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Discrete logarithms

Definition
Given a cyclic group (G , ·) of order m and a generator α ∈ G ,
the Discrete Logarithm Problem (DLP) asks, given β ∈ G , to
find x ∈ Zm such that β = αx . Notation: logα β := x .

Commonly used groups:

• The multiplicative group of a finite field Fq .

• The group over an elliptic curve over Fq .

• The Jacobian over a hyperelliptic curve over Fq .

L-Notation for running time:

Lm(α, c) := exp
(
(c + o(1)) (lnm)α (ln lnm)1−α

)
,

for some α ∈ [0, 1] and c > 0.
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Finite field DLP milestones
(larger field and/or improved complexity)

bitlength char who/when running time

127 2 Coppersmith 1984 L(1/3 , 1.526..1.587)
401 2 Gordon, McCurley 1992 L(1/3 , 1.526..1.587)
n/a small Adleman 1994 L(1/3 , 1.923)
427 large Weber, Denny 1998 L(1/3 , 1.526)
521 2 Joux, Lercier 2001 L(1/3 , 1.526)
607 2 Thomé 2001 L(1/3 , 1.526..1.587)
613 2 Joux, Lercier 2005 L(1/3 , 1.526)
556 medium Joux, Lercier 2006 L(1/3 , 1.442)
676 3 Hayashi et al. 2010 L(1/3 , 1.442)
923 3 Hayashi et al. 2012 L(1/3 , 1.442)

1175 medium Joux 24 Dec 2012 L(1/3 , 1.260)
1425 medium Joux 6 Jan 2013 L(1/3 , 1.260)
1778 2 Joux 11 Feb 2013 L(1/4 + o(1))
1971 2 GGMZ 19 Feb 2013 L(1/3 , 0.763)
4080 2 Joux 22 Mar 2013 L(1/4 + o(1))
6120 2 GGMZ 11 Apr 2013 L(1/4)
6168 2 Joux 21 May 2013 L(1/4 + o(1))
n/a small BGJT 18 Jun 2013 L(0 + o(1))

9234 2 GKZ 31 Jan 2014 L(1/4 + o(1))
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Cryptographic pairings

Consider the group E (Fq) of an elliptic curve/the Jacobian J(Fq)
of a hyperelliptic curve of genus g = 2, let charFq = p .
Let G be a cyclic subgroup of order m , which has a difficult DLP.

Interesting for cryptology are non-degenerate bilinear pairings

em : G × G → µm ≤ F∗qk ,

which can be realised by the Weil or the Tate pairing (or others).

• For supersingular curves the embedding degree k is small.

• DLP in G can be reduced to the DLP in Fqk (MOV attack).

• But also, many Pairing-Based Cryptography applications.

Parameter suggestions on the level of “128 bit” security:

k g = 1 g = 2

p = 2 k = 4 qk = 24·1223 k = 12 qk = 212·367

p = 3 k = 6 qk = 36·509 (k = 4)
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ICM precomputation stage

• Let G be a cyclic group of order m with generator α ∈ G .

• Let S ⊆ G be a subset, α ∈ S , called the factor base.

• Consider group morphism ϕ : ZS
m → G , (es)s∈S 7→

∏
s∈S s

es .

Phase 1: Relation Generation

Generate a subset R ⊆ kerϕ , whose elements are called relations.

Phase 2: Linear Algebra

Compute (xs)s∈S with
∑

s∈S esxs = 0 for all (es)s∈S ∈ R , i.e.,

(xs)s∈S ∈ R⊥ = (spanR)⊥ .

Factor base logs are determined iff R⊥ ∼= Zm iff spanR = kerϕ ;
in this case, if R⊥ = Zm (xs)s∈S then logα s = xs/xα , for s ∈ S .
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Individual logarithm stage

Phase 3: Descent Tree

From Phases 1 and 2 we know logα s for all s ∈ S .

• Build a descent tree, i.e., a tree such that
• its root is the target element β ∈ G ,
• its leaves are elements s ∈ S ,
• if x1, . . . , xk ∈ G are children of a node y ∈ G then a relation

y =
∏k

i=1 x
ei
i has been computed.

