Computation of class polynomials for abelian surfaces

A. Enge¹, E. Thomé² ¹ INRIA/LFANT, Bordeaux ; ² INRIA/CARAMEL, Nancy.

Oct. 9th, 2014

Plan

Introduction

CM in genus 1

Genus 2 prerequisites

Algorithm

Computer experiments

Computation of class polynomials for abelian surfaces

Motivations

Algebraic curves over finite fields are nice groups for cryptography.

Desired features: • Compact representation of elements.

- Fast arithmetic.
- Hard discrete log problem.
 - \Rightarrow Prefer almost prime group order.

Motivations

Algebraic curves over finite fields are nice groups for cryptography.

Desired features: • Compact representation of elements.

- Fast arithmetic.
- Hard discrete log problem.
 - \Rightarrow Prefer almost prime group order.

Typical candidates.

- Elliptic curves (g = 1)
 Studied for crypto for 25+ years.
 Efficient, secure.
- (Jacobians of) genus 2 curves.
 - Smaller base field for comparable group size.
 - Almost similar efficiency due to recent progress.
 - DL is hard as well.
- Higher genus: DL is comparatively easier. Avoided.

The cardinality issue

Strategy 1. Direct point counting.

Pick a curve at random (or select based on arithmetic properties). Compute $\#E(\mathbb{F}_p)$ (or $\#\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_p)$).

• Polynomial. Very fast for small characteristic (*p*-adic).

• g = 1: fast enough for crypto purposes (ℓ -adic, SEA).

• g = 2: now also possible, with some effort (SEA-like).

Strategy 2

Select some family of curves for easy point counting. Obtain an instance $(\mathbb{F}_p, E(\mathbb{F}_p), \#E(\mathbb{F}_p))$.

• The CM method is such a strategy.

Plan

Introduction

 $\mathsf{CM} \text{ in genus } 1$

Genus 2 prerequisites

Algorithm

Computer experiments

Computation of class polynomials for abelian surfaces

Elliptic curves

Elliptic curves

- The moduli space of elliptic curves has dimension 1.
- It is parameterised by the *j*-invariant. Example: $y^2 = x^3 + ax + b \rightsquigarrow j = 1728 \frac{4a^3}{4a^3 + 27b^2}$.

Endomorphism rings of elliptic curves classified by Deuring.

- In char. 0, either \mathbb{Z} or an order in $\mathbb{Q}(\sqrt{D})$, for some D < 0.
- Over finite fields, ordinary: cannot be Z.
 Any ordinary curve over 𝔽_p is the reduction of a curve over ℂ with same End(E).

Strategy

- Pick an imaginary quadratic field $K = \mathbb{Q}(\sqrt{d})$; let $\mathcal{O}_K = \mathbb{Z} + \omega \mathbb{Z}$.
- Let $\mathcal{O} = \mathbb{Z} + f \omega \mathbb{Z}$ be an order in \mathcal{O}_K , disc $(\mathcal{O}) = D = f^2 d$.

Aim at *E* mod some (yet unknown) *p*, with End(E) = O.

- First list *E* over \mathbb{C} with CM by \mathcal{O} .
- *j*-invariants: roots of Hilbert class polynomial $H_D(x) \in \mathbb{Z}[x]$.
- Appropriate p have $p = \text{Norm}(\pi \in \mathcal{O}_K, \text{ Weil number})$.
- Roots of H_D mod p are j-invariants of their reductions.
- Those have $\#E(\mathbb{F}_p) = p + 1 \pm \operatorname{Tr} \pi$.

Given *D*, what are the curves over \mathbb{C} with CM by \mathcal{O} ? Take $\mathfrak{a} = (\alpha_1, \alpha_2)$ ideal of \mathcal{O} with $\Im(\tau = \frac{\alpha_2}{\alpha_1}) > 0$.

- \mathbb{C}/\mathfrak{a} has CM by \mathcal{O} . $j(\mathfrak{a}) := j(\tau)$ depends only on the ideal class of \mathfrak{a} . j is a modular function for the action of $SL_2(\mathbb{Z})$ on \mathcal{H}_1 .
- Curve with invariant $j(\mathfrak{a})$ has CM by \mathcal{O} ,
- There are $h = \# Cl(\mathcal{O})$ such curves (faithful action).

