
Computation of class polynomials for
abelian surfaces

A. Enge1, E. Thomé2

1 INRIA/LFANT, Bordeaux ; 2 INRIA/CARAMEL, Nancy.

 /* EPI CARAMEL */ C,A,
 /* Cryptologie, Arithmétique : */ R,a,
 /* Matériel et Logiciel */ M,E,
 L,i=
 5,e,
 d[5],Q[999]={0};main(N){for
 (;i--;e=scanf("%" "d",d+i));for(A =*d;
 ++i<A ;++Q[i*i% A],R= i[Q]?
R:i); for(;i --;) for(M =A;M
--;N +=!M*Q [E%A],e+= Q[(A
+E*E- R*L* L%A) %A]) for(
 E=i,L=M,a=4;a;C= i*E+R*M*L,L=(M*E +i*L)
 %A,E=C%A+a --[d]);printf ("%d"
 "\n",
 (e+N*
 N)/2
 /* cc caramel.c; echo f3 f2 f1 f0 p | ./a.out */ -A);}

Oct. 9th, 2014

Computation of class polynomials for abelian surfaces 1/45

Plan

Introduction

CM in genus 1

Genus 2 prerequisites

Algorithm

Computer experiments

Computation of class polynomials for abelian surfaces 2/45

Motivations
Algebraic curves over finite fields are nice groups for cryptography.

Desired features: Compact representation of elements.
Fast arithmetic.
Hard discrete log problem.
⇒Prefer almost prime group order.

Typical candidates.

Elliptic curves (g = 1) Studied for crypto for 25+ years.
Efficient, secure.

(Jacobians of) genus 2 curves.
Smaller base field for comparable group size.
Almost similar efficiency due to recent progress.
DL is hard as well.

Higher genus: DL is comparatively easier. Avoided.

Computation of class polynomials for abelian surfaces 3/45

Motivations
Algebraic curves over finite fields are nice groups for cryptography.

Desired features: Compact representation of elements.
Fast arithmetic.
Hard discrete log problem.
⇒Prefer almost prime group order.

Typical candidates.

Elliptic curves (g = 1) Studied for crypto for 25+ years.
Efficient, secure.

(Jacobians of) genus 2 curves.
Smaller base field for comparable group size.
Almost similar efficiency due to recent progress.
DL is hard as well.

Higher genus: DL is comparatively easier. Avoided.
Computation of class polynomials for abelian surfaces 3/45

The cardinality issue

Strategy 1. Direct point counting.

Pick a curve at random (or select based on arithmetic properties).
Compute #E (Fp) (or # JacC(Fp)).

Polynomial. Very fast for small characteristic (p-adic).
g = 1: fast enough for crypto purposes (`-adic, SEA).
g = 2: now also possible, with some effort (SEA-like).

Strategy 2

Select some family of curves for easy point counting. Obtain an
instance (Fp,E (Fp),#E (Fp)).

The CM method is such a strategy.

Computation of class polynomials for abelian surfaces 4/45

Plan

Introduction

CM in genus 1

Genus 2 prerequisites

Algorithm

Computer experiments

Computation of class polynomials for abelian surfaces 5/45

Elliptic curves

Elliptic curves

The moduli space of elliptic curves has dimension 1.
It is parameterised by the j-invariant.
Example: y2 = x3 + ax + b j = 1728 4a3

4a3+27b2 .

Endomorphism rings of elliptic curves classified by Deuring.

In char. 0, either Z or an order in Q(
√

D), for some D < 0.
Over finite fields, ordinary: cannot be Z.
Any ordinary curve over Fp is the reduction of a curve over C
with same End(E).

Computation of class polynomials for abelian surfaces 6/45

Strategy

Pick an imaginary quadratic field K = Q(
√

d); let
OK = Z + ωZ.
Let O = Z + f ωZ be an order in OK , disc(O) = D = f 2d .

Aim at E mod some (yet unknown) p, with End(E) = O.

First list E over C with CM by O.
j-invariants: roots of Hilbert class polynomial HD(x) ∈ Z[x].
Appropriate p have p = Norm(π ∈ OK , Weil number).
Roots of HD mod p are j-invariants of their reductions.
Those have #E (Fp) = p + 1± Tr π.

Computation of class polynomials for abelian surfaces 7/45

Effective complex multiplication

Given D, what are the curves over C with CM by O?
Take a = (α1, α2) ideal of O with =(τ = α2

α1
) > 0.

