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We solved…

• the discrete logarithm of a 113-bit Koblitz Curve. 

• Challenge generated using SHA-256 

• Extrapolated 24 days on 18 Virtex-6 FPGAs



ECDLP Records
• In 2000:  

Binary Koblitz curve - ECC2K-108  
using 9,500 PCs in 126 days 

• In 2004:  
Binary elliptic curve - ECC2-109  
using 2,600 PCs for 510 days 

• In 2012:  
Elliptic curve over 112-bit prime field  
using 200 Playstation 3 for 6 months



TU Graz Records
• IT-Security Lecture 

• 2012: 75 bit in days on quad-core 

• 2013: 80 bit in 17 days on Core i5-2400 

• Master project: 

• Virtex 6 FPGA 

• 83 bit in (avg) 4.1 days 

• Room for improvement…





The higher the security level… 

…the lower the speed. 

With knowledge on the best attacks… 

…realistic security bounds are possible. 

…potentially smaller parameters can be used. 

…potentially faster algorithms can be used.



Elliptic Curve  
Discrete Logarithm Problem

Parallelized Pollard’s Rho Algorithm



We are looking for…



Pollard’s Rho Algorithm

Iteration function Parallelized Pollard’s Rho



Iteration Function
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Table 1. Implementation results of all tested iteration functions.

Reference Iteration function Expected Measured
iterations iterations

Teske [29] f(Xi) = Xi +R[j] 929 · 103 906 · 103
Wiener and Zuccherato [31] f(Xi) = min

0l<m

�
�

l(Xi +R[j])
 

145 · 103 147 · 103

Gallant et al. [14] f(Xi) = Xi + �

l(Xi) 145 · 103 166 · 103
Bailey et al. [4] f(Xi) = Xi + �

(l mod 16)/2+3(Xi) 145 · 103 166 · 103

Gallant et al. [14], and Bailey et al. [4] proposed iteration functions which should
achieve this

p
m-speedup.

Wiener and Zuccherato [31] proposed to calculate f(Xi) = �

l(Xi+R[j]) 8 l 2
[0,m� 1] and choose the point, which has the smallest x-coordinate when inter-
preted as an integer. Gallant et al. [14] introduced an iteration function based
on a labeling function L, which maps the equivalence classes defined by the
Frobenius automorphism to some set of representatives. The iteration function
is then defined as f(Xi) = Xi+�

l(Xi), where l = hashm(L(Xi)). Bailey et al. [4]
suggested to compute f(Xi) = Xi + �

(l mod 8)+3(Xi) to reduce the complexity
of the iteration function.

Additionally to the Frobenius automorphism, it is possible to use a negation
map to improve the expected runtime by a factor of

p
2. The negation map

compares Xi with �Xi and selects the point with the smaller y-coordinate when
interpreted as an integer. Although the potential speed-up seems very promising,
there is an unfortunate challenge associated with the negation map; the problem
of fruitless cycles which is discussed in Section 7.

In order to make sure that the potential iteration functions work as promised,
a 41-bit Koblitz curve was used to evaluate the iteration functions with a C
implementation on a PC (cf. Table 1). As labeling function L, the Hamming
weight of the x-coordinate in normal basis was used. The hash function was
disregarded. Table 1 summarizes the average number of iterations (computing
100 ECDLPs) of all tested iteration functions using four parallel threads. The
experiments showed that the average number of iterations of Gallant’s and Bai-
ley’s iteration functions are 13% higher compared to the iteration function by
Wiener and Zuccherato. Additionally, with a probability of 14-20% some of the
parallel threads produced identical sequences of distinguished points. Restarting
the threads regularly or on-demand would counter this problem. Not countering
the problem of fruitless threads would increase the average runtime of Gallant’s
iteration function by another 29%.

As Wiener and Zuccherato’s iteration function achieved the best speed and
does not have the problem of fruitless threads, it was chosen to be implemented
in hardware. Additionally, by leaving out the automorphism, the hardware can
be used to attack general binary-field Weierstrass curves as well.

Iteration Function

41-bit Koblitz Curve



Architecture



FPGA Development Board



One NAND Gate: 

• 4 Transistors 

• 3.136        @ UMC 90nm 

• Register/Flip-flop: 
~5 GE

ASIC Design
AND OR

NAND NOR XNOR

XOR

µm2

1 GE

1.25 1.25 2.5

2.51





FPGA Design
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CLB Overview

X-Ref Target - Figure 3

Figure 3: Diagram of SLICEM
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FPGA Development Board



Multiple Small Cores

TimeArea



Core Idea
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Point Addition and  
FF Inversion
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Binary Field Multiplier
Method Size

Parallel 5,497 LUTs

Mastrovito 7,104 LUTs

Bernstein’s Batch 
Binary Edwards 4,409 LUTs

Recursive 
Karatsuba 3,757 LUTs



Point Automorphism

Square Square

Compare

x y

x' y'

x y

x' y'

smallest Point
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Multiple Instances per FPGA. It was previously mentioned that some
FPGAs fit multiple ECC Breaker instances. However, it has yet to be tested
whether two ECC Breaker instances per FPGA at lower clock frequency out-
perform a single instance, clocked with a higher frequency. Especially under
consideration of the previously discussed routing and power problems, multiple
ECC Breaker instances per FPGA might not be feasible.

