Computation of class polynomials for abelian surfaces

A. Enge1, E. Thomé2

1 INRIA/LFANT, Bordeaux ; 2 INRIA/CARAMEL, Nancy.

Oct. 9th, 2014
Plan

Introduction

CM in genus 1

Genus 2 prerequisites

Algorithm

Computer experiments
Motivations

Algebraic curves over finite fields are nice groups for cryptography.

Desired features: Compact representation of elements.
 Fast arithmetic.
 Hard discrete log problem.
 ⇒ Prefer almost prime group order.
Motivations

Algebraic curves over finite fields are nice groups for cryptography.

Desired features: Compact representation of elements.
 - Fast arithmetic.
 - Hard discrete log problem.
 \[\Rightarrow \text{Prefer almost prime group order.} \]

Typical candidates.

- Elliptic curves \((g = 1)\) Studied for crypto for 25+ years.
 - Efficient, secure.

- (Jacobians of) genus 2 curves.
 - Smaller base field for comparable group size.
 - Almost similar efficiency due to recent progress.
 - DL is hard as well.

- Higher genus: DL is comparatively easier. Avoided.
The cardinality issue

Strategy 1. Direct point counting.

Pick a curve at random (or select based on arithmetic properties). Compute $\#E(\mathbb{F}_p)$ (or $\#\text{Jac}_C(\mathbb{F}_p)$).

- **Polynomial.** Very fast for small characteristic (p-adic).
- **$g = 1$:** fast enough for crypto purposes (ℓ-adic, SEA).
- **$g = 2$:** now also possible, with some effort (SEA-like).

Strategy 2

Select some family of curves for easy point counting. Obtain an instance $(\mathbb{F}_p, E(\mathbb{F}_p), \#E(\mathbb{F}_p))$.

- The **CM method** is such a strategy.
Plan

Introduction

CM in genus 1

Genus 2 prerequisites

Algorithm

Computer experiments
Elliptic curves

- The moduli space of elliptic curves has dimension 1.
- It is parameterised by the j-invariant.
- Example: $y^2 = x^3 + ax + b \rightsquigarrow j = 1728 \frac{4a^3}{4a^3 + 27b^2}$.

Endomorphism rings of elliptic curves classified by Deuring.

- In char. 0, either \mathbb{Z} or an order in $\mathbb{Q}(\sqrt{D})$, for some $D < 0$.
- Over finite fields, ordinary: cannot be \mathbb{Z}.
 Any ordinary curve over \mathbb{F}_p is the reduction of a curve over \mathbb{C} with same $\text{End}(E)$.

Computation of class polynomials for abelian surfaces
Strategy

- Pick an imaginary quadratic field $K = \mathbb{Q}(\sqrt{d})$; let $\mathcal{O}_K = \mathbb{Z} + \omega \mathbb{Z}$.
- Let $\mathcal{O} = \mathbb{Z} + f \omega \mathbb{Z}$ be an order in \mathcal{O}_K, $\text{disc}(\mathcal{O}) = D = f^2 d$.

Aim at $E \mod$ some (yet unknown) p, with $\text{End}(E) = \mathcal{O}$.

- First list E over \mathbb{C} with CM by \mathcal{O}.
 - j-invariants: roots of Hilbert class polynomial $H_D(x) \in \mathbb{Z}[x]$.
 - Appropriate p have $p = \text{Norm}(\pi \in \mathcal{O}_K$, Weil number).
 - Roots of $H_D \mod p$ are j-invariants of their reductions.
 - Those have $\#E(\mathbb{F}_p) = p + 1 \pm \text{Tr} \pi$.

Effective complex multiplication

Given D, what are the curves over \mathbb{C} with CM by \mathcal{O}?

Take $a = (\alpha_1, \alpha_2)$ ideal of \mathcal{O} with $\Im(\tau = \frac{\alpha_2}{\alpha_1}) > 0$.