C/a has CM by O.
j(a) := j(τ) depends only on the ideal class of a.
j is a modular function for the action of SL2(Z) onH1.
Curve with invariant j(a) has CM by O,
There are h = # Cl(O) such curves (faithful action).

Computation of class polynomials for abelian surfaces 8/45

Main algorithm

Fix D < 0 and Weil number π.
Enumerate the h ideal classes of OD:(

Ai ,
−Bi +

√
D

2

)

Compute over C the class polynomial

H(X) =
h∏

i=1

(
X − j

(
−Bi +

√
D

2Ai

))
∈ Z[X]

Find a root j̄ modulo p = Normπ.
Curve with that invariant modp has #E = p + 1± Tr π.

Computation of class polynomials for abelian surfaces 9/45

Complexity

Size of H
Degree h ∈ Õ

(√
|D|
)

;

Coefficients with Õ
(√
|D|
)

digits ;
Total size Õ (|D|)

Evaluation of j : Õ
(√
|D|
)

Precision: Õ
(√
|D|
)

digits ;
Multievaluation of the “polynomial” j ;
Arithmetic-geometric mean.

Total complexity
Õ (|D|) — quasi-linear in the output size.

Computation of class polynomials for abelian surfaces 10/45

Implementation

Record with complex analytic CM (Enge 2009):

D = −2 093 236 031;
h = 100 000;
Precision 264 727 bits;
260 000 seconds = 3 days CPU time;
5 GB;
benefited from using alternative class invariants.

Free, available software, based notably on MPFR/MPC/MPFRCX.

Computation of class polynomials for abelian surfaces 11/45

Further algorithms

See Belding–Bröker–Enge–Lauter 2008 and further works for
comparison of other methods.

p-adic lift.
Chinese remaindering (CRT):

Enumerate CM curves over Fp, compute H mod p;
Lift to Z or directly to Z/PZ.

CRT has the edge for records (Enge–Sutherland 2010):
D = −1 000 000 013 079 299;
h = 10 034 174;
P ≈ 2254;
Precision 21 533 832 bits;
438 709 primes of ≤ 53 bits;
200 days CPU time;
Size mod P ≈ 200 MB;
Size over Z ≈ 2 PB (not computed explicitly).

Computation of class polynomials for abelian surfaces 12/45

AGM

Dupont: One can evaluate j at precision n in time

O(M(n) log n) = Õ (n).

Idea of the algorithm

Newton iterations on a function built with the
arithmetic-geometric mean (AGM).
j(τ) is a zero of this function.

Computation of class polynomials for abelian surfaces 13/45

Genus 1 Theta constants — definition

a, b ∈ 1
2Z/Z; q = e2πiτ

θa,b(τ) =
∑
n∈Z

e(2πi)(n+a)τ(n+a)/2+(n+a)b = e2πiab ∑
n∈Z

(e2πib)nq(n+a)2/2

θ0,0(τ) =
∑
n∈Z

qn2/2 = 1 + 2q1/2 + 2q2 + 2q9/2 + . . .

θ0, 1
2
(τ) =

∑
n∈Z

(−1)nqn2/2 = 1− 2q1/2 + 2q2 − 2q9/2 + . . .

θ 1
2 ,0

(τ) =
∑
n∈Z

q(2n+1)2/8 = q1/8
(

1 + 2q + 2q3 + . . .
)

θ 1
2 ,

1
2
(τ) = 0

Computation of class polynomials for abelian surfaces 14/45

Theta constants — duplication formulæ

θ2
0,0(2τ) =

θ2
0,0(τ) + θ2

0, 1
2
(τ)

2 θ2
0, 1

2
(2τ) =

√
θ2

0,0(τ)θ2
0, 1

2
(τ)

AGM for a, b ∈ C
a0 = a, b0 = b
an+1 = an+bn

2
bn+1 =

√
anbn, closer to an+1 than to its opposite.

converges quadratically towards a common limit AGM(a, b)
Evaluated in time O(M(n) log n) at precision n.

For τ ∈ some region of H1,{(
θ2

0,0, θ
2
0, 1

2

)
(2nτ)

}
is the AGM sequence starting from τ (whence the limit is 1).