Fruitless Cycles. An initial implementation made use of a negation map.
However, the possibility of a fruitless cycle in which Xi+1

= f(Xi) = Xi +
R[j] � R[j] = Xi rendered the hardware implementation with negation map
useless. The probability that a fruitless cycle occurs is p = 1

2·m·r , r being the
number of branches and m the size of the automorphism. The probability to
encounter a fruitless cycle after i iterations is 1� (1�p)i. Given 1,024 branches,
an automorphism of size 113, and a clock rate of 165MHz, the iteration function
was trapped in a cycle with a probability of 99% after less than one second. It is
subject to future research how to e�ciently get rid of the fruitless-cycle problem
in a fully pipelined hardware design.

8 Conclusion

This work presents a circular, self-su�cient, highly pipelined, fully autonomous
hardware design that was used to practically compute the discrete logarithm of a
113-bit Koblitz curve within extrapolated 24 days on mere 18 Virtex-6 FPGAs.
However, because of the scalability and adaptability of ECC Breaker, even more
complex results can be expected. This work will bring the community one step
closer to solving the ECC2K-130 challenge.
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Details
• 210 pipeline stages 

• Per default: canonical basis 

• Normal basis used for point automorphism module 

• Karatsuba Multiplier for  

• Itoh-Tsujii          Inversion 

•       Montgomery Multiplier based on DSP slices

10 Erich Wenger and Paul Wolfger

Table 2. Hierarchical representation of final hardware design (post place-and-route).

Entity Instances Cycles Registers LUTs Slices

top 1 58,784 62,655 100%
iteration function 1 210 57,332 60,826 98%
point addition 1 184 35,691 43,177 79%

F
2

m inverse 1 168 29,809 35,126 65%
F
2

m multiplier 8 7 14,958 28,273 51%
F
2

m squarer 112 1 12,543 6,325 11%
F
2

m multiplier 2 7 3,738 7,127 13%
point automorphism 1 16 15,189 14,372 14%
comparator tree 1 7 13,238 10,529 10%
basis transformation 4 1 452 2,664 3%

Fn multiplier 2 26 3,650 2,000 2%
Fn adder 2 9 1,308 1,051 1%

(iii) Bernstein [7] combines some refined Karatsuba and Toom recursions for his
batch binary Edwards multiplier. The code from [8] for a 113-bit polynomial
multiplier needs 4,409 LUTs. (iv) Finally, the best results were achieved with a
slightly modified binary Karatsuba multiplier, described by Rodrıguez-Henrıquez
and Koç [27]. Their recursive algorithm was applied down to a 16⇥16-bit multi-
plier level, which is synthesized as standard polynomial multiplier. The formulas
for the resulting multiplier structure are given in Appendix B. The design only
requires 3,757 LUTs. At last the design was equipped with several pipeline stages
such that it can be clocked with high frequencies.

Fn multiplier. Computing prime-field multiplications in hardware can be a
troublesome and very resource-intensive task. In the case of a Virtex-6, dedi-
cated DSP slices were used for integer multiplications. As a result, the two Fn

multipliers are very resource e�cient, requirering only 2 ⇥ 145 DSP slices and
2% of all slices.

6 Results and Transferability of Results

The construction of the current ECC Breaker design was an iterative process
that continuously optimized the speed, the area, and the power consumption of
all components. To make maximal use of the available resources, the available
block RAMs and DSP slices were used whenever possible. Table 2 gives the
number of registers and LUTs needed for all components of a 113-bit Koblitz-
curve ECC Breaker design. The design was synthesized and mapped with Xilinx
ISE 14.6.

ECC Breaker requires (post place-and-route) 47% of all available slices
(17,782/37,680), 41% of all LUTs (62,657/150,720), 19% of all registers
(58,788/301,440), 37% of all DSP macros (290/768), and less than 10% of all
block RAMs. The biggest components are the point addition module and the
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2�t. For i =
p

⇡n
2m iterations and m · i comparisons, the probability for not

selecting the smaller value is only 1� (1� 2�t)m·i = 0.00081 for m = 113.
In respect to the overall design, the point automorphism module requires

14% of all slices and is about 5.6 times smaller than the point addition module
(in terms of slices). The majority of the point automorphism module is the
comparator tree. The basis transformations are fairly cheap and make up only
20% of the point automorphism module.

F2m
inverse. An Euclidean-based inversion algorithm is not deterministic and

therefore hard to compute with a pipelined hardware module. Therefore, ECC
Breaker computes the inverse using Fermat’s little theorem; an inversion by
exponentiation. Fortunately, an exponentiation with 2m�2 can be computed very
e�ciently using Itoh and Tsujii’s [19] exponentiation trick, needing 112 squarers

and 8 multipliers for m = 113: a = a

2

1�1 ! a

2

2�1 ! a

2

3�1 ! a

2

6�1 ! a

2

7�1 !
a

2

14�1 ! a

2

28�1 ! a

2

56�1 ! a

2

112�1 ! a

2

113�2 = a

�1.