Main algorithm

- Fix D < 0 and Weil number π .
- Enumerate the *h* ideal classes of \mathcal{O}_D :

$$\left(A_i, \frac{-B_i + \sqrt{D}}{2}\right)$$

 ${\ensuremath{\, \bullet \,}}$ Compute over ${\ensuremath{\mathbb C}}$ the class polynomial

$$H(X) = \prod_{i=1}^{h} \left(X - j \left(\frac{-B_i + \sqrt{D}}{2A_i} \right) \right) \in \mathbb{Z}[X]$$

- Find a root \overline{j} modulo $p = \operatorname{Norm} \pi$.
- Curve with that invariant mod p has $\#E = p + 1 \pm \operatorname{Tr} \pi$.

Complexity

Size of H

- Degree $h \in \tilde{O}\left(\sqrt{|D|}\right)$;
- Coefficients with $ilde{O}\left(\sqrt{|D|}
 ight)$ digits ;
- Total size $\tilde{O}(|D|)$
- Evaluation of $j: \tilde{O}\left(\sqrt{|D|}\right)$
 - Precision: $\tilde{O}\left(\sqrt{|D|}\right)$ digits ;
 - Multievaluation of the "polynomial" j ;
 - Arithmetic-geometric mean.

Total complexity

 $\tilde{O}(|D|)$ — quasi-linear in the output size.

Record with complex analytic CM (Enge 2009):

- *D* = −2 093 236 031;
- *h* = 100 000;
- Precision 264 727 bits;
- 260 000 seconds = 3 days CPU time;
- 🥌 5 GB;
- benefited from using alternative class invariants.

Free, available software, based notably on MPFR/MPC/MPFRCX.

See Belding–Bröker–Enge–Lauter 2008 and further works for comparison of other methods.

- p-adic lift.
- Chinese remaindering (CRT):
 - Enumerate CM curves over \mathbb{F}_p , compute $H \mod p$;
 - Lift to \mathbb{Z} or directly to $\mathbb{Z}/P\mathbb{Z}$.
- CRT has the edge for records (Enge-Sutherland 2010):
 - *D* = −1 000 000 013 079 299;
 - h = 10034174;
 - $P \approx 2^{254}$;
 - Precision 21 533 832 bits;
 - 438 709 primes of ≤ 53 bits;
 - 200 days CPU time;
 - Size mod $P \approx 200$ MB;
 - Size over $\mathbb{Z} \approx 2 \text{ PB}$ (not computed explicitly).

AGM

Dupont: One can evaluate j at precision n in time

 $O(\mathsf{M}(n)\log n) = \tilde{O}(n).$

Idea of the algorithm

- Newton iterations on a function built with the arithmetic-geometric mean (AGM).
- $j(\tau)$ is a zero of this function.

Genus 1 Theta constants — definition

$$a,b\in rac{1}{2}\mathbb{Z}/\mathbb{Z}; \qquad q=e^{2\pi i au}$$

 $\theta_{a,b}(\tau) = \sum_{n \in \mathbb{Z}} e^{(2\pi i)(n+a)\tau(n+a)/2 + (n+a)b} = e^{2\pi i ab} \sum_{n \in \mathbb{Z}} (e^{2\pi i b})^n q^{(n+a)^2/2}$

$$\begin{array}{lcl} \theta_{0,0}(\tau) & = & \sum_{n \in \mathbb{Z}} q^{n^2/2} = 1 + 2q^{1/2} + 2q^2 + 2q^{9/2} + \dots \\ \\ \theta_{0,\frac{1}{2}}(\tau) & = & \sum_{n \in \mathbb{Z}} (-1)^n q^{n^2/2} = 1 - 2q^{1/2} + 2q^2 - 2q^{9/2} + \dots \\ \\ \theta_{\frac{1}{2},0}(\tau) & = & \sum_{n \in \mathbb{Z}} q^{(2n+1)^2/8} = q^{1/8} \left(1 + 2q + 2q^3 + \dots \right) \\ \\ \theta_{\frac{1}{2},\frac{1}{2}}(\tau) & = & 0 \end{array}$$

$$\theta_{0,0}^2(2\tau) = \frac{\theta_{0,0}^2(\tau) + \theta_{0,\frac{1}{2}}^2(\tau)}{2} \quad \theta_{0,\frac{1}{2}}^2(2\tau) = \sqrt{\theta_{0,0}^2(\tau)\theta_{0,\frac{1}{2}}^2(\tau)}$$