Computation of class polynomials for abelian surfaces 15/45

AGM

θ2
0,0(2τ) =

θ2
0,0(τ) + θ2

0, 1
2
(τ)

2 θ2
0, 1

2
(2τ) =

√
θ2

0,0(τ)θ2
0, 1

2
(τ)

AGM for a, b ∈ C
a0 = a, b0 = b
an+1 = an+bn

2
bn+1 =

√
anbn, closer to an+1 than to its opposite.

converges quadratically towards a common limit AGM(a, b)
Evaluated in time O(M(n) log n) at precision n.

For τ ∈ some region of H1,{(
θ2

0,0, θ
2
0, 1

2

)
(2nτ)

}
is the AGM sequence starting from τ (whence the limit is 1).

Computation of class polynomials for abelian surfaces 15/45

Theta quotients

The AGM is an homogeneous bivariate function on C. We define:

AGM(a, b) = a · AGM(1, b/a) =: a ·M(b/a)

k ′(τ) =
(
θ0, 1

2
(τ)

θ0,0(τ)

)2

k(τ) =
(
θ 1

2 ,0
(τ)

θ0,0(τ)

)2

k2(τ) + k ′2(τ) = 1

j = 256 (1−k′2+k′4)3

k′4(1−k′2)2

j can be computed from k ′

Computation of class polynomials for abelian surfaces 16/45

Newton iterations
M(k ′(τ)) = 1

θ2
0,0(τ) ,

M(k(τ)) = M(k ′(−1/τ)) = 1
θ2

0,0(−1/τ) = i
τθ2

0,0(τ) ,
k2(τ) + k ′2(τ) = 1
fτ (x) = iM(x)− τM(

√
1− x2)

fτ (k ′(τ)) = 0

xn+1 ← xn −
fτ (xn)
f ′τ (xn)

converges quadratically towards k ′(τ)

Evaluated in time O(M(n) log n) at precision n.

Caution
Care must be taken to consider τ for which the homogeneous
AGM converges to 1 (which gives M(k ′(τ)) = 1

θ2
0,0(τ)).

Computation of class polynomials for abelian surfaces 17/45

Plan

Introduction

CM in genus 1

Genus 2 prerequisites

Algorithm

Computer experiments

Computation of class polynomials for abelian surfaces 18/45

Generalization: Genus 2 CM
Let K be a CM field. K

K0

Q

2, totally imaginary

g = 2, totally real

Workplan

Enumerate principally polarized abelian varieties (PPAVs) with
complex multiplication by OK (End = OK).
Compute their invariants in C (g = 2, three invariants).
Compute their defining polynomials: Igusa class polynomials.
Recognize these (triples of) polynomials in Q[x].

The larger the discriminants, the bigger the polynomials.
Computation of class polynomials for abelian surfaces 19/45

Various approaches

Complex analytic method: Spallek, Weng, Streng.
p-adic: Gaudry, Houtmann, Kohel, Ritzenthaler, Weng, Carls,
Lubicz.
CRT: Eisentrager, Lauter, Bröker, Gruenewald, Robert.

Focus on the complex analytic method

Streng: complete algorithm, and complexity upper bounds.
Improve on keypoint: computation of invariants analytically.
Recognize irreducible factors of class polynomials.

Computation of class polynomials for abelian surfaces 20/45

(1/5): CM fields

K

K0

Q

Preferred defining equation for K : x4 + Ax2 + B, with
A2 − 4B = �× disc(K0).
Let D = disc(K0), and A minimal ⇒ invariants [D,A,B].

The CM field K may be either:

Galois with Gal(K/Q) =Z/2Z×Z/2Z; (degenerates to g = 1).
Galois with Gal(K/Q) =Z/4Z; (cyclic case, rare).
non-Galois, with Gal(L/Q) = D4 =Z/4Z oZ/2Z; (typical).
Study of the Galois structure reveals:

two non-conjugate pairs of embeddings K ↪→ C;
the reflex field K r of K , which is another CM field.

Computation of class polynomials for abelian surfaces 21/45

(2/5): Period matrices

Siegel upper-half space H2: symm. + pos. def. imag. part.

Sp4(Z) acts on H2:
(

A B
C D

)
.τ = (Aτ + B)(Cτ + D)−1.

F2: fundamental domain for Sp4 \H2.

PPAV= Z-lattice in C2

+Riemann form → period matrix τ =
(
τ1 τ3
τ3 τ2

)
∈ H2.

Computation of class polynomials for abelian surfaces 22/45

(3/5): θ-constants in genus 2

Theta constants for a = (a1, a2), b = (b1, b2), ai , bi ∈ {0, 1/2}:

θ[a,b](τ) =
∑

n∈Z2

exp
(
iπ
[
(n + a)τ(n + a)t + 2(n + a)bt]) .