- \mathbb{C}/a has CM by \mathcal{O}.
 - $j(a) := j(\tau)$ depends only on the ideal class of a.
 - j is a modular function for the action of $SL_2(\mathbb{Z})$ on \mathcal{H}_1.
- Curve with invariant $j(a)$ has CM by \mathcal{O},
- There are $h = \# \text{Cl}(\mathcal{O})$ such curves (faithful action).
Main algorithm

- Fix $D < 0$ and Weil number π.
- Enumerate the h ideal classes of \mathcal{O}_D:
 \[
 \left(A_i, \frac{-B_i + \sqrt{D}}{2} \right)
 \]
- Compute over \mathbb{C} the class polynomial
 \[
 H(X) = \prod_{i=1}^{h} \left(X - j \left(\frac{-B_i + \sqrt{D}}{2A_i} \right) \right) \in \mathbb{Z}[X]
 \]
- Find a root \bar{j} modulo $p = \text{Norm} \pi$.
- Curve with that invariant mod p has $\#E = p + 1 \pm \text{Tr} \pi$.
Complexity

- **Size of H**
 - Degree $h \in \tilde{O} \left(\sqrt{|D|} \right)$;
 - Coefficients with $\tilde{O} \left(\sqrt{|D|} \right)$ digits;
 - Total size $\tilde{O} \left(|D| \right)$

- **Evaluation of j: $\tilde{O} \left(\sqrt{|D|} \right)$**
 - Precision: $\tilde{O} \left(\sqrt{|D|} \right)$ digits;
 - Multievaluation of the “polynomial” j;
 - Arithmetic-geometric mean.

- **Total complexity**

 $\tilde{O} \left(|D| \right)$ — quasi-linear in the output size.
Implementation

Record with complex analytic CM (Enge 2009):

- \(D = -2093236031; \)
- \(h = 100000; \)
- Precision 264 727 bits;
- 260 000 seconds = 3 days CPU time;
- 5 GB;
- benefited from using alternative class invariants.

Free, available software, based notably on MPFR/MPC/MPFRCX.
Further algorithms

See Belding–Bröker–Enge–Lauter 2008 and further works for comparison of other methods.

- \(p\)-adic lift.
- Chinese remaindering (CRT):
 - Enumerate CM curves over \(\mathbb{F}_p\), compute \(H \mod p\);
 - Lift to \(\mathbb{Z}\) or directly to \(\mathbb{Z}/P\mathbb{Z}\).
- CRT has the edge for records (Enge–Sutherland 2010):
 - \(D = -1\,000\,000\,013\,079\,299\);
 - \(h = 10\,034\,174\);
 - \(P \approx 2^{254}\);
 - Precision 21\,533\,832 bits;
 - 438\,709 primes of \(\leq 53\) bits;
 - 200 days CPU time;
 - Size mod \(P \approx 200\) MB;
 - Size over \(\mathbb{Z}\) \(\approx 2\) PB (not computed explicitly).
Dupont: One can evaluate j at precision n in time

$$O(M(n) \log n) = \tilde{O}(n).$$

Idea of the algorithm

- Newton iterations on a function built with the arithmetic-geometric mean (AGM).
- $j(\tau)$ is a zero of this function.
Genus 1 Theta constants — definition

\[a, b \in \frac{1}{2} \mathbb{Z}/\mathbb{Z}; \quad q = e^{2\pi i \tau} \]

\[\theta_{a,b}(\tau) = \sum_{n \in \mathbb{Z}} e^{(2\pi i)(n+a)\tau(n+a)/2+(n+a)b} = e^{2\pi i a b} \sum_{n \in \mathbb{Z}} (e^{2\pi i b})^n q^{(n+a)^2/2} \]

\[\theta_{0,0}(\tau) = \sum_{n \in \mathbb{Z}} q^{n^2/2} = 1 + 2q^{1/2} + 2q^2 + 2q^{9/2} + \ldots \]

\[\theta_{0,\frac{1}{2}}(\tau) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n^2/2} = 1 - 2q^{1/2} + 2q^2 - 2q^{9/2} + \ldots \]

\[\theta_{\frac{1}{2},0}(\tau) = \sum_{n \in \mathbb{Z}} q^{(2n+1)^2/8} = q^{1/8} \left(1 + 2q + 2q^3 + \ldots \right) \]

