Breaking "128 bit Secure" Supersingular Binary Curves (or how to solve Discrete Logarithms in $\mathbb{F}_{2^{4\cdot 1223}}$ and $\mathbb{F}_{2^{12\cdot 367}}$)

Jens Zumbrägel

Institute of Algebra TU Dresden, Germany

8 October 2014 ECC 2014 · IMSc · Chennai

Joint work with:

Robert Granger and Thorsten Kleinjung Laboratory for Cryptologic Algorithms · EPFL, Switzerland

Discrete logarithms

Definition

Given a cyclic group (G, \cdot) of order m and a generator $\alpha \in G$, the Discrete Logarithm Problem (DLP) asks, given $\beta \in G$, to find $x \in \mathbb{Z}_m$ such that $\beta = \alpha^x$. Notation: $\log_{\alpha} \beta := x$.

Commonly used groups:

- The multiplicative group of a finite field \mathbb{F}_q .
- The group over an elliptic curve over \mathbb{F}_q .
- The Jacobian over a hyperelliptic curve over \mathbb{F}_q .

L-Notation for running time:

$$L_m(lpha, c) := \exp\left((c + o(1)) (\ln m)^{lpha} (\ln \ln m)^{1-lpha}\right),$$

for some $\alpha \in [0, 1]$ and c > 0.

Finite field DLP milestones

(larger field and/or improved complexity)

		the second s	
bitlength	char	who/when	running time
127	2	Coppersmith 1984	L(1/3, 1.5261.587)
401	2	Gordon, McCurley 1992	L(1/3, 1.5261.587)
n/a	small	Adleman 1994	L(1/3, 1.923)
427	large	Weber, Denny 1998	L(1/3, 1.526)
521	2	Joux, Lercier 2001	L(1/3, 1.526)
607	2	Thomé 2001	L(1/3, 1.5261.587)
613	2	Joux, Lercier 2005	L(1/3, 1.526)
556	medium	Joux, Lercier 2006	L(1/3, 1.442)
676	3	Hayashi et al. 2010	L(1/3, 1.442)
923	3	Hayashi et al. 2012	L(1/3, 1.442)
1175	medium	Joux 24 Dec 2012	L(1/3, 1.260)
1425	medium	Joux 6 Jan 2013	L(1/3, 1.260)
1778	2	Joux 11 Feb 2013	L(1/4 + o(1))
1971	2	GGMZ 19 Feb 2013	L(1/3, 0.763)
4080	2	Joux 22 Mar 2013	L(1/4 + o(1))
6120	2	GGMZ 11 Apr 2013	L(1/4)
6168	2	Joux 21 May 2013	L(1/4 + o(1))
n/a	small	BGJT 18 Jun 2013	L(0 + o(1))
9234	2	GKZ 31 Jan 2014	L(1/4 + o(1))

Cryptographic pairings

Consider the group $E(\mathbb{F}_q)$ of an *elliptic curve*/the Jacobian $J(\mathbb{F}_q)$ of a *hyperelliptic curve* of genus g = 2, let char $\mathbb{F}_q = p$. Let G be a cyclic subgroup of order m, which has a difficult DLP. Interesting for cryptology are non-degenerate bilinear pairings

$$e_m: G imes G o \mu_m \leq \mathbb{F}^*_{q^k},$$

which can be realised by the Weil or the Tate pairing (or others).

- For supersingular curves the embedding degree k is small.
- DLP in G can be reduced to the DLP in \mathbb{F}_{a^k} (MOV attack).
- But also, many Pairing-Based Cryptography applications.