Numbering (Dupont) θ[a,b] = θ2b1+4b2+8a1+16a2 .
10 even theta constants: θ0,1,2,3,4,6,8,9,12,15, other are 0.

Theta constants are used to compute invariants.

Duplication formulae

We have unambiguous formulae:
4-uple (θ0,1,2,3(τ/2))→ 10-uple (θ2

0,1,2,3,4,6,8,9,12,15(τ)).

Computation of class polynomials for abelian surfaces 23/45

(4/5): invariants of genus 2 curves

The moduli space of 2-dimensional PPAVs has dimension 3.
Igusa invariants can be computed from θ0,1,2,3,4,6,8,9,12,15.

Several invariant sets floating around.
Some “smaller” than others.
Define (i1, i2, i3) as those proposed by Streng.

i1 = I4(I2I4 − 3I6)
2I10

i2 = I2I2
4

I10
i3 = I5

4
I2
10
.

Computation of class polynomials for abelian surfaces 24/45

(5/5): Class polynomials

Consider S(K) the set of PPAVs with CM by OK .
The set {i1(τ), τ ∈ S(K)} is defined over Q.

Minimal polynomials H1, H2, H3 in Q[x].
Better: {i1,2,3(τ)} a 0-dimensional set in C3, defined over Q.
Triangular (Hecke) representation: H1, Ĥ2, Ĥ3, with:

Ĥ2(i1) = H ′1(i1)i2.

The triple (H1, Ĥ2, Ĥ3) is our target.
Obstacles:

Large degree, (very) large coefficients.
Need large precision for complex invariants, so that rational
polynomials may be recognized.

Computation of class polynomials for abelian surfaces 25/45

Plan

Introduction

CM in genus 1

Genus 2 prerequisites

Algorithm

Computer experiments

Computation of class polynomials for abelian surfaces 26/45

Workplan (again)

List period matrices

Compute θ-constants

Compute class polynomials

Compute a curve example

Computation of class polynomials for abelian surfaces 27/45

Plan

Algorithm
Principally polarized abelian varieties with CM by OK

Computing complex invariants
From θ-constants to class polynomials

Computation of class polynomials for abelian surfaces 28/45

PPAVs with CM by OK

OK -ideals to represent PPAVs.

Let a be an OK -ideal with:

(aāDK/Q)−1 = (ξ),
Φ(ξ) ∈ iR+∗ for some CM-type Φ.

Such a’s yield period matrices Ω ∈M2(K r) ↪→ H2 � F2.
Conversely, all PPAVs with CM by OK are obtained this way.

Easy plan: enumerate representatives of Cl(OK) to find both.
Way more satisfactory: enumerate only irreducible components,
working with Shimura group C(K) and the reflex typenorm map.

Computation of class polynomials for abelian surfaces 29/45

Plan

Algorithm
Principally polarized abelian varieties with CM by OK

Computing complex invariants
From θ-constants to class polynomials

Computation of class polynomials for abelian surfaces 30/45

Computing theta constants

Input: τ ∈ F2, whose entries are algebraic numbers (in K r).
Goal: theta constants θ0,1,2,3,4,6,8,9,12,15 (and later i1,2,3).
Large precision N needed to successful reconstruct H1, Ĥ2, Ĥ3.
Upper bounds on N exist. Difficult to make it tight.
Two strategies for computing θ’s from τ .

q-expansion of θ0,1,2,3(τ/2), letting qk = exp(iπτk/2):

θ4b1+2b2(τ/2) =
∑

m,n∈Z
(−1)2(mb1+nb2)qm2

0 q2mn
1 qn2

2 .

Summation over O(N) terms, can be done in O(NM(N)).
Finish with duplication formulae.
Faster: Newton lifting.

Computation of class polynomials for abelian surfaces 31/45

Borchardt mean
Dupont defines a Borchardt sequence as ((xn, yn, zn, tn) ∈ C4):

xn+1 = 1
4(xn + yn + zn + tn), yn+1 = 1

2(
√

xn
√yn +

√
zn
√

tn),

zn+1 = 1
2(
√

xn
√

zn +√yn
√

tn), tn+1 = 1
2(
√

xn
√

tn +√yn
√

zn).