\[\theta_{\frac{1}{2},\frac{1}{2}}(\tau) = 0 \]
Theta constants — duplication formulæ

\[\theta_{0,0}^2(2\tau) = \frac{\theta_{0,0}^2(\tau) + \theta_{0,1/2}^2(\tau)}{2} \quad \theta_{0,1/2}^2(2\tau) = \sqrt{\theta_{0,0}^2(\tau)\theta_{0,1/2}^2(\tau)} \]
AGM

\[\theta_{0,0}^2(2\tau) = \frac{\theta_{0,0}^2(\tau) + \theta_{0,\frac{1}{2}}^2(\tau)}{2} \quad \theta_{0,\frac{1}{2}}^2(2\tau) = \sqrt{\theta_{0,0}^2(\tau)\theta_{0,\frac{1}{2}}^2(\tau)} \]

AGM for \(a, b \in \mathbb{C} \)

- \(a_0 = a, \ b_0 = b \)
- \(a_{n+1} = \frac{a_n + b_n}{2} \)
- \(b_{n+1} = \sqrt{a_n b_n} \), closer to \(a_{n+1} \) than to its opposite.
- **converges quadratically** towards a common limit \(\text{AGM}(a, b) \)

Evaluated in time \(O(M(n) \log n) \) at precision \(n \).

For \(\tau \in \text{some region of } \mathcal{H}_1 \),

\[\left\{ \left(\theta_{0,0}^2, \theta_{0,\frac{1}{2}}^2 \right)(2^n \tau) \right\} \]

is the AGM sequence starting from \(\tau \) (whence the limit is 1).
Theta quotients

The AGM is an homogeneous bivariate function on \mathbb{C}. We define:

$$\text{AGM}(a, b) = a \cdot \text{AGM}(1, b/a) =: a \cdot M(b/a)$$

- $k'(\tau) = \left(\frac{\theta_{0, \frac{1}{2}}(\tau)}{\theta_{0, 0}(\tau)}\right)^2$
- $k(\tau) = \left(\frac{\theta_{\frac{1}{2}, 0}(\tau)}{\theta_{0, 0}(\tau)}\right)^2$
- $k^2(\tau) + k'^2(\tau) = 1$
- $j = 256\frac{(1-k'^2+k'^4)^3}{k'^4(1-k'^2)^2}$

j can be computed from k'
Newton iterations

\[M(k'(\tau)) = \frac{1}{\theta_{0,0}^2(\tau)}, \]
\[M(k(\tau)) = M(k'(-1/\tau)) = \frac{1}{\theta_{0,0}^2(-1/\tau)} = \frac{i}{\tau \theta_{0,0}^2(\tau)}, \]
\[k^2(\tau) + k'^2(\tau) = 1 \]
\[f_\tau(x) = iM(x) - \tau M(\sqrt{1 - x^2}) \]
\[f_\tau(k'(\tau)) = 0 \]

\[x_{n+1} \leftarrow x_n - \frac{f_\tau(x_n)}{f'_\tau(x_n)} \]

converges quadratically towards \(k'(\tau) \)

Evaluated in time \(O(M(n) \log n) \) at precision \(n \).

Caution

Care must be taken to consider \(\tau \) for which the homogeneous AGM converges to 1 (which gives \(M(k'(\tau)) = \frac{1}{\theta_{0,0}^2(\tau)} \)).
Plan

Introduction

CM in genus 1

Genus 2 prerequisites

Algorithm

Computer experiments
Generalization: Genus 2 CM

Let \(K \) be a CM field.

\[
\begin{align*}
K & \quad 2, \text{ totally imaginary} \\
K_0 & \quad g = 2, \text{ totally real} \\
\mathbb{Q} &
\end{align*}
\]

Workplan

- Enumerate principally polarized abelian varieties (PPAVs) with complex multiplication by \(\mathcal{O}_K \) (\(\text{End} = \mathcal{O}_K \)).
- Compute their invariants in \(\mathbb{C} \) (\(g = 2 \), three invariants).
- Compute their defining polynomials: Igusa class polynomials.
- Recognize these (triples of) polynomials in \(\mathbb{Q}[x] \).