Parameter suggestions on the level of "128 bit" security:

k
$$g = 1$$
 $g = 2$ $p = 2$ $k = 4$ $q^k = 2^{4 \cdot 1223}$ $k = 12$ $q^k = 2^{12 \cdot 367}$ $p = 3$ $k = 6$ $q^k = 3^{6 \cdot 509}$ $(k = 4)$

Overview

A High-Level Description of the Index Calculus Method

ICM Particulars for Finite Fields of Small Characteristic

Example: Discrete Logarithms in $\mathbb{F}_{2^{9234}}$

Supersingular Curves and Impact on Pairings

Overview

A High-Level Description of the Index Calculus Method

ICM Particulars for Finite Fields of Small Characteristic

Example: Discrete Logarithms in $\mathbb{F}_{2^{9234}}$

Supersingular Curves and Impact on Pairings

ICM precomputation stage

- Let G be a cyclic group of order m with generator $\alpha \in G$.
- Let $S \subseteq G$ be a subset, $\alpha \in S$, called the factor base.
- Consider group morphism $\varphi : \mathbb{Z}_m^S \to G$, $(e_s)_{s \in S} \mapsto \prod_{s \in S} s^{e_s}$.

Phase 1: Relation Generation

Generate a subset $\mathcal{R} \subseteq \ker \varphi$, whose elements are called relations.

Phase 2: Linear Algebra

Compute $(x_s)_{s\in S}$ with $\sum_{s\in S} e_s x_s = 0$ for all $(e_s)_{s\in S} \in \mathcal{R}$, i.e.,

$$(x_s)_{s\in S}\in \mathcal{R}^\perp=(\operatorname{span}\mathcal{R})^\perp$$
 .

Factor base logs are determined iff $\mathcal{R}^{\perp} \cong \mathbb{Z}_m$ iff span $\mathcal{R} = \ker \varphi$; in this case, if $\mathcal{R}^{\perp} = \mathbb{Z}_m(x_s)_{s \in S}$ then $\log_{\alpha} s = x_s/x_{\alpha}$, for $s \in S$.

Individual logarithm stage

Phase 3: Descent Tree

From Phases 1 and 2 we know $\log_{\alpha} s$ for all $s \in S$.

- Build a descent tree, i.e., a tree such that
 - its root is the target element $\beta \in G$,
 - its leaves are elements $s \in S$,
 - if $x_1, \ldots, x_k \in G$ are children of a node $y \in G$ then a relation $y = \prod_{i=1}^k x_i^{e_i}$ has been computed.
- Then an expression $\beta = \prod_{s \in S} s^{e_s}$ can be obtained, and thus $\log_{\alpha} \beta = \sum_{s \in S} e_s \log_{\alpha} s$ is found.

Idea of descent: Elements x_1, \ldots, x_k are "smaller" than y, and the elements in S are "smallest".

Reduction by automorphisms

Any automorphism of G has form $\sigma : x \mapsto x^a$ for some $a \in \mathbb{Z}_m^*$. Let $A \leq \operatorname{Aut}(G) (\cong \mathbb{Z}_m^*)$ be a group of automorphisms such that $\sigma(S) = S$ for all $\sigma \in A$. Thus the group A acts on S by

$$A \times S \rightarrow S$$
, $(\sigma, s) \mapsto \sigma(s)$.

Let $T \subseteq S$ be a set of representatives for the orbits in S, then

$$\forall s \in S \exists t_s \in T, a_s \in \mathbb{Z}_m^*: s = t_s^{a_s},$$

hence $\log s = a_s \log t_s$, for all $s \in S$.

Thus factor base size |S| reduced to $|T| \approx |S|/|A|$ elements.

Overview

A High-Level Description of the Index Calculus Method

ICM Particulars for Finite Fields of Small Characteristic

Example: Discrete Logarithms in $\mathbb{F}_{2^{9234}}$

Supersingular Curves and Impact on Pairings

Basic ICM in fields of small characteristic

Represent a finite field \mathbb{F}_{q^n} as residue class ring $\mathbb{F}_q[X]/\langle f \rangle$, where $f \in \mathbb{F}_q[X]$ is an irreducible polynomial of degree n. Identify field elements with polynomials of degree $\leq n-1$.

Choose as factor base S the set of all irreducible polynomials in $\mathbb{F}_q[X]$ of degree $\leq b$ (assume that $\alpha \in S$).