Choice of √ at each iteration.
Starting (x0, y0, z0, t0): set of possible limits B2(x0, y0, z0, t0).
Forcing consistent choice of roots: B2(x , y , z , t) well defined.

Let U = {τ ∈ H2, B2(θ2
0,1,2,3(τ)) = 1}. At least F2 ⊂ U .

Homogeneity
B2(λx , λy , λz , λt) = λB2(x , y , z , t).

Computation of class polynomials for abelian surfaces 32/45

Exploiting action of Sp4(Z)

Action of Γ2 on the theta constants

Let τ ∈ H2. Then(
θ2

j ((JM1)2τ)
)

j=0,1,2,3
= −iτ1

(
θ2

j (τ)
)

j=4,0,6,2
,(

θ2
j ((JM2)2τ)

)
j=0,1,2,3

= −iτ2
(
θ2

j (τ)
)

j=8,9,0,1
,(

θ2
j ((JM3)2τ)

)
j=0,1,2,3

= (τ2
3 − τ1τ2)

(
θ2

j (τ)
)

j=0,8,4,12
.

Important: if (JM1)2.τ ∈ U , then B2(θ2
4,0,6,2(τ)) = 1

−iτ1
.

Conjecture

For τ ∈ F2, i ∈ {0, 1, 2}: (JMi)2.(τ) ∈ U .

Computation of class polynomials for abelian surfaces 33/45

θ0,1,2,3(τ/2) as solutions of an equation

Input: τ ∈ F2 known (to any precision we like).
Initially: low-precision θ0,1,2,3(τ/2).

Use duplication formulae to deduce θ2
0,1,2,3,4,6,8,9,12,15(τ).

Use B2 computations to deduce coefficients of τ .
The accurate x0,1,2,3 = θ0,1,2,3(τ/2) are solutions to

complicated-B2-calculation(x0,1,2,3) = τ.

Newton: use this feedback loop to find θ0,1,2,3(τ/2).

Keeping track of derivatives is messy.
A secant method also works, and is actually more convenient.

Computation of class polynomials for abelian surfaces 34/45

Computation of θ2
0,1,2,3 by Newton lifting

Convergence of the Newton iteration is quadratic:

each iteration (almost) doubles the precision.
it is possible to “lift higher” without restarting from scratch.

Complexity of the algorithm: quasi-linear O(M(N) log N).

Computation of class polynomials for abelian surfaces 35/45

Performance measurements

τ =
(−1+5i

2
i
6

i
6

−1+7i
2

)
τ =
(2+10i

7
1+2i

61+2i
6

4
10 + 8i

)
bits magma cmh-naive cmh-Newton magma cmh-naive cmh-Newton

≈ 211 0.46 0 0.02 0.03 0 0.02
≈ 212 3.4 0.01 0.04 0.17 0.04 0.03
≈ 213 26 0.07 0.08 1.1 0.20 0.09
≈ 214 210 0.31 0.24 8.2 1.0 0.26
≈ 215 1700 1.3 0.69 60 5.2 0.75
≈ 216 6.4 2.0 430 27 2.2
≈ 217 32 5.7 3100 130 6.0
≈ 218 160 16 720 16
≈ 219 770 39 3100 40
≈ 220 3200 98 96
≈ 221 240 230
≈ 222 560 530
≈ 223 1400 1300
≈ 224 3200 3000
≈ 225 7600 7100
≈ 226 16000 16000

Table:

Computation of θ0(τ) (Intel i5-2500, 3.3GHz; magma-2.19.4; cmh-1.0)

Computation of class polynomials for abelian surfaces 36/45

Plan

Algorithm
Principally polarized abelian varieties with CM by OK

Computing complex invariants
From θ-constants to class polynomials

Computation of class polynomials for abelian surfaces 37/45

Reconstruction
θ-constants three Igusa invariants : trivial.
From these, we compute:

product trees yield H1, Ĥ2, Ĥ3 ∈ R[x].
Their coefficients belong to the quadratic real K r

0 .
Recognize x ∈ R as short vector in: 1 κ1 0 0√

D′ 0 κ2 0
x 0 0 κ3


Success criterion: smooth denominators.

Denominators can be predicted to some extent (not done).
As long as reconstruction fails, keep on lifting θ2

0,1,2,3(τ).
At most we’re lifting twice higher than what we would need if
we had sharp bounds on denominators.