The larger the discriminants, the bigger the polynomials.
Various approaches

- Complex analytic method: Spallek, Weng, Streng.
- p-adic: Gaudry, Houtmann, Kohel, Ritzenthaler, Weng, Carls, Lubicz.
- CRT: Eisentrager, Lauter, Bröker, Gruenewald, Robert.

Focus on the **complex analytic method**

- Streng: complete algorithm, and complexity upper bounds.
- Improve on keypoint: *computation of invariants* analytically.
- Recognize irreducible factors of class polynomials.
Preferred defining equation for K: $x^4 + Ax^2 + B$, with $A^2 - 4B = \Box \times \text{disc}(K_0)$.

Let $D = \text{disc}(K_0)$, and A minimal \Rightarrow invariants $[D, A, B]$.

The CM field K may be either:

- Galois with $\text{Gal}(K/\mathbb{Q}) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$; (degenerates to $g = 1$).
- Galois with $\text{Gal}(K/\mathbb{Q}) = \mathbb{Z}/4\mathbb{Z}$; (cyclic case, rare).
- non-Galois, with $\text{Gal}(L/\mathbb{Q}) = D_4 = \mathbb{Z}/4\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$; (typical).

Study of the Galois structure reveals:

- two non-conjugate pairs of embeddings $K \hookrightarrow \mathbb{C}$;
- the reflex field K^r of K, which is another CM field.
(2/5): Period matrices

Siegel upper-half space \mathcal{H}_2: symm. + pos. def. imag. part.

- $\text{Sp}_4(\mathbb{Z})$ acts on \mathcal{H}_2: $\begin{pmatrix} A & B \\ C & D \end{pmatrix}.\tau = (A\tau + B)(C\tau + D)^{-1}$.

- \mathcal{F}_2: fundamental domain for $\text{Sp}_4 \backslash \mathcal{H}_2$.

PPAV = \mathbb{Z}-lattice in \mathbb{C}^2 + Riemann form \rightarrow period matrix $\tau = \begin{pmatrix} \tau_1 & \tau_3 \\ \tau_3 & \tau_2 \end{pmatrix} \in \mathcal{H}_2$.

Computation of class polynomials for abelian surfaces
Theta constants for \(\mathbf{a} = (a_1, a_2), \mathbf{b} = (b_1, b_2), a_i, b_i \in \{0, 1/2\} \):

\[
\theta_{[\mathbf{a}, \mathbf{b}]}(\tau) = \sum_{\mathbf{n} \in \mathbb{Z}^2} \exp \left(i\pi \left[(\mathbf{n} + \mathbf{a})\tau (\mathbf{n} + \mathbf{a})^t + 2(\mathbf{n} + \mathbf{a})\mathbf{b}^t \right] \right).
\]

- Numbering (Dupont) \(\theta_{[\mathbf{a}, \mathbf{b}]} = \theta_{2b_1+4b_2+8a_1+16a_2} \).
- 10 even theta constants: \(\theta_{0,1,2,3,4,6,8,9,12,15} \), other are 0.

Theta constants are used to compute *invariants*.

Duplication formulae

We have unambiguous formulae:

\[
4\text{-uple} \left(\theta_{0,1,2,3}(\tau/2) \right) \rightarrow 10\text{-uple} \left(\theta_{0,1,2,3,4,6,8,9,12,15}^2(\tau) \right).
\]
The moduli space of 2-dimensional PPAVs has dimension 3. **Igusa invariants** can be computed from $\theta_{0,1,2,3,4,6,8,9,12,15}$.

- Several invariant sets floating around.
- Some “smaller” than others.
- Define (i_1, i_2, i_3) as those proposed by Streng.

\begin{align*}
i_1 &= \frac{l_4(l_2 l_4 - 3 l_6)}{2 l_{10}} \quad i_2 = \frac{l_2 l_4^2}{l_{10}} \quad i_3 = \frac{l_4^5}{l_{10}^2}.
\end{align*}
Consider $S(K)$ the set of PPAVs with CM by \mathcal{O}_K.
The set $\{i_1(\tau), \tau \in S(K)\}$ is defined over \mathbb{Q}.

