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A software implementation of Diffie-Hellman key-exchange targeting
128-bit security (EUROCRYPT 2013):

@ Fast: 148,000 cycles (Intel Core i7-3520M — Ivy Bridge) for

key_gen and shared_secret
@ Compact: 256-bit keys (purely x-coordinates only)

@ Constant-time: execution independent of input — side-channel
resistant

Software (in SUPERCOP format) available at:
http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz J
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http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz

© Endomorphisms

replace single scalar with half-sized double-scalars

O Selecting the curve

parameter fine tuning, twist security, large discriminant, . ..

© Endomorphisms on the x-line

use x coordinates throughout, instead of (x,y) coordinates,
and work on curve and twist simultaneously

© Fast finite field arithmetic

non-unique representation, assembly tricks, btrq, . ..
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Let E; and E; be elliptic curves.

@ An isogeny is a homomorphism
¢: By — E; with finite kernel satisfying ¢(0) = O, ¢(E1) # {O}.
@ Let P € E;. Observe that the set
Hom(Ey, E) = {isogenies ¢: E1 — Eg}.
becomes a group under the addition law

(¢ +¥)(P) = ¢(P) + ¥(P).
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@ Now let E := E; = E;. An endomorphism is an element of
End(E) := Hom(E, E).

@ End(E) is called the endomorphism ring of E since we have for all
points on E;

» the addition —homomorphism property—

(¢ +9)(P) = ¢(P) + ¥(P),

» the multiplication —composition—

(@9)(P) = &((P)).
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@ Multiplication-by-m map for m € Z.

[m: P=P+P+...4+P.

m times

Computing [m](P) is the bottleneck for many curve based protocols.

Therefore, we want to speed up [m](P).
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o Let p=1 (mod 4) be a prime. Define
E:y?=x3+ax
over F,. Let x € IFp, suct that k% = —1. Then the map
po (xy) = (=xKy)
is an endomorphism with characteristic polynomial

P(X) = X2 +1.

Suppose N | #E(F,) but N2 #E(F,).
Now, E(FF,) contains exactly one subgroup of order N.
Assume P € E(Fq)[N]. Then pu(P) € E(IFq)[N].
Therefore, p(P) = [A]P for some A € [1, N — 1] when P # O.
Furthermore, A is a root modulo N of P(X).
October 8, 2014 7/ 41



Speeding up scalar multiplication with GLV:

Replace
(m, P) = [m](P)
with
((a;b),P) +— [alP+[blu(P) =
[a]P + [bA](P)
[m](P)

where (a, b) is a short multiscalar decomposition of a random full-length
scalar m.

Endomorphism examples by Gallant/Lambert/Vanstone'01 are only
applicaple to a very limited set of elliptic curves.
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@ The g-power Frobenius endomorphism 7 (if E is defined over ).
mq o (xy) = (x9,y9)
where 74 satisfies the characteristic polynomial
P(X)=X>—tX+gq
where t = g+ 1 — #E(F,).

We have 7q4(P) = P for all P € E(Fg), i.e. the set of points fixed by
mq is exactly E(Fg).

Observe that (X2 — tX + q) mod #E factors as (x — 1)(x — q).
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Ingredients for GLS construction (just an overview):

Q@ E: an elliptic curve defined over IF, where p > 3

@ E’: the quadratic twist of E/sz

© ¢: E — E': twisting T ,e-isomorphism

Q g E— (9E: g-power Frobenius isogeny; (PE = E, so 7p € End(E)

Now define Y= qu?Tqub_l
@ 1) is a (degree 2) F 2-endomorphism of E’ satisfying 12 = [—1]
o If N is a prime such that N | #E(F2) and N > 2p then

V(P)+P=0 for PeE'(Fy)N]

o h(P) = [A]P for P € E'(F,2)[N] where A2 = —1 (mod N)
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Gal

Ingredients for GLS construction (just an overview):
Q@ E: an elliptic curve defined over IF, where p > 3
@ E’: the quadratic twist of E/sz
© ¢: E — E': twisting T ,e-isomorphism
Q g E— (9E: g-power Frobenius isogeny; (PE = E, so 7p € End(E)

Pros and cons (see Smith'13):
@ Approximately p isomorphism classes ©
® #E'(F,2) can be a prime ©
o #E(F,2) cannot be a prime ®
@ Requires checking prohibited points on the quadratic twist &
see Bernstein'06, Fouque/Lercier/Réal/Valette'08
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 Smith's endomorphism A G

Let A be a square-free integer.