• Then an expression β =
∏

s∈S s
es can be obtained, and thus

logα β =
∑

s∈S es logα s is found.

Idea of descent: Elements x1, . . . , xk are “smaller” than y , and
the elements in S are “smallest”.
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Reduction by automorphisms

Any automorphism of G has form σ : x 7→ xa for some a ∈ Z∗m .

Let A ≤ Aut(G ) (∼= Z∗m) be a group of automorphisms such that
σ(S) = S for all σ ∈ A . Thus the group A acts on S by

A× S → S , (σ, s) 7→ σ(s) .

Let T ⊆ S be a set of representatives for the orbits in S , then

∀s ∈ S ∃ ts ∈ T , as ∈ Z∗m : s = tass ,

hence log s = as log ts , for all s ∈ S .

Thus factor base size |S | reduced to |T | ≈ |S |/|A| elements.
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Basic ICM in fields of small characteristic

Represent a finite field Fqn as residue class ring Fq[X ]/〈f 〉 ,
where f ∈ Fq[X ] is an irreducible polynomial of degree n .
Identify field elements with polynomials of degree ≤ n − 1.

Choose as factor base S the set of all irreducible polynomials
in Fq[X ] of degree ≤ b (assume that α ∈ S ).

Relation Generation: For random k ∈ Zn , test whether αk mod f
is b -smooth, i.e., whether an expression exists of the form

αk mod f =
∏
s∈S

ses in Fq[X ].

Theorem (Odlyzko, Lovorn)

A polynomial of degree m is b -smooth with probability

u−(1+o(1)) u , where u = m/b .
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Finite fields of the form Fqkn

Let q be a prime power, let k, n be integers, and let K = Fqk .

Our field representation

Let the field L = Fqkn = F(qk )n be defined as L = K [X ]/〈f 〉 , where

f | h1(X q)X − h0(X q)

for some h0(X ), h1(X ) ∈ K [X ] of low degree ≤ dh .

Note that n ≤ qdh + 1. (Alternatively, in [Jo13, BGJT13] the field
representation used is f | X qh1 − h0 , thus n ≤ q + dh .)

Let x := [X ] ∈ L and y := xq ∈ L , so that x = h0(y)/h1(y).

Our target group is G = L∗ of order m = qkn − 1.
Our factor base is S := {x + a | a ∈ K} ⊆ G .

Note that y + b = (x + b1/q)q and x + b1/q ∈ S .
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Higher splitting probabilities

Phase 1: Relation Generation

Since y = xq , x = h0(y)/h1(y), for a, b, c ∈ K = Fqk we have

xq+1 +axq +bx +c = 1
h1(y)

(
yh0(y) +ayh1(y) +bh0(y) +ch1(y)

)
.

Observation: The l. h. s. polynomial X q+1+ aX q + bX + c ∈ K [X ]
splits with probability ≈ q−3 , the r. h. s. with probability 1

(dh+1)! .

Theorem (Bluher ’04; Helleseth, Kholosha ’10)

The set of B ∈ K ∗ such that X q+1 + BX + B splits is the image
of u 7→ (uq

2 − u)q+1/(uq − u)q
2+1 , u ∈ K \ Fq2 , and has size

qk−1 − 1

q2 − 1
for k odd ,

qk−1 − q

q2 − 1
for k even .

This leads (k, dh fixed, q →∞) to a polynomial time algorithm
for solving the Discrete Logs of all factor base elements [GGMZ13].
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Linear system

Phase 2: Linear Algebra

Let A be a factor base preserving automorphism group.

• Have N ≈ qk/|A| variables.

• Need to generate M > N relations.

Let B be the M × N matrix of the relations’ coefficients.
We find a nonzero vector v with Bv = 0 modulo m∗ , the product
of the large prime factors of the group order m .