- Minimal polynomials H_1, H_2, H_3 in $\mathbb{Q}[x]$.
- Better: $\{i_{1,2,3}(\tau)\}$ a 0-dimensional set in \mathbb{C}^3, defined over \mathbb{Q}.
- Triangular (Hecke) representation: H_1, \hat{H}_2, \hat{H}_3, with:

$$\hat{H}_2(i_1) = H_1'(i_1)i_2.$$

The triple $(H_1, \hat{H}_2, \hat{H}_3)$ is our target.

Obstacles:

- Large degree, (very) large coefficients.
- Need large precision for complex invariants, so that rational polynomials may be recognized.
Plan

Introduction

CM in genus 1

Genus 2 prerequisites

Algorithm

Computer experiments

Computation of class polynomials for abelian surfaces
Workplan (again)

1. List period matrices
2. Compute θ-constants
3. Compute class polynomials
4. Compute a curve example
Plan

Algorithm

Principally polarized abelian varieties with CM by \mathcal{O}_K
Computing complex invariants
From θ-constants to class polynomials
Let \mathfrak{a} be an \mathcal{O}_K-ideal with:

- $(\mathfrak{a}\overline{\mathfrak{a}}\mathcal{D}_K/\mathbb{Q})^{-1} = (\xi)$,
- $\Phi(\xi) \in i\mathbb{R}^+*$ for some CM-type Φ.

Such \mathfrak{a}'s yield period matrices $\Omega \in \mathcal{M}_2(K^r) \hookrightarrow \mathcal{H}_2 \twoheadrightarrow \mathcal{F}_2$.

Conversely, all PPAVs with CM by \mathcal{O}_K are obtained this way.

Easy plan: enumerate representatives of $\text{Cl}(\mathcal{O}_K)$ to find both.

Way more satisfactory: enumerate only irreducible components, working with Shimura group $\mathcal{C}(K)$ and the reflex typenorm map.
Plan

Algorithm

Principally polarized abelian varieties with CM by \mathcal{O}_K

Computing complex invariants

From θ-constants to class polynomials
Computing theta constants

Input: $\tau \in \mathcal{F}_2$, whose entries are algebraic numbers (in K^r).

Goal: theta constants $\theta_{0,1,2,3,4,6,8,9,12,15}$ (and later $i_{1,2,3}$).

Large precision N needed to successful reconstruct $H_1, \hat{H}_2, \hat{H}_3$.

Upper bounds on N exist. Difficult to make it tight.

Two strategies for computing θ's from τ.

- q-expansion of $\theta_{0,1,2,3}(\tau/2)$, letting $q_k = \exp(i\pi\tau_k/2)$:

 $$
 \theta_{4b_1+2b_2}(\tau/2) = \sum_{m,n \in \mathbb{Z}} (-1)^{2(mb_1+nb_2)} q_0^{m^2} q_1^{2mn} q_2^{n^2}.
 $$

 Summation over $O(N)$ terms, can be done in $O(NM(N))$.
 Finish with duplication formulae.

- Faster: Newton lifting.
Dupont defines a **Borchardt sequence** as \((x_n, y_n, z_n, t_n) \in \mathbb{C}^4\):

\[
\begin{align*}
 x_{n+1} &= \frac{1}{4}(x_n + y_n + z_n + t_n), \\
 y_{n+1} &= \frac{1}{2}(\sqrt{x_n}\sqrt{y_n} + \sqrt{z_n}\sqrt{t_n}), \\
 z_{n+1} &= \frac{1}{2}(\sqrt{x_n}\sqrt{z_n} + \sqrt{y_n}\sqrt{t_n}), \\
 t_{n+1} &= \frac{1}{2}(\sqrt{x_n}\sqrt{t_n} + \sqrt{y_n}\sqrt{z_n}).
\end{align*}
\]

- **Choice of** \(\sqrt{\cdot}\) **at each iteration.**
- **Starting** \((x_0, y_0, z_0, t_0)\): set of possible limits \(B_2(x_0, y_0, z_0, t_0)\).
- **Forcing** **consistent** choice of roots: \(B_2(x, y, z, t)\) **well defined.**

Let \(\mathcal{U} = \{\tau \in \mathcal{H}_2, \ B_2(\theta_{0,1,2,3}^2(\tau)) = 1\}\). At least \(\mathcal{F}_2 \subset \mathcal{U}\).