AGM

$$\theta_{0,0}^{2}(2\tau) = \frac{\theta_{0,0}^{2}(\tau) + \theta_{0,\frac{1}{2}}^{2}(\tau)}{2} \quad \theta_{0,\frac{1}{2}}^{2}(2\tau) = \sqrt{\theta_{0,0}^{2}(\tau)\theta_{0,\frac{1}{2}}^{2}(\tau)}$$

AGM for a, $b \in \mathbb{C}$

- $a_0 = a, b_0 = b$
- $a_{n+1} = \frac{a_n + b_n}{2}$

• $b_{n+1} = \sqrt{a_n b_n}$, closer to a_{n+1} than to its opposite.

converges quadratically towards a common limit AGM(a, b)

Evaluated in time $O(M(n) \log n)$ at precision n.

For $\tau \in$ some region of \mathcal{H}_1 ,

$$\left\{ \left(\theta_{0,0}^2, \theta_{0,\frac{1}{2}}^2 \right) \left(2^n \tau \right) \right\}$$

is the AGM sequence starting from τ (whence the limit is 1).

Computation of class polynomials for abelian surfaces

The AGM is an homogeneous bivariate function on $\mathbb{C}.$ We define:

$$\mathsf{AGM}(a,b) = a \cdot \mathsf{AGM}(1,b/a) =: a \cdot M(b/a)$$

•
$$k'(\tau) = \left(\frac{\theta_{0,\frac{1}{2}}(\tau)}{\theta_{0,0}(\tau)}\right)^2$$

• $k(\tau) = \left(\frac{\theta_{\frac{1}{2},0}(\tau)}{\theta_{0,0}(\tau)}\right)^2$
• $k^2(\tau) + k'^2(\tau) = 1$
• $j = 256\frac{(1-k'^2+k'^4)^3}{k'^4(1-k'^2)^2}$

j can be computed from k'

Newton iterations

•
$$M(k'(\tau)) = \frac{1}{\theta_{0,0}^2(\tau)}$$
,
• $M(k(\tau)) = M(k'(-1/\tau)) = \frac{1}{\theta_{0,0}^2(-1/\tau)} = \frac{i}{\tau \theta_{0,0}^2(\tau)}$,
• $k^2(\tau) + k'^2(\tau) = 1$
• $f_{\tau}(x) = iM(x) - \tau M(\sqrt{1-x^2})$
• $f_{\tau}(k'(\tau)) = 0$

$$x_{n+1} \leftarrow x_n - \frac{f_{\tau}(x_n)}{f_{\tau}'(x_n)}$$

converges quadratically towards $k'(\tau)$

Evaluated in time $O(M(n) \log n)$ at precision n.

Caution

Care must be taken to consider τ for which the homogeneous AGM converges to 1 (which gives $M(k'(\tau)) = \frac{1}{\theta_{0,0}^2(\tau)}$).

Plan

Introduction

CM in genus 1

Genus 2 prerequisites

Algorithm

Computer experiments

Computation of class polynomials for abelian surfaces

Generalization: Genus 2 CM

Workplan

- Enumerate principally polarized abelian varieties (PPAVs) with complex multiplication by O_K (End = O_K).
- Compute their invariants in \mathbb{C} (g = 2, three invariants).
- Compute their defining polynomials: Igusa class polynomials.
- Recognize these (triples of) polynomials in $\mathbb{Q}[x]$.

The larger the discriminants, the bigger the polynomials.

Computation of class polynomials for abelian surfaces

- Complex analytic method: Spallek, Weng, Streng.
- *p*-adic: Gaudry, Houtmann, Kohel, Ritzenthaler, Weng, Carls, Lubicz.
- CRT: Eisentrager, Lauter, Bröker, Gruenewald, Robert.

Focus on the complex analytic method

- Streng: complete algorithm, and complexity upper bounds.
- Improve on keypoint: computation of invariants analytically.
- Recognize irreducible factors of class polynomials.

(1/5): CM fields

$$\begin{array}{c|c} K \\ | \\ K_0 \\ K_0 \\ | \\ \end{array} \text{ Preferred defining equation for } K: x^4 + Ax^2 + B, \text{ with } A^2 - 4B = \Box \times \operatorname{disc}(K_0). \\ \text{ let } D = \operatorname{disc}(K_0), \text{ and } A \text{ minimal } \Rightarrow \text{ invariants } [D, A, B]. \\ \mathbb{Q} \end{array}$$

The CM field K may be either:

- Galois with $Gal(K/\mathbb{Q}) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$; (degenerates to g = 1).
- Galois with $Gal(K/\mathbb{Q}) = \mathbb{Z}/4\mathbb{Z}$; (cyclic case, rare).
- non-Galois, with $Gal(L/\mathbb{Q}) = D_4 = \mathbb{Z}/4\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$; (typical). Study of the Galois structure reveals:
 - two non-conjugate pairs of embeddings $K \hookrightarrow \mathbb{C}$;
 - the reflex field K^r of K, which is another CM field.

