPGAs

Series	Development Kit	LUTs used	maximum Frequency	Price
Virtex-6	ML605	38%	261 MHz	2,495 USD
Spartan-6	LX150T	-	147 MHz	995 USD
Artix-7	AC701	62%	264 MHz	999 USD
Virtex-7	VC707	28%	313 MHz	3,495 USD
Kintex-7	KC705	42%	313 MHz	1,695 USD

Different Targets

Target	Iterations	Costs [USD]	Days (Estimated)
ECC2K-112	8.5 x 10	42,000	22
ECC2-113	90 x 10	42,000	118
ECC2K-130	4,055 x 10	1,000,000	127
ECC2-131	46,239 x 10	10,000,000	145
ECC2-163	3,030 x 10	1,000,000,000	189,934

Open Issues

- Power problems
 - Maximum frequency: 165 MHz vs 275 MHz
 - Multiple instances
- Negation map and fruitless cycles

Random Facts

- Necessary budget:
 - 18 FPGAs: 2,500 USD x 18 = 45,000 USD
 - Power consumption: different budget :-)
 - 1.5 man-years: 100,000 USD (different budget)
- Money actually spent: 20 EUR on chocolate

Room for improvement

YES!!!

2x speed equals 2 extra bits to attack

128x speed equals 14 extra bits to attack

Prime numbers: 109, 113, 127, 131, ... New Challenges

Prime numbers: 109, 113, 127, 131, ... New Challenges

Solving the Discrete Logarithm of a 113-bit Koblitz Curve with an FPGA Cluster

> Erich Wenger and Paul Wolfger Graz University of Technology WECC 2014, Chennai, India