Homogeneity

\[
B_2(\lambda x, \lambda y, \lambda z, \lambda t) = \lambda B_2(x, y, z, t).
\]
Exploiting action of $\text{Sp}_4(\mathbb{Z})$

Action of Γ_2 on the theta constants

Let $\tau \in \mathcal{H}_2$. Then

\[
\begin{align*}
\left(\theta_j^2((\mathcal{J}\mathcal{M}_1)^2 \tau) \right)_{j=0,1,2,3} &= -i\tau_1 \left(\theta_j^2(\tau) \right)_{j=4,0,6,2}, \\
\left(\theta_j^2((\mathcal{J}\mathcal{M}_2)^2 \tau) \right)_{j=0,1,2,3} &= -i\tau_2 \left(\theta_j^2(\tau) \right)_{j=8,9,0,1}, \\
\left(\theta_j^2((\mathcal{J}\mathcal{M}_3)^2 \tau) \right)_{j=0,1,2,3} &= (\tau_3^2 - \tau_1\tau_2) \left(\theta_j^2(\tau) \right)_{j=0,8,4,12}.
\end{align*}
\]

Important: if $(\mathcal{J}\mathcal{M}_1)^2.\tau \in \mathcal{U}$, then $B_2(\theta_{4,0,6,2}^2(\tau)) = \frac{1}{-i\tau_1}$.

Conjecture

For $\tau \in \mathcal{F}_2$, $i \in \{0, 1, 2\}$: $(\mathcal{J}\mathcal{M}_i)^2.(\tau) \in \mathcal{U}$.
\(\theta_{0,1,2,3}(\tau/2) \) as solutions of an equation

Input: \(\tau \in \mathcal{F}_2 \) known (to any precision we like).
Initially: low-precision \(\theta_{0,1,2,3}(\tau/2) \).

- Use duplication formulae to deduce \(\theta_{0,1,2,3,4,6,8,9,12,15}^2(\tau) \).
- Use \(B_2 \) computations to deduce coefficients of \(\tau \).
- The accurate \(x_{0,1,2,3} = \theta_{0,1,2,3}(\tau/2) \) are solutions to

\[
\text{complicated-} B_2 \text{-calculation}(x_{0,1,2,3}) = \tau.
\]

Newton: use this feedback loop to find \(\theta_{0,1,2,3}(\tau/2) \).

- Keeping track of derivatives is messy.
- A secant method also works, and is actually more convenient.
Computation of $\theta_{0,1,2,3}^2$ by Newton lifting

Convergence of the Newton iteration is quadratic:
- each iteration (almost) doubles the precision.
- it is possible to “lift higher” without restarting from scratch.

Complexity of the algorithm: quasi-linear $O(M(N) \log N)$.
Performance measurements

\[\tau = \left(\frac{-1+5i}{2}, \frac{i}{6}, \frac{-1+7i}{2} \right) \]
\[\tau = \left(\frac{2+10i}{7}, \frac{1+2i}{6}, \frac{1+2i}{10} + 8i \right) \]