Relation Generation: For random $k \in \mathbb{Z}_n$, test whether $\alpha^k \mod f$ is *b*-smooth, i.e., whether an expression exists of the form

$$\alpha^k \mod f = \prod_{s \in S} s^{e_s} \text{ in } \mathbb{F}_q[X].$$

Theorem (Odlyzko, Lovorn)

A polynomial of degree m is b-smooth with probability

$$u^{-(1+o(1)) u}$$
, where $u = m/b$.

Finite fields of the form $\mathbb{F}_{q^{kn}}$

Let q be a prime power, let k, n be integers, and let $K = \mathbb{F}_{q^k}$. Our field representation Let the field $L = \mathbb{F}_{q^{kn}} = \mathbb{F}_{(q^k)^n}$ be defined as $L = K[X]/\langle f \rangle$, where $f \mid h_1(X^q)X - h_0(X^q)$

for some $h_0(X), h_1(X) \in K[X]$ of low degree $\leq d_h$.

Note that $n \le qd_h + 1$. (Alternatively, in [Jo13, BGJT13] the field representation used is $f \mid X^q h_1 - h_0$, thus $n \le q + d_h$.)

Let $x := [X] \in L$ and $y := x^q \in L$, so that $x = h_0(y)/h_1(y)$.

Our target group is $G = L^*$ of order $m = q^{kn} - 1$. Our factor base is $S := \{x + a \mid a \in K\} \subseteq G$.

Note that $y + b = (x + b^{1/q})^q$ and $x + b^{1/q} \in S$.

Higher splitting probabilities

Phase 1: Relation Generation

Since $y = x^q$, $x = h_0(y)/h_1(y)$, for $a, b, c \in \mathcal{K} = \mathbb{F}_{q^k}$ we have

$$x^{q+1} + ax^q + bx + c = \frac{1}{h_1(y)} (yh_0(y) + ayh_1(y) + bh_0(y) + ch_1(y)).$$

Observation: The I. h. s. polynomial $X^{q+1} + aX^q + bX + c \in K[X]$ splits with probability $\approx q^{-3}$, the r. h. s. with probability $\frac{1}{(d_h+1)!}$.

Theorem (Bluher '04; Helleseth, Kholosha '10)

The set of $B \in K^*$ such that $X^{q+1} + BX + B$ splits is the image of $u \mapsto (u^{q^2} - u)^{q+1}/(u^q - u)^{q^2+1}$, $u \in K \setminus \mathbb{F}_{q^2}$, and has size $\frac{q^{k-1} - 1}{q^2 - 1}$ for k odd, $\frac{q^{k-1} - q}{q^2 - 1}$ for k even.

This leads $(k, d_h \text{ fixed}, q \to \infty)$ to a polynomial time algorithm for solving the Discrete Logs of all factor base elements [GGMZ13].

Linear system

Phase 2: Linear Algebra

Let A be a factor base preserving automorphism group.

- Have $N \approx q^k / |A|$ variables.
- Need to generate M > N relations.

Let *B* be the $M \times N$ matrix of the relations' coefficients. We find a nonzero vector *v* with Bv = 0 modulo m_* , the product of the large prime factors of the group order *m*.

Possible preprocessing step: Structured Gaussian Elimination

Sparse Linear Algebra solver: Lanczos' or Wiedemann's method

Cost per *Lanczos iteration*: 2 sparse matrix-vector products, 3 scalar multiplications, 2 inner products

Individual logarithm

Phase 3: Descent Tree

We build up the descent tree in different stages:

- degree two elements elimination [GGMZ13, Jo13]
- small degree Gröbner Basis descent [Jo13]
- large degree classical descent
- initial split

A further descent method is asymptotically the fastest but not (yet) practical:

• descent by Linear Algebra [BGJT13]

Gröbner Basis descent

• For any $f,g \in K[X]$ there holds

$$g(x)\prod_{lpha\in\mathbb{F}_q} \left(f(x)-lpha g(x)
ight) \ = \ f(x)^q g(x)-f(x)g(x)^q \, .$$

- Since $x^q = y$ we can write $a(x)^q = \tilde{a}(y)$ with deg $\tilde{a} = \deg a$.
- The r.h.s. equals $\tilde{f}(y) g(h_0/h_1(y)) f(h_0/h_1(y)) \tilde{g}(y)$, which has (assuming $\delta_f \geq \delta_g$) low degree $d_h \delta_f + \delta_g$.