Possible preprocessing step: Structured Gaussian Elimination

Sparse Linear Algebra solver: Lanczos’ or Wiedemann’s method

Cost per Lanczos iteration: 2 sparse matrix-vector products,
3 scalar multiplications, 2 inner products
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Individual logarithm

Phase 3: Descent Tree

We build up the descent tree in different stages:

• degree two elements elimination [GGMZ13, Jo13]

• small degree Gröbner Basis descent [Jo13]

• large degree classical descent

• initial split

A further descent method is asymptotically the fastest but not
(yet) practical:

• descent by Linear Algebra [BGJT13]
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Gröbner Basis descent

• For any f , g ∈ K [X ] there holds

g(x)
∏
α∈Fq

(
f (x)− αg(x)

)
= f (x)qg(x)− f (x)g(x)q .

• Since xq = y we can write a(x)q = ã(y) with deg ã = deg a .

• The r.h.s. equals f̃ (y) g(h0/h1(y))− f (h0/h1(y)) g̃(y), which
has (assuming δf ≥ δg ) low degree dhδf + δg .

Joux’s GB descent
Let Q(y) to be eliminated. The equation r.h.s.(y) ≡ 0 mod Q(y)
is a bilinear quadratic system in the Fq -variables of coefficients of
f and g . If the cofactor is δf -smooth we have eliminated Q(y).

We have (δf + δg + 2)k variables and δQk equations.
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Degree two elimination

1. Consider the GB descent setup

f̃ (y) g(h0/h1(y))− f (h0/h1(y)) g̃(y) ≡ 0 mod Q(y)

(δf + δg + 2)k variables , δQk equations

On-the-fly degree two elimination [GGMZ13]: For δQ = 2 let
δf = δg = 1, which works for dh ≤ 2, k > 3.

2. Alternatively, consider Phase 1 equation

xq+1+axq+bx+c = 1
h1(y)

(
yh0(y)+ayh1(y)+bh0(y)+ch1(y)

)
.

Solving degree two logs in batches [Jo13]: For each u ∈ K ,
substitute x by Q(x) := x2 + ux , consider linear system over
factor base Su := {x2+ux+v irreducible | v ∈ K} .
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Discrete logarithms in F29234

We consider the field L = F29234 as the field extension

F(218)513
∼= F218 [X ] / 〈X 513 − c〉 ,

where c is a primitive element of F218 , i.e., L is a twisted Kummer
extension over F29 . We have q = 29 , k = 2, n = 513.

• Let A be the group of automorphisms of L that preserve F29 ,
which is generated by the 29 -power Frobenius map, so that
|A| = 1026.

• The factor base consists of the degree one and the irreducible
degree two polynomials over K = F218 .

• We group the irreducible degree two polynomials into
v -batches Sv = {X 2 + uX + v | u ∈ K} of size 217 and
let A act on the set of Sv classes, resulting in 256 orbits.
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Implementation details

• The computation of the logs of the degree one elements was
done by solving a linear system in 256 variables.

• For the degree two elements, considering the orbits of Sv
classes, we obtained 256 linear systems in 217 variables.
We solved these systems using a C/OpenMP implementation
of the iterative Lanczos method.

• Gröbner Basis descent by a Magma V2.16-12 implementation.
The Magma implementation computes the discrete logarithm
of an element of degree ≤ 7 in a few seconds, of degree 8 in
45 minutes, and of degree 9 in 5 hours, on average.

• Classical descent performed by a C++/NTL implementation.
We optimised the classical descent stage using a careful
bottom-up analysis, to minimise Magma running time.

relation generation in 640 h, linear algebra in 258 048 h, classical
and GB descent in 138 721 h, totalling in about 400 k core hours
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Breaking a DLP challenge in F29234