Siegel upper-half space \mathcal{H}_2 : symm. + pos. def. imag. part.

•
$$\operatorname{Sp}_4(\mathbb{Z})$$
 acts on \mathcal{H}_2 : $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$. $\tau = (A\tau + B)(C\tau + D)^{-1}$.
• \mathcal{F}_2 : fundamental domain for $\operatorname{Sp}_4 \setminus \mathcal{H}_2$.
PPAV= $\begin{array}{c} \mathbb{Z}$ -lattice in $\mathbb{C}^2 \\ + \operatorname{Riemann form} \end{array} \rightarrow \operatorname{period matrix} \tau = \begin{pmatrix} \tau_1 & \tau_3 \\ \tau_3 & \tau_2 \end{pmatrix} \in \mathcal{H}_2$.

(3/5): θ -constants in genus 2

Theta constants for $\mathbf{a} = (a_1, a_2)$, $\mathbf{b} = (b_1, b_2)$, $a_i, b_i \in \{0, 1/2\}$:

$$\theta_{[\mathbf{a},\mathbf{b}]}(\tau) = \sum_{\mathbf{n}\in\mathbb{Z}^2} \exp\left(i\pi\left[(\mathbf{n}+\mathbf{a})\tau(\mathbf{n}+\mathbf{a})^t + 2(\mathbf{n}+\mathbf{a})\mathbf{b}^t\right]\right).$$

- Numbering (Dupont) $\theta_{[\mathbf{a},\mathbf{b}]} = \theta_{2b_1+4b_2+8a_1+16a_2}$.
- 10 even theta constants: $\theta_{0,1,2,3,4,6,8,9,12,15}$, other are 0.

Theta constants are used to compute invariants.

Duplication formulae

We have unambiguous formulae: 4-uple $(\theta_{0,1,2,3}(\tau/2)) \rightarrow 10$ -uple $(\theta_{0,1,2,3,4,6,8,9,12,15}^2(\tau))$. The moduli space of 2-dimensional PPAVs has dimension 3. Igusa invariants can be computed from $\theta_{0,1,2,3,4,6,8,9,12,15}$.

- Several invariant sets floating around.
- Some "smaller" than others.
- Define (i_1, i_2, i_3) as those proposed by Streng.

$$i_1 = \frac{I_4(I_2I_4 - 3I_6)}{2I_{10}}$$
 $i_2 = \frac{I_2I_4^2}{I_{10}}$ $i_3 = \frac{I_4^5}{I_{10}^2}$

(5/5): Class polynomials

Consider S(K) the set of PPAVs with CM by \mathcal{O}_K . The set $\{i_1(\tau), \tau \in S(K)\}$ is defined over \mathbb{Q} .

- Minimal polynomials H_1 , H_2 , H_3 in $\mathbb{Q}[x]$.
- Better: $\{i_{1,2,3}(\tau)\}$ a 0-dimensional set in \mathbb{C}^3 , defined over \mathbb{Q} .
- Triangular (Hecke) representation: H_1 , \hat{H}_2 , \hat{H}_3 , with:

$$\hat{H}_2(i_1) = H'_1(i_1)i_2.$$

The triple $(H_1, \hat{H}_2, \hat{H}_3)$ is our target. Obstacles:

- Large degree, (very) large coefficients.
- Need large precision for complex invariants, so that rational polynomials may be recognized.

Plan

Introduction

 $\mathsf{CM} \text{ in genus } 1$

Genus 2 prerequisites

Algorithm

Computer experiments

Computation of class polynomials for abelian surfaces

Algorithm

Principally polarized abelian varieties with CM by $\mathcal{O}_{\mathcal{K}}$

Computing complex invariants

From θ -constants to class polynomials

PPAVs with CM by $\mathcal{O}_{\mathcal{K}}$

$\mathcal{O}_{\mathcal{K}}$ -ideals to represent PPAVs.