Joux's GB descent

Let Q(y) to be eliminated. The equation r.h.s. $(y) \equiv 0 \mod Q(y)$ is a bilinear quadratic system in the \mathbb{F}_q -variables of coefficients of f and g. If the cofactor is δ_f -smooth we have eliminated Q(y). We have $(\delta_f + \delta_g + 2)k$ variables and $\delta_Q k$ equations.

Degree two elimination

1. Consider the GB descent setup

$$\begin{split} \tilde{f}(y) \, g(h_0/h_1(y)) - f(h_0/h_1(y)) \, \tilde{g}(y) &\equiv 0 \mod Q(y) \\ (\delta_f + \delta_g + 2)k \text{ variables}, \ \delta_Q k \text{ equations} \end{split}$$

On-the-fly degree two elimination [GGMZ13]: For $\delta_Q = 2$ let $\delta_f = \delta_g = 1$, which works for $d_h \leq 2$, k > 3.

2. Alternatively, consider Phase 1 equation

$$x^{q+1} + ax^{q} + bx + c = \frac{1}{h_1(y)} (yh_0(y) + ayh_1(y) + bh_0(y) + ch_1(y)).$$

Solving degree two logs in batches [Jo13]: For each $u \in K$, substitute x by $Q(x) := x^2 + ux$, consider linear system over factor base $S_u := \{x^2 + ux + v \text{ irreducible } | v \in K\}$.

Overview

A High-Level Description of the Index Calculus Method

ICM Particulars for Finite Fields of Small Characteristic

Example: Discrete Logarithms in $\mathbb{F}_{2^{9234}}$

Supersingular Curves and Impact on Pairings

Wikipedia

an a	Create account 👗 Log in				
I D H	Article Talk Read Edit View history Search Q				
WIKIPEDIA	Discrete logarithm records				
The Free Encyclopedia	From Wikipedia, the free encyclopedia				
Main page Contents Featured content Current events Random article Donate to Wikipedia Wikimedia Shop	Discrete logarithm records are the best results achieved to date in solving the discrete logarithm problem, which is the problem of finding solutions to the equation g ² = h given elements g and h of a finite cyclic group G. The difficulty of this problem is the basis for the security of several cryptographic systems, including Office-Helman key agreement. ElGamal encryption, the ElGamal signature scheme, the Digital Signature Algorithm, and the elliptic curve cryptographic systems of these. Common choices for G used in these algorithms include of the multiplicative group of a finite field, and the group of points on an elliptic curve curve a finite field.				
Interaction Help About Wikipedia Community portal Recent changes Contact page Tools	Contents (hide) 1 Integers modulu p 2 Finite fields 3 Elliptic curves 4 References				
What links here Related changes	Integers modulo p [edit]				
Upload file Special pages Permanent link Page information	On 18 Jun 2005. Antoine Joux and Reynald Lercier announced the computation of a discrete logarithm modulo a 130-digit (431-bit) strong prime in three weeks, using a 1.15 GHz 16-processor HP AlphaServer GS1280 computer and a number field sieve algorithm. ^[11] On 5 Feb 2007 this was superseded by the announcement by Thorsten Kleinjung of the computation of a discrete logarithm modulo a 160-digit (53-bit) safe prime, again using the number field sieve. Most of the computation was done using lidle time on various PCs and on a parallel computing cluster. ^[21] On 11 Jun 2014, Cyril Bouvier, Pierrick Gaudry, Laurent Imbert, Hamza Jeljeli and Emmanuel Thorné announced the computation of a discrete logarithm modulo a 180 digit (596-bit) safe prime using the number field sieve algorithm. ^[31]				
Data item Cite this page					
Print/export Create a book Download as PDF Printable version					
Languages 🔅	Finite fields [edit]				
Español <i>P</i> Edit links	The current record (as of January 2014) in a finite field of characteristic 2 was announced by Robert Granger. Thorsten Kleinjung, and Jens Zumbrägel on 31 January 2014. This team was able to compute discrete logarithms in GF(2 ²²³⁴) using about 400,000 core hours. New features of this computation include a modified method for obtaining the logarithms of degree two elements and a systematically ontimized descent stratem; ^[4]				