<table>
<thead>
<tr>
<th>bits</th>
<th>(\text{MAGMA})</th>
<th>(\text{cmh-naive})</th>
<th>(\text{cmh-Newton})</th>
<th>(\text{MAGMA})</th>
<th>(\text{cmh-naive})</th>
<th>(\text{cmh-Newton})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^{11})</td>
<td>0.46</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>(2^{12})</td>
<td>3.4</td>
<td>0.04</td>
<td>0.17</td>
<td>0.04</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>(2^{13})</td>
<td>26</td>
<td>0.08</td>
<td>1.1</td>
<td>0.20</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>(2^{14})</td>
<td>210</td>
<td>0.24</td>
<td>8.2</td>
<td>1.0</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>(2^{15})</td>
<td>1700</td>
<td>0.69</td>
<td>60</td>
<td>5.2</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>(2^{16})</td>
<td>6.4</td>
<td>2.0</td>
<td>430</td>
<td>27</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>(2^{17})</td>
<td>32</td>
<td>5.7</td>
<td>3100</td>
<td>130</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>(2^{18})</td>
<td>160</td>
<td>16</td>
<td>720</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2^{19})</td>
<td>770</td>
<td>39</td>
<td>3100</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2^{20})</td>
<td>3200</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2^{21})</td>
<td></td>
<td>240</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2^{22})</td>
<td></td>
<td>560</td>
<td>530</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2^{23})</td>
<td></td>
<td>1400</td>
<td>1300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2^{24})</td>
<td></td>
<td>3200</td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2^{25})</td>
<td></td>
<td>7600</td>
<td>7100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2^{26})</td>
<td></td>
<td>16000</td>
<td>16000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table:

Computation of \(\theta_0(\tau) \) (Intel i5-2500, 3.3GHz; \text{MAGMA}-2.19.4; \text{cmh}-1.0)
Plan

Algorithm

Principally polarized abelian varieties with CM by \mathcal{O}_K
Computing complex invariants
From θ-constants to class polynomials
Reconstruction

\(\theta \)-constants \(\rightsquigarrow \) three Igusa invariants : trivial.

From these, we compute:

- **Product trees** yield \(H_1, \hat{H}_2, \hat{H}_3 \in \mathbb{R}[x] \).
- Their coefficients belong to the quadratic real \(K_{r}^\prime \).

Recognize \(x \in \mathbb{R} \) as short vector in:

\[
\begin{pmatrix}
1 & \kappa_1 & 0 & 0 \\
\sqrt{D'} & 0 & \kappa_2 & 0 \\
x & 0 & 0 & \kappa_3
\end{pmatrix}
\]

Success criterion: **smooth denominators**.

- Denominators can be predicted to some extent (not done).
- As long as reconstruction fails, keep on lifting \(\theta_{0,1,2,3}^2(\tau) \).
 At most we’re lifting twice higher than what we would need if
 we had sharp bounds on denominators.
Plan

Introduction
CM in genus 1
Genus 2 prerequisites
Algorithm
Computer experiments
Implementation

- Number theoretic computations: \(\mathcal{C}(K) \), (reduced) period matrices
 - Pari/GP
 - negligible effort
- Evaluation of theta and invariants
 - C
 - Libraries: GMP, MPFR, MPC
 - MPI for parallelisation
- Polynomial operations
 - MPFRGCX
 - MPI for (partial) parallelisation

Computation of class polynomials for abelian surfaces
Software

http://cmh.gforge.inria.fr/

- GPLv3+
- ./configure --with-gmp=... ... --enable-mpi
 make install
- Period matrices: cmh-classpol.sh -p 35 65
- Class polynomials: cmh-classpol.sh -f 35 65
- Curve for checking: cmh-classpol.sh -c 35 65
- Using MPI:
 mpirun -n 4 cm2-mpi -i 965_35_65.in -o H123.pol
Two baby examples

\[
X^4 + 144X^2 + 3500 = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}
\]

<table>
<thead>
<tr>
<th>Step</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation</td>
<td>0.2</td>
</tr>
<tr>
<td>Base, 2000 bits</td>
<td>0.6</td>
</tr>
<tr>
<td>Lift, 3984 bits</td>
<td>0.8</td>
</tr>
<tr>
<td>Lift, 7944 bits</td>
<td>2.1</td>
</tr>
<tr>
<td>Reconstruction</td>
<td>0.1</td>
</tr>
<tr>
<td>Lift, 15846 bits</td>
<td>6.2</td>
</tr>
</tbody>
</table>

\[
H_1, \hat{H}_2, \hat{H}_3 \in \mathbb{C}[X]
\]

\[
H_1, \hat{H}_2, \hat{H}_3 \in K_0^r[X]
\]