Let \mathfrak{a} be an $\mathcal{O}_{\mathcal{K}}$ -ideal with:

•
$$(\mathfrak{a}\overline{\mathfrak{a}}\mathcal{D}_{K/\mathbb{Q}})^{-1} = (\xi),$$

- $\Phi(\xi) \in i\mathbb{R}^{+*}$ for some CM-type Φ .
- Such a's yield period matrices $\Omega \in \mathcal{M}_2(K^r) \hookrightarrow \mathcal{H}_2 \twoheadrightarrow \mathcal{F}_2$.
- Conversely, all PPAVs with CM by \mathcal{O}_K are obtained this way.

Easy plan: enumerate representatives of $Cl(\mathcal{O}_{\mathcal{K}})$ to find both. Way more satisfactory: enumerate only irreducible components, working with Shimura group $\mathfrak{C}(\mathcal{K})$ and the reflex typenorm map.

Plan

Algorithm

Principally polarized abelian varieties with CM by $\mathcal{O}_{\mathcal{K}}$

Computing complex invariants

From θ -constants to class polynomials

Computing theta constants

Input: $\tau \in \mathcal{F}_2$, whose entries are algebraic numbers (in K^r). Goal: theta constants $\theta_{0,1,2,3,4,6,8,9,12,15}$ (and later $i_{1,2,3}$). Large precision N needed to successful reconstruct H_1 , \hat{H}_2 , \hat{H}_3 . Upper bounds on N exist. Difficult to make it tight. Two strategies for computing θ 's from τ .

• q-expansion of $\theta_{0,1,2,3}(\tau/2)$, letting $q_k = \exp(i\pi \tau_k/2)$:

$$heta_{4b_1+2b_2}(au/2) = \sum_{m,n\in\mathbb{Z}} (-1)^{2(mb_1+nb_2)} q_0^{m^2} q_1^{2mn} q_2^{n^2}.$$

Summation over O(N) terms, can be done in $O(N\mathcal{M}(N))$. Finish with duplication formulae.

Faster: Newton lifting.

Borchardt mean

Dupont defines a Borchardt sequence as $((x_n, y_n, z_n, t_n) \in \mathbb{C}^4)$:

$$\begin{aligned} x_{n+1} &= \frac{1}{4} (x_n + y_n + z_n + t_n), \qquad y_{n+1} &= \frac{1}{2} (\sqrt{x_n} \sqrt{y_n} + \sqrt{z_n} \sqrt{t_n}), \\ z_{n+1} &= \frac{1}{2} (\sqrt{x_n} \sqrt{z_n} + \sqrt{y_n} \sqrt{t_n}), \quad t_{n+1} &= \frac{1}{2} (\sqrt{x_n} \sqrt{t_n} + \sqrt{y_n} \sqrt{z_n}). \end{aligned}$$

• Choice of $\sqrt{}$ at each iteration.

- Starting (x_0, y_0, z_0, t_0) : set of possible limits $\mathcal{B}_2(x_0, y_0, z_0, t_0)$.
- Forcing consistent choice of roots: $B_2(x, y, z, t)$ well defined.

Let
$$\mathcal{U} = \{ \tau \in \mathcal{H}_2, \ B_2(\theta_{0,1,2,3}^2(\tau)) = 1 \}$$
. At least $\mathcal{F}_2 \subset \mathcal{U}$.

Homogeneity

$$B_2(\lambda x, \lambda y, \lambda z, \lambda t) = \lambda B_2(x, y, z, t).$$

Exploiting action of $Sp_{4}(\mathbb{Z})$

Action of Γ_2 on the theta constants

Let
$$\tau \in \mathcal{H}_2$$
. Then
 $\left(\theta_j^2((\mathfrak{J}\mathfrak{M}_1)^2 \tau)\right)_{j=0,1,2,3} = -i\tau_1 \left(\theta_j^2(\tau)\right)_{j=4,0,6,2},$
 $\left(\theta_j^2((\mathfrak{J}\mathfrak{M}_2)^2 \tau)\right)_{j=0,1,2,3} = -i\tau_2 \left(\theta_j^2(\tau)\right)_{j=8,9,0,1},$
 $\left(\theta_j^2((\mathfrak{J}\mathfrak{M}_3)^2 \tau)\right)_{j=0,1,2,3} = (\tau_3^2 - \tau_1 \tau_2) \left(\theta_j^2(\tau)\right)_{j=0,8,4,12}.$

Important: if $(\mathfrak{JM}_1)^2 \cdot \tau \in \mathcal{U}$, then $B_2(\theta_{4,0,6,2}^2(\tau)) = \frac{1}{-i\tau_1}$.