Discrete logarithms in $\mathbb{F}_{2^{9234}}$

We consider the field $L = \mathbb{F}_{2^{9234}}$ as the field extension

$$\mathbb{F}_{(2^{18})^{513}} \cong \mathbb{F}_{2^{18}}[X] \,/\, \langle X^{513} - c
angle \,,$$

where c is a primitive element of $\mathbb{F}_{2^{18}}$, i.e., L is a twisted Kummer extension over \mathbb{F}_{2^9} . We have $q = 2^9$, k = 2, n = 513.

- Let A be the group of automorphisms of L that preserve \mathbb{F}_{2^9} , which is generated by the 2^9 -power Frobenius map, so that |A| = 1026.
- The factor base consists of the degree one and the irreducible degree two polynomials over $K = \mathbb{F}_{2^{18}}$.
- We group the irreducible degree two polynomials into *v*-batches $S_v = \{X^2 + uX + v \mid u \in K\}$ of size 2^{17} and let A act on the set of S_v classes, resulting in 256 orbits.

Implementation details

- The computation of the logs of the *degree one* elements was done by solving a linear system in 256 variables.
- For the *degree two* elements, considering the orbits of S_v classes, we obtained 256 linear systems in 2¹⁷ variables.
 We solved these systems using a C/OpenMP implementation of the iterative Lanczos method.
- Gröbner Basis descent by a Magma V2.16-12 implementation. The Magma implementation computes the discrete logarithm of an element of degree ≤ 7 in a few seconds, of degree 8 in 45 minutes, and of degree 9 in 5 hours, on average.
- *Classical descent* performed by a C++/NTL implementation. We optimised the classical descent stage using a careful bottom-up analysis, to minimise Magma running time.

relation generation in 640 h, linear algebra in 258 048 h, classical and GB descent in 138 721 h, totalling in about 400 k core hours

Breaking a DLP challenge in $\mathbb{F}_{2^{9234}}$ On 31 Jan 2014 we [GKZ] announced that $\beta_{\pi} = (x + 1)^a$, where a =

Overview

A High-Level Description of the Index Calculus Method

ICM Particulars for Finite Fields of Small Characteristic

Example: Discrete Logarithms in $\mathbb{F}_{2^{9234}}$

Supersingular Curves and Impact on Pairings

Revised security standards

k
$$g = 1$$
 $g = 2$ $p = 2$ $k = 4$ $q^k = 2^{4 \cdot 1223}$ $k = 12$ $q^k = 2^{12 \cdot 367}$ $p = 3$ $k = 6$ $q^k = 3^{6 \cdot 509}$ $q^k = 2^{12 \cdot 367}$

Do the new DLP algorithms have an impact on the security standards? Note: \mathbb{F}_{q^k} need to be embedded into a larger field.

• Analysis [AMOR13]: DLP in \mathbb{F}_{q^k}

- for $q^k = 2^{4 \cdot 1223}$ probably remains 128 bit secure
- for $q^k = 2^{12 \cdot 367}$ computable in 2^{95} operations
- for $q^k = 3^{6 \cdot 509}$ computable in 2^{74} operations
- New Analysis [GKZ14a]: DLP in \mathbb{F}_{a^k}
 - for $q^k = 2^{4 \cdot 1223}$ computable in 2^{59} operations
 - for $q^k = 2^{12 \cdot 369}$ in 2^{48} operations totally broken

Main features of the improvement:

- 1. using $f \mid h_1(X^q)X h_0(X^q)$, $\delta h_i = 5, 6$, allows a smaller q
- 2. irreducible even degree polynomials over \mathbb{F}_{q^k} factor over $\mathbb{F}_{q^{2k}}$

A supersingular binary curve target field

Consider the supersingular elliptic curve

$$E_0 / \mathbb{F}_{2^{1223}}$$
: $Y^2 + Y = X^3 + X$,

which has a subgroup of prime order $r = (2^{1223} + 2^{612} + 1)/5$, of bitlength 1221. This curve was proposed for 128-bit secure pairing-based protocols and had many optimised implementations.