<table>
<thead>
<tr>
<th>Step</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check</td>
<td>0.8</td>
</tr>
<tr>
<td>Total (incl. I/O)</td>
<td>12.4</td>
</tr>
</tbody>
</table>

\[
X^4 + 134X^2 + 712 = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/60\mathbb{Z}
\]

<table>
<thead>
<tr>
<th>Step</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation</td>
<td>0.3</td>
</tr>
<tr>
<td>Base, 2000 bits</td>
<td>1.1</td>
</tr>
<tr>
<td>Lift, 3988 bits</td>
<td>1.6</td>
</tr>
<tr>
<td>Lift, 7958 bits</td>
<td>4.4</td>
</tr>
<tr>
<td>Lift, 15886 bits</td>
<td>13.1</td>
</tr>
<tr>
<td>Reconstruction</td>
<td>0.2</td>
</tr>
<tr>
<td>Lift, 31744 bits</td>
<td>38.7</td>
</tr>
</tbody>
</table>

\[
H_1, \hat{H}_2, \hat{H}_3 \in \mathbb{C}[X]
\]

\[
H_1, \hat{H}_2, \hat{H}_3 \in K_0^r[X]
\]

<table>
<thead>
<tr>
<th>Step</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check</td>
<td>0.7</td>
</tr>
<tr>
<td>Total (incl. I/O)</td>
<td>69.2</td>
</tr>
</tbody>
</table>

Timings in seconds for two examples (Intel i5-2500, 3.3GHz).
One jumbo experiment

How far can we go?

- \[K = \mathbb{Q}[X]/(X^4 + 1357X^2 + 3299), \quad K_0 = \mathbb{Q}(\sqrt{1828253}). \]
- \(\mathfrak{c} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5004\mathbb{Z}; \quad \mathfrak{c} = 20016. \)

Computation breakdown:

- 10 008 symbolic period matrices: \text{minutes}.
- Lift up to 2 000 000 bits: \text{hours} (640 cores).
- Lift up to 8 000 000 bits: \text{3 days} (160 cores, more RAM).
- Computing polynomials: \text{3 days} (24 cores).
- Recognizing coefficients: \text{2 days} (480 cores).
- Disk size for class polynomial triple: \text{90 GB}.

\(\text{lc}(H_1) \) has 8 884 distinct prime factors, largest is 1 506 803 839.
A curve

\[
\pi = 2587584949432298\alpha^3 + 598749326588980\alpha^2 +
3489110163205995872\alpha - 17626367557116479015,
\]
\[
p^2 = \text{Norm}(\pi) = (2^{128} + 5399685)^2,
\]
\[
y^2 = 329105434147215182703081697774190891717x^5 +
219357712933218699650940059644263138156x^4 +
94773520721686083389380651745963315116x^3 +
13612280714446818104030347122109215819x^2 +
224591198286067822213326173663420732292x +
62350272396394045327709463978232206155,
\]
\[
\chi = t^4 - s_1 t^3 + s_2 t^2 - ps_1 t + p^2, \quad (s_1 = -72130475900828407780,
\]
\[
s_2 = 1980610692179048658315492237655054733182),
\]
\[
\#J = (p^2 + 1) - (p + 1)s_1 + s_2 = 2^4 \cdot 3433 \cdot p_{73}.
\]
Conclusion

- Complex analytic CM construction is effective in genus 2, not just for ridiculously small examples;
- We don’t meet the sky-large class number requirements though;
- Computing θ-constants is fast. Never say it’s a bottleneck. There’s available software!

Further improvements:

- Higher genus?
- Prove the conjectures? (note: there are trivial workarounds anyway).
- Improve on our recognition step, which is too slow.
- Compute $\theta(\tau, z)$, not just $\theta(\tau, 0)$.
- Improve the CRT method to make it as effective.