On 31 Jan 2014 we [GKZ] announced that βπ = (x + 1)a , where a =

125779631651056358283523231532041428134055309778159188801541989197211241469304072335941059
281962005454051672607029761522191438597799624559498662885074482976278137978653961187602785
963521103901153526044534603535422931573797074810398000395495638366455630035992529559929902
108679715895453534966250578517141995060774265991524792845518304065011291857676049431740583
950086769895048042412499238148694713504069158531803632278428328650574372322291601200322812
264678778760812744846463014185368022969784377362738090039234572180767410866981269956062794
778194643992127088248677776489553382849339488999298996238650174569774636295039239431131034
735919743847942192641753502815011369184548072564255878252898406745791263516167802691986577
569907675128884496679163247930275647343962891386236813287231696706514618918217999365307761
347126655737419414138939184000922601084860644048494395103670297556722810527024548972693586
872490585889878730302060379980252429326932534897750851376453540853381675255562307436328227
323838212564938495504457572672007040234538095688669323195326252650693733552443986277025096
145247868633522829296001336186272609625969376764069784226295307238307237426409623540062382
240157860855922298604202880754246493659685338186339334006664355270021089169021319757544688
750809181814981692218272071085945801198188215225189053189071240027777779380846406126349881
480760793162005304774313385188248567209764427478010735894067709537068728278312790036390750
784010782836357305397021588532911202038661810787660497029723000030845524041816028956585972
678604678849175569550187892024441440063307155903389049268143763947368963141177709409668219
060530210360059490951914011317445172019082710670812085264876243869799462402025806494110519
018518730219749634954707365809192861027105363587308680221794059150223286216933714852494372
712765109739434137249099609885542892048341587764062851411710702962094503959808889404280988
818589685078948586446234034482007400381679156079839892096417063873214997248469880006575468
504824056890800039572427222818821446648192269580096589340281258165417108679966128981321541
721321473472590961173740830801241942125210659439961063363459160880859647302371434619662588
848231727776340648840935726815387332949033100658078567828807918548107683161319185781542111
519479496986457003474498516010990774805928451103832851762638647963524177986039219241231993
050026175879877321185118841987096698753354979274621296687116204686444661810616017020932218
916723885416696338016337850625213728173158748135473789828963349610061212235868983167849418
321400146054733615935965725127498826717791489349828632033941921827177391763643961332455428
761022440452521230778505681046162870791973112709585241887283847881669191194373349483920170
98498895226444232831687153391628646508894309460287818373470378767297858757572603 .
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Revised security standards
k g = 1 g = 2

p = 2 k = 4 qk = 24·1223 k = 12 qk = 212·367

p = 3 k = 6 qk = 36·509

Do the new DLP algorithms have an impact on the security
standards? Note: Fqk need to be embedded into a larger field.

• Analysis [AMOR13]: DLP in Fqk

• for qk = 24·1223 probably remains 128 bit secure
• for qk = 212·367 computable in 295 operations
• for qk = 36·509 computable in 274 operations

• New Analysis [GKZ14a]: DLP in Fqk

• for qk = 24·1223 computable in 259 operations
• for qk = 212·369 in 248 operations totally broken

Main features of the improvement:

1. using f | h1(X q)X − h0(X q), δhi = 5, 6, allows a smaller q

2. irreducible even degree polynomials over Fqk factor over Fq2k
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A supersingular binary curve target field

Consider the supersingular elliptic curve

E0 /F21223 : Y 2 + Y = X 3 + X ,

which has a subgroup of prime order r = (21223 + 2612 + 1)/5,
of bitlength 1221. This curve was proposed for 128-bit secure
pairing-based protocols and had many optimised implementations.

We consider F28·1223 = Fqn with q = 28 , n = 1223 given by the
degree n irreducible factor f of h1(X q)X − h0(X q), with

h0 = X 5+tX 4+tX 3+X 2+tX+t , h1 = X 5+X 4+X 3+X 2+X+t ,

where t ∈ F22 \ F2 ; the target element is in the subfield F24·1223 .

• we begin the classical descent over F24

• we switch to Fq = F28 for the Gröbner basis descent
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Linear algebra cost

We wish to obtain the logarithms of all irreducible elements of
degree ≤ 4 over Fq . There are ≈ q4/4 = 230 such elements.

Since the degree 1223 extension is defined over F22 , the Galois
group A = Gal(Fq/F22) of size 4 acts on the factor base.
This reduces the number of variables to about 228 .