Conjecture

For $\tau \in \mathcal{F}_2$, $i \in \{0, 1, 2\}$: $(\mathfrak{J}\mathfrak{M}_i)^2 \cdot (\tau) \in \mathcal{U}$.

Computation of class polynomials for abelian surfaces

$heta_{0,1,2,3}(au/2)$ as solutions of an equation

Input: $\tau \in \mathcal{F}_2$ known (to any precision we like). Initially: low-precision $\theta_{0,1,2,3}(\tau/2)$.

- Use duplication formulae to deduce $\theta_{0,1,2,3,4,6,8,9,12,15}^2(\tau)$.
- Use B_2 computations to deduce coefficients of τ .
- The accurate $x_{0,1,2,3} = \theta_{0,1,2,3}(\tau/2)$ are solutions to

complicated- B_2 -calculation $(x_{0,1,2,3}) = \tau$.

Newton: use this feedback loop to find $\theta_{0,1,2,3}(\tau/2)$.

- Keeping track of derivatives is messy.
- A secant method also works, and is actually more convenient.

Computation of $\theta^2_{0,1,2,3}$ by Newton lifting

Convergence of the Newton iteration is quadratic:

- each iteration (almost) doubles the precision.
- it is possible to "lift higher" without restarting from scratch.

Complexity of the algorithm: quasi-linear $O(\mathcal{M}(N) \log N)$.

Performance measurements

	$\tau = \begin{pmatrix} \frac{-1+5i}{2} & \frac{i}{5} \\ \frac{i}{5} & \frac{-1+7i}{2} \end{pmatrix}$			$\tau = \begin{pmatrix} \frac{2+10i}{7} & \frac{1+2i}{6}\\ \frac{1+2i}{6} & \frac{4}{10} + 8i \end{pmatrix}$		
bits	MAGMA	cmh-naive	cmh-Newton	MAGMA	cmh-naive	cmh-Newton
$\approx 2^{11}$	0.46	0	0.02	0.03	0	0.02
$\approx 2^{12}$	3.4	0.01	0.04	0.17	0.04	0.03
$\approx 2^{13}$	26	0.07	0.08	1.1	0.20	0.09
$\approx 2^{14}$	210	0.31	0.24	8.2	1.0	0.26
$\approx 2^{15}$	1700	1.3	0.69	60	5.2	0.75
$pprox 2^{16}$		6.4	2.0	430	27	2.2
$\approx 2^{17}$		32	5.7	3100	130	6.0
$\approx 2^{18}$		160	16		720	16
$\approx 2^{19}$		770	39		3100	40
$\approx 2^{20}$		3200	98			96
$\approx 2^{21}$			240			230
$\approx 2^{22}$			560			530
$\approx 2^{23}$			1400			1300
$\approx 2^{24}$			3200			3000
$\approx 2^{25}$			7600			7100
$\approx 2^{26}$			16000			16000

Table:

Computation of $\theta_0(\tau)$ (Intel i5-2500, 3.3GHz; MAGMA-2.19.4; cmh-1.0)

Plan

Algorithm

Principally polarized abelian varieties with CM by $\mathcal{O}_{\mathcal{K}}$ Computing complex invariants

From θ -constants to class polynomials

 θ -constants \rightsquigarrow three Igusa invariants : trivial. From these, we compute:

- product trees yield $H_1, \hat{H}_2, \hat{H}_3 \in \mathbb{R}[x]$.
- Their coefficients belong to the quadratic real K^r₀.
 Recognize x ∈ ℝ as short vector in:

$$\begin{pmatrix} 1 & \kappa_1 & 0 & 0 \\ \sqrt{D'} & 0 & \kappa_2 & 0 \\ x & 0 & 0 & \kappa_3 \end{pmatrix}$$

Success criterion: smooth denominators.

- Denominators can be predicted to some extent (not done).
- As long as reconstruction fails, keep on lifting θ²_{0,1,2,3}(τ).
 At most we're lifting twice higher than what we would need if we had sharp bounds on denominators.