Computation of class polynomials for abelian surfaces 38/45

Plan

Introduction

CM in genus 1

Genus 2 prerequisites

Algorithm

Computer experiments

Computation of class polynomials for abelian surfaces 39/45

Implementation

Number theoretic computations: C(K), (reduced) period
matrices

Pari/GP
negligible effort

Evaluation of theta and invariants
C
Libraries: GMP, MPFR, MPC
MPI for parallelisation

Polynomial operations
MPFRCX
MPI for (partial) parallelisation

Computation of class polynomials for abelian surfaces 40/45

Software

http://cmh.gforge.inria.fr/

GPLv3+
./configure --with-gmp=... ... --enable-mpi
make install

Period matrices: cmh-classpol.sh -p 35 65

Class polynomials: cmh-classpol.sh -f 35 65

Curve for checking: cmh-classpol.sh -c 35 65

Using MPI:
mpirun -n 4 cm2-mpi -i 965 35 65.in -o H123.pol

Computation of class polynomials for abelian surfaces 41/45

http://cmh.gforge.inria.fr/

Two baby examples

X 4 + 144X 2 + 3500
C = Z/2Z× Z/30Z

preparation 0.2
base, 2 000 bits 0.6
lift, 3 984 bits 0.8
lift, 7 944 bits 2.1
reconstruction 0.1
lift, 15 846 bits 6.2

H1, Ĥ2, Ĥ3 ∈ C[X] 0.1
H1, Ĥ2, Ĥ3 ∈ K r

0 [X] 3×0.3
check 0.8
Total (incl. I/O) 12.4

X 4 + 134X 2 + 712
C = Z/2Z× Z/60Z

preparation 0.3
base, 2 000 bits 1.1
lift, 3 988 bits 1.6
lift, 7 958 bits 4.4
reconstruction 0.1
lift, 15 886 bits 13.1
reconstruction 0.2
lift, 31 744 bits 38.7
H1, Ĥ2, Ĥ3 ∈ C[X] 0.6
H1, Ĥ2, Ĥ3 ∈ K r

0 [X] 1.8 + 2×1.4
check 0.7
Total (incl. I/O) 69.2

Timings in seconds for two examples (Intel i5-2500, 3.3GHz).

Computation of class polynomials for abelian surfaces 42/45

One jumbo experiment

How far can we go ?

K = Q[X]/(X 4 + 1357X 2 + 3299), K0 = Q(
√

1828253).
C ' Z/2Z× Z/2Z× Z/5004Z; C = 20 016.

Computation breakdown:

10 008 symbolic period matrices: minutes.
Lift up to 2 000 000 bits: hours (640 cores).
Lift up to 8 000 000 bits: 3 days (160 cores, more RAM).
Computing polynomials: 3 days (24 cores).
Recognizing coefficients: 2 days (480 cores).
Disk size for class polynomial triple: 90 GB.

lc(H1) has 8 884 distinct prime factors, largest is 1 506 803 839.

Computation of class polynomials for abelian surfaces 43/45

A curve

π = 2587584949432298α3 + 598749326588980α2+
3489110163205995872α− 17626367557116479015,

p2 = Norm(π) =
(
2128 + 5399685

)2
,

y2 = 329105434147215182703081697774190891717x5+
219357712933218699650940059644263138156x4+
94773520721686083389380651745963315116x3+
13612280714446818104030347122109215819x2+
224591198286067822213326173663420732292x+
62350272396394045327709463978232206155,

χ = t4 − s1t3 + s2t2 − ps1t + p2, (s1 = −72130475900828407780,
s2 = 1980610692179048658315492237655054733182),

#J = (p2 + 1)− (p + 1)s1 + s2 = 24 · 3433 · p73.

Computation of class polynomials for abelian surfaces 44/45

Conclusion

Complex analytic CM construction is effective in genus 2, not
just for ridiculously small examples;
We don’t meet the sky-large class number requirements
though;
Computing θ-constants is fast.
Never say it’s a bottleneck. There’s available software !

Further improvements:

Higher genus ?
Prove the conjectures ? (note: there are trivial workarounds
anyway).
Improve on our recognition step, which is too slow.
Compute θ(τ, z), not jsut θ(τ, 0).
Improve the CRT method to make it as effective.

Computation of class polynomials for abelian surfaces 45/45

	Introduction
	CM in genus 1
	Genus 2 prerequisites
	Algorithm
	Principally polarized abelian varieties with CM by OK
	Computing complex invariants
	From -constants to class polynomials

	Computer experiments