F2m
normal basis. The advantage of a normal basis is that a squaring is a

simple rotation operation. The disadvantage of a normal basis is that a F
2

m

multiplication is fairly complex to compute. ECC breaker uses per default a
normal, canonical polynomial representation.

Only within the point automorphism module the normal basis rendered ad-
vantageous. The necessary matrix multiplication for a basis transformation can
be implemented very e�ciently. As the matrix is constant, on average m/2 of
the input signals are xored per output signal. Based on the results from Table 2,
666 LUTs are needed per basis transformation.

Experiments show that the normal basis could also reduce the area of the
consecutive squaring units within the F

2

m inverse. The 14, 28, and 56 squarers
currently need 1 582, 3 164, and 6 328 LUTs, respectively. Doing two basis trans-
formations and a rotation within normal basis would actually save area. Also,
accumulating the two transformation matrices into a single matrix would further
reduce the area. However, as all squarers together only need 11% of all slices and
10% of all LUTs, the potential area improvement is rather limited. Therefore,
contrary to [5, 12], ECC Breaker only uses a normal basis number representation
within the point automorphism module.

F2m
multiplier. As in total ten F

2

m multipliers are needed for the point addi-
tion module and the F

2

m inversion module, the F
2

m multipliers have the largest
e↵ect on the area footprint of the ECC Breaker design. For ECC Breaker, the fol-
lowing multiplier designs on a Virtex-6 FPGA were evaluated (post-synthesis):
(i) A simple 113-bit parallel polynomial multiplier needs 5,497 LUTs. (ii) A Mas-
trovito multiplier [22] interprets the F

2

m multiplication as matrix multiplication
and performs both a polynomial multiplication and the reduction step simulta-
neously. Unfortunately, it needs 7,104 LUTs. A polynomial multiplication and
reduction with the used pentanomial can be implemented much more e�ciently.
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Challenge Generation
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Listing 1.1. Sage code to verify P , Q, and Q = kP .

m=113

a=1

b=1

h=2

n=0 xfffffffffffffffdbf91af6dea73

k=0 x276c233740d817000b80478fde46

FF = sage.rings.finite_rings.finite_field_ext_pari .\

FiniteField_ext_pari;

K = FF(2**m, ’x’)

x=K.gen()

E = EllipticCurve(K, [1,a,0,0,b])

def str_to_poly(str):

I=Integer(str , base =16)

v=K(0)

for i in range(0,K.degree ()):

if (I >> i) & 1 > 0:

v = v + x^i

return v

def poly_to_str(poly):

vec=poly._vector_ ()

string = ""

for i in range(0,len(vec )):

string = string + str(vec[len(vec) - i - 1])

return hex(Integer(string , base =2))

import hashlib

PX = str_to_poly(hashlib.sha256(str (0)). hexdigest ())

PY=PolynomialRing(K, ’PY’).gen()

P_ROOTS = (PY^2+PX*PY+PX^3+a*PX^2+b). roots()

P=E([PX,P_ROOTS [0][0]]); P=P*h

QX = str_to_poly(hashlib.sha256(str (1)). hexdigest ())

Q_ROOTS = (PY^2+QX*PY+QX^3+a*QX^2+b). roots()

Q=E([QX,Q_ROOTS [0][0]]); Q=Q*h

print ’P.x:’, poly_to_str(P[0])

print ’P.y:’, poly_to_str(P[1])

print ’Q.x:’, poly_to_str(Q[0])

print ’Q.y:’, poly_to_str(Q[1])

print k*P==Q, is_prime(n), (n*P). is_zero(), (n*Q). is_zero ()



Different FPGAs
Series Development 

Kit LUTs used maximum 
Frequency Price

Virtex-6 ML605 38% 261 MHz 2,495 USD

Spartan-6 LX150T - 147 MHz 995 USD

Artix-7 AC701 62% 264 MHz 999 USD

Virtex-7 VC707 28% 313 MHz 3,495 USD

Kintex-7 KC705 42% 313 MHz 1,695 USD



Different Targets
Target Iterations Costs [USD] Days 

(Estimated)

ECC2K-112 8.5 x 10 42,000 22

ECC2-113 90 x 10 42,000 118

ECC2K-130 4,055 x 10 1,000,000 127

ECC2-131 46,239 x 10 10,000,000 145

ECC2-163 3,030 x 10 1,000,000,000 189,934



Open Issues

• Power problems 

• Maximum frequency: 165 MHz vs 275 MHz 

• Multiple instances 

• Negation map and fruitless cycles



Random Facts

• Necessary budget: 

• 18 FPGAs: 2,500 USD x 18 = 45,000 USD 

• Power consumption: different budget :-) 

• 1.5 man-years: 100,000 USD (different budget) 

• Money actually spent: 20 EUR on chocolate



Room for improvement

YES!!!!
2x speed equals 2 extra bits to attack 

128x speed equals 14 extra bits to attack
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New Challenges
Prime numbers: 109, 113, 127, 131, …



New Challenges
Prime numbers: 109, 113, 127, 131, …
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