Plan

Introduction

 $\mathsf{CM} \text{ in genus } 1$

Genus 2 prerequisites

Algorithm

Computer experiments

Computation of class polynomials for abelian surfaces

Implementation

- Number theoretic computations: C(K), (reduced) period matrices
 - Pari/GP
 - negligible effort
- Evaluation of theta and invariants
 - C
 - Libraries: GMP, MPFR, MPC
 - MPI for parallelisation
- Polynomial operations
 - MPFRCX
 - MPI for (partial) parallelisation

Software

http://cmh.gforge.inria.fr/

- GPLv3+
- ./configure --with-gmp=... ... --enable-mpi make install
- Period matrices: cmh-classpol.sh -p 35 65

cmh-classpol.sh -f 35 65

cmh-classpol.sh -c 35 65

- Class polynomials:
 - Curve for checking:
 - Using MPI: mpirun -n 4 cm2-mpi -i 965_35_65.in -o H123.pol

Two baby examples

$X^4 + 144X^2 + 3500$	
$\mathfrak{C} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$	

$\begin{array}{l} X^4 + 134X^2 + 712 \\ \mathfrak{C} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/60\mathbb{Z} \end{array}$

preparation	0.2	preparation	0.3	
base, 2000 bits	0.6	base, 2000 bits	1.1	
lift, 3 984 bits	0.8	lift, 3988 bits	1.6	
lift, 7 944 bits	2.1	lift, 7958 bits	4.4	
reconstruction	0.1	reconstruction	0.1	
lift, 15 846 bits	6.2	lift, 15886 bits	13.1	
		reconstruction	0.2	
		lift, 31744 bits	38.7	
$H_1, \hat{H}_2, \hat{H}_3 \in \mathbb{C}[X]$	0.1	$H_1, \hat{H}_2, \hat{H}_3 \in \mathbb{C}[X]$	0.6	
$H_1, \hat{H}_2, \hat{H}_3 \in K_0^r[X]$	3×0.3	$H_1, \hat{H}_2, \hat{H}_3 \in K_0^r[X]$	$1.8 + 2 \times 1.4$	
check	0.8	check	0.7	
Total (incl. I/O)	12.4	Total (incl. I/O)	69.2	
T · · · ·	с.			

Timings in seconds for two examples (Intel i5-2500, 3.3GHz).

One jumbo experiment

How far can we go ?

• $K = \mathbb{Q}[X]/(X^4 + 1357X^2 + 3299), K_0 = \mathbb{Q}(\sqrt{1828253}).$

• $\mathfrak{C} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5004\mathbb{Z}; \ \mathfrak{C} = 20016.$

Computation breakdown:

- 10008 symbolic period matrices:
- Lift up to 2000000 bits:
- Lift up to 8 000 000 bits: 3 days (160 cores, more RAM).
- Computing polynomials:
- Recognizing coefficients:
- Disk size for class polynomial triple:

 $lc(H_1)$ has 8884 distinct prime factors, largest is 1506803839.

minutes.

90 GB.

hours (640 cores).

3 days (24 cores). 2 days (480 cores).

A curve

$$\begin{split} \pi &= 2587584949432298\alpha^3 + 598749326588980\alpha^2 + \\ & 3489110163205995872\alpha - 17626367557116479015, \\ p^2 &= \mathsf{Norm}(\pi) = \left(2^{128} + 5399685\right)^2, \\ y^2 &= 329105434147215182703081697774190891717x^5 + \\ & 219357712933218699650940059644263138156x^4 + \\ & 94773520721686083389380651745963315116x^3 + \\ & 13612280714446818104030347122109215819x^2 + \\ & 224591198286067822213326173663420732292x + \\ & 62350272396394045327709463978232206155, \\ \chi &= t^4 - s_1t^3 + s_2t^2 - ps_1t + p^2, \ (s_1 = -72130475900828407780, \\ & s_2 = 1980610692179048658315492237655054733182), \\ \#J &= (p^2 + 1) - (p + 1)s_1 + s_2 = 2^4 \cdot 3433 \cdot p_{73}. \end{split}$$

Conclusion

- Complex analytic CM construction is effective in genus 2, not just for ridiculously small examples;
- We don't meet the sky-large class number requirements though;
- Computing θ-constants is fast.
 Never say it's a bottleneck. There's available software !

Further improvements:

- Higher genus ?
- Prove the conjectures ? (note: there are trivial workarounds anyway).
- Improve on our recognition step, which is too slow.
- Compute $\theta(\tau, z)$, not jsut $\theta(\tau, 0)$.
- Improve the CRT method to make it as effective.