We consider $\mathbb{F}_{2^{8} \cdot 1223} = \mathbb{F}_{q^n}$ with $q = 2^8$, n = 1223 given by the degree *n* irreducible factor *f* of $h_1(X^q)X - h_0(X^q)$, with

 $h_0 = X^5 + tX^4 + tX^3 + X^2 + tX + t$, $h_1 = X^5 + X^4 + X^3 + X^2 + X + t$,

where $t \in \mathbb{F}_{2^2} \setminus \mathbb{F}_2$; the target element is in the subfield $\mathbb{F}_{2^{4 \cdot 1223}}$.

- we begin the classical descent over \mathbb{F}_{2^4}
- we switch to $\mathbb{F}_q = \mathbb{F}_{2^8}$ for the Gröbner basis descent

Linear algebra cost

We wish to obtain the logarithms of all irreducible elements of degree ≤ 4 over \mathbb{F}_q . There are $\approx q^4/4 = 2^{30}$ such elements.

Since the degree 1223 extension is defined over \mathbb{F}_{2^2} , the Galois group $A = \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_{2^2})$ of size 4 acts on the factor base. This *reduces* the number of variables to about 2^{28} .

To obtain the logarithms of the factor base elements,

- either work over \mathbb{F}_{q^k} with k = 3 and k = 4, as described,
- or employ a trick (use GB descent setup, work with k = 1) to decrease the *average row weight* of the bottleneck $2^{28} \times 2^{28}$ system for d = 4 to about q/4 = 64.

Considering Lanczos' algorithm results in a cost of $2^{59.0} M_r$, where M_r denotes *multiplication modulo r*. This is equivalent to about 2^{28} core hours.

Descent cost

Assume the logarithms of elements of degree \leq 4 are known.

GB descent for degree 5...15 (implemented in Magma, using Faugere's F4 algorithm): Average times (in M_r operations) for rewriting a polynomial as a product deg \leq 4 elements: C[5..15] =

 $\left[2^{14.4}, 2^{20.4}, 2^{20.5}, 2^{25.9}, 2^{25.8}, 2^{26.9}, 2^{27.0}, 2^{31.1}, 2^{31.2}, 2^{32.2}, 2^{32.6} \right].$

Classical descent over \mathbb{F}_{2^4} and one "joker":

• $\mathbf{d}_{\mathbf{Q}} = \mathbf{26}$ to $\mathbf{m} = \mathbf{15}$. Direct cost $2^{39.0} M_r$, subsequent cost $2^{36.9} M_r$. Here, we factor even degree polynomials into polynomials of half the degree over \mathbb{F}_q .

• $d_Q = 36$ to m = 26. Direct $2^{42.4} M_r$, subsequent $2^{42.9} M_r$.

• $\mathbf{d}_{\mathbf{Q}} = \mathbf{94}$ to $\mathbf{m} = \mathbf{36}$. Direct $2^{46.7} M_r$, subsequent $2^{47.4} M_r$.

• Initial split to 94: Direct $2^{51.1} M_r$, subsequent $2^{51.8} M_r$.

Total descent cost equivalent of $2^{52.5} M_r$ (or 2^{22} core hours).

Solving the DLP in a supersingular genus 2 curve

The Jacobian of the supersingular hyperelliptic curve

$$H_0/\mathbb{F}_{2^{367}}: Y^2 + Y = X^5 + X^3$$

has a prime order $r = (2^{734}+2^{551}+2^{367}+2^{184}+1)/(13\cdot7170258097)$ subgroup of bitlength 698, which is contained in $\mathbb{F}_{2^{12\cdot367}}$.