To obtain the logarithms of the factor base elements,

• either work over Fqk with k = 3 and k = 4, as described,

• or employ a trick (use GB descent setup, work with k = 1)
to decrease the average row weight of the bottleneck
228 × 228 system for d = 4 to about q/4 = 64.

Considering Lanczos’ algorithm results in a cost of 259.0Mr ,
where Mr denotes multiplication modulo r .
This is equivalent to about 228 core hours.
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Descent cost
Assume the logarithms of elements of degree ≤ 4 are known.

GB descent for degree 5...15 (implemented in Magma, using
Faugere’s F4 algorithm): Average times (in Mr operations) for
rewriting a polynomial as a product deg ≤ 4 elements: C [5..15] =

[ 214.4, 220.4, 220.5, 225.9, 225.8, 226.9, 227.0, 231.1, 231.2, 232.2, 232.6 ] .

Classical descent over F24 and one “joker”:

• dQ = 26 to m = 15 . Direct cost 239.0Mr , subsequent cost
236.9Mr . Here, we factor even degree polynomials into
polynomials of half the degree over Fq .

• dQ = 36 to m = 26 . Direct 242.4Mr , subsequent 242.9Mr .

• dQ = 94 to m = 36 . Direct 246.7Mr , subsequent 247.4Mr .

• Initial split to 94 : Direct 251.1Mr , subsequent 251.8Mr .

Total descent cost equivalent of 252.5Mr (or 222 core hours).
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Solving the DLP in a supersingular genus 2 curve

The Jacobian of the supersingular hyperelliptic curve

H0/F2367 : Y 2 + Y = X 5 + X 3

has a prime order r = (2734+2551+2367+2184+1)/(13·7170258097)
subgroup of bitlength 698, which is contained in F212·367 .

• Let q = 64, define F212·367 = F212 [X ]/〈f 〉 , where f ∈ F2[X ] is
the irreducible degree 367 divisor of h1(X q)X − h0(X q), with

h0 = X 6 + X 4 + X 2 + X + 1 , h1 = X 5 + X 3 + X + 1 .

• We consider relations over Fq4 = F224 . The automorphism
group A = Gal(F224/F2) of size 24 acts on the factor base S .
This reduces the linear algebra system to 699 252 variables,
which was solved in 4 896 core hours.
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Descent implementation details

We performed a continued fraction initial split and degree-balanced
classical descent to degrees ≤ 8 in 38 224 core hours.

Small degree descent flowchart, using on-the-fly elimination and
Gröbner Basis descent, as well as recursive techniques:

1 2 3 4

1 2 3 4 5 6 7 8

F224

F212

ι ιs
s s

This phase required 8 432 core hours on Magma V2.20-1. In total
we used about 52 240 core hours, equivalent to about 248Mr .
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A new descent method [GKZ14b]

Idea: Use 2→ 1 descent over Fqd for a 2d → d descent over Fq .

Non-heuristic 2→ 1 descent: Assume h1 = 1, δh0 = 2.

xq+1 + axq + bx + c = yh0(y) + ay + bh0(y) + c

We can eliminate Q(y), δQ = 2, if there is (a, b, c) such that

1. r. h. s. is divisible by Q(y): b = atQ + vQ , c = arQ + sQ ,

2. l. h. s. splits: from Bluher’s theorem, if

B =
(b − aq)q+1

(c − ab)q
∈ Im

(
u 7→ (uq

2 − u)q+1

(uq − u)q2+1

)
.

Result: Success whenever the curve C contains enough points.

C : (uq
2− u)q+1(−ta2 + (−v + r)a + s)q

= (uq − u)q
2+1(−aq + ta + v)q+1
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Sieve and the Impact of Higher Splitting Probabilities, CRYPTO 2013,
eprint.iacr.org/2013/074

A. Joux: A New Index Calculus Algorithm with Complexity L(1/4+o(1))
in Very Small Characteristic, Selected Areas in Cryptography 2013,
eprint.iacr.org/2013/095

G. Adj, A. Menezes, T. Oliveira, F. Rodŕıguez-Henŕıquez: Weakness of
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