• Let q = 64, define $\mathbb{F}_{2^{12\cdot 367}} = \mathbb{F}_{2^{12}}[X]/\langle f \rangle$, where $f \in \mathbb{F}_2[X]$ is the irreducible degree 367 divisor of $h_1(X^q)X - h_0(X^q)$, with

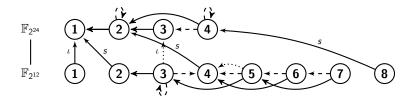
$$h_0 = X^6 + X^4 + X^2 + X + 1$$
, $h_1 = X^5 + X^3 + X + 1$.

• We consider relations over $\mathbb{F}_{q^4} = \mathbb{F}_{2^{24}}$. The automorphism group $A = \operatorname{Gal}(\mathbb{F}_{2^{24}}/\mathbb{F}_2)$ of size 24 acts on the factor base *S*. This *reduces* the linear algebra system to 699252 variables, which was solved in 4896 core hours.

Descent implementation details

We performed a continued fraction *initial split* and degree-balanced *classical descent* to degrees ≤ 8 in 38 224 core hours.

Small degree descent flowchart, using on-the-fly elimination and Gröbner Basis descent, as well as recursive techniques:



This phase required 8432 core hours on Magma V2.20-1. In total we used about 52240 core hours, equivalent to about $2^{48} M_r$.

A new descent method [GKZ14b]

Idea: Use $2 \to 1$ descent over \mathbb{F}_{q^d} for a $2d \to d$ descent over \mathbb{F}_q . Non-heuristic $2 \to 1$ descent: Assume $h_1 = 1$, $\delta_{h_0} = 2$.

$$x^{q+1} + ax^{q} + bx + c = yh_0(y) + ay + bh_0(y) + c$$

We can eliminate Q(y), $\delta_Q = 2$, if there is (a, b, c) such that 1. r. h. s. is divisible by Q(y): $b = at_Q + v_Q$, $c = ar_Q + s_Q$, 2. l. h. s. splits: from Bluher's theorem, if

$$B = \frac{(b-a^q)^{q+1}}{(c-ab)^q} \in \operatorname{Im}\left(u \mapsto \frac{(u^{q^2}-u)^{q+1}}{(u^q-u)^{q^2+1}}\right)$$

Result: Success whenever the curve *C* contains enough points.

$$C: (u^{q^2} - u)^{q+1}(-ta^2 + (-v+r)a + s)^q$$

= $(u^q - u)^{q^2+1}(-a^q + ta + v)^{q+1}$

References

- R. Barbulescu, P. Gaudry, A. Joux, E. Thomé: A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic, EUROCRYPT 2014, eprint.iacr.org/2013/400
 - F. Göloğlu, R. Granger, G. McGuire, J. Zumbrägel: On the Function Field Sieve and the Impact of Higher Splitting Probabilities, CRYPTO 2013, eprint.iacr.org/2013/074
 - A. Joux: A New Index Calculus Algorithm with Complexity L(1/4+o(1))in Very Small Characteristic, Selected Areas in Cryptography 2013, eprint.iacr.org/2013/095
- G. Adj, A. Menezes, T. Oliveira, F. Rodríguez-Henríquez: Weakness of $\mathbb{F}_{3^{6},509}$ for Discrete Logarithm Cryptography, Pairing 2013, eprint.iacr.org/2013/446
- R. Granger, T. Kleinjung, J. Zumbrägel: Breaking '128-bit Secure' Supersingular Binary Curves (or how to solve discrete logarithms in $\mathbb{F}_{24\cdot 1223}$ and $\mathbb{F}_{212\cdot 367}$), CRYPTO 2014, eprint.iacr.org/2014/119

R. Granger, T. Kleinjung, J. Zumbrägel: On the Powers of 2, eprint.iacr.org/2014/300