Quadratic Q-curves
A quadratic Q-curve of degree d:
@ an elliptic curve E without complex multiplication

o E is defined over Q(v/A)

@ existence of an isogeny of degree d
from E to its Galois conjugate °F,

where

(o) = Gal(Q(VA)/Q)

The Galois conjugate 9E is the curve formed by applying o to all of the

coefficients of E.
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Ingredients for the construction (an overview of the degree 2 case):

O E/Q(VA): a quadratic Q-curve of degree 2

Q E: the elliptic curve “E/Q(v/A) mod p” with J(E/Fr)eFp\TF,
Q ¢ E— (PE: 3 degree 2 isogeny to (Galois) conjugate curve

Q g - (DF — E: the g-power Frobenius isogeny

Now define Y= Tp O o)

® ¢ is a (degree 2p) FF2-endomorphism of E satisfying P2 = [£2]7 2
o If N is a prime such that N | #E(F,2) and N2 { #E(F 2) then

V2(P) £ rp(P)+2p=0 for P € E(F,)[N]

for some integer r.
o )(P) = [\]P for P € E'(F,2)[N] where A* = 42 (mod N)

v
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 Smith’s endomorphism S

Ingredients for the construction (an overview of the degree 2 case):

O E/Q(VA): a quadratic Q-curve of degree 2

Q E: the elliptic curve “E/Q(v/A) mod p” with J(E/Fr)eFp\TF,
Q ¢ E— (PE: 3 degree 2 isogeny to (Galois) conjugate curve

Q 7y: (DE — E: the g-power Frobenius isogeny

Pros and pros (see Smith'13):
@ Approximately p isomorphism classes ©
o #E(F,2) can be a prime ©
o #E'(F,2) can be a prime ©

@ Immune to fault attacks exploiting insecure quadratic twists ©

Hiiseyin Hisil (CHS2013) Endomorphisms on the x-line October 8, 2014 12 /41



Hasegawa family of elliptic curves over Q(v/A):
Ew:y? = x> —6(5 —3sVA)x + 8(7 — 9sV/A).
dw Ew — Ew/((4.0)) = ("E)Y7,

(x,y) — ( P G 5;/_), (1 - 279((1;_5;;25)))
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Hasegawa family of elliptic curves over Q(v/A):
Ew:y? = x> —6(5 —3sVA)x + 8(7 — 9sV/A).
Pw Ew — Ew/((4.0)) = ("E)Y7,
9(1+5\/_) (1_29(1+5\/Z)))

(oy) — ( "y (x — 4)2

Sw: Ew/((4,0) — “Ew, (xy)— (A2, A\3)
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Hasegawa family of elliptic curves over Q(v/A):

Ew:y? = x> —6(5 —3sVA)x + 8(7 — 9sV/A).

dw Ew — Ew/{(4,0)) = (PE)V72,

(x,y) — (x 9(1“;/_), (1—279((1;_5;;25)))
Sw: Ew/((4,0) — “Ew, (xy)— (A2, A\3)
$W: EW — UEW? (Xay)'—>5W($W(X?y))

° %W is defined over Q(\/Z, V=2)
o "Gy ooy = [2] if °(vV=2) = —/=2 and [-2] if °(vV=2) = V—2.
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We reduce EW and $W modulo a “good” p and obtain Eyy and ¢.

We see that
UEW reduces to (P)EW
and

dw: Ew — “Ew  reduces to ¢y : Eyy — PEy.

Yw: Ew — Ew,
(Xay) — Wp(ng(Xay)):

<—XP o1 +sVA) P (-1 9(1+s\/Z)>>

2 xP—4 7 /=2
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@ Assume that 8/A2 — ]. ‘l— S \V/ A from now on.

@ We define £ to be the elliptic curve over IF > with affine Montgomery
model

E:y? =x(x* + Ax+1)

@ If the element 12/A is not a square in Isz, the curve over Isz defined
by
£ (12/A)y? = x(x* + Ax + 1)

is a model of the quadratic twist of £.

@ The twisting I ja-isomorphism § : £ — £’ is defined by

5: (x,y) = (x,y\/A/12).
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@ The map

12 122
51: (X’y) = (XW’YW) = (XX+4a Fy)

defines an IF 2-isomorphism between &’ and the Hasegawa curve in
Weierstrass form.

@ Applying the isomorphisms ¢ and §1, we define efficient

[F j>-endomorphisms

= (010)TYwdrd  and Y = 8dt = 6 Mwdy

of degree 2p on & and &', respectively, each with kernel ((0,0)).
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@ More explicitly, 1) and 1)’ reads as follows:

—12(=1)/2 yPm(x)P )

1/}: (Xa}/)'_> <S(X)’ A(p_l)/zm d(X)Zp

, —12P71\/=2 yPr(x)P
o G (st SRR

n(x) = 4 (x2 +Ax+1) , d(x):=-2x, s(x):=n(x)P/d(x)P,

r(x) = ’LXJ x2—1), m(x):=n'(x)d(x) — n(x)d'(x) .
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 Selecting a secure Montgom ey CHE

We are at a point to fix all free parameters for cryptographic concern:
o Weset A=+/—1=1i, p=22"—1, and F. = Fp[x]/(i® + 1).
o We fix /=2 := 264 .
@ We chose s = 86878915556079486902897638486322141403.
@ Then, we get A= Ap + Ay - i where

Ao = 45116554344555875085017627593321485421
A; = 2415910908  satisfying 8/A% = 1 + sV/A.

@ We define v := 1466100457131508421.
o We define v :=(p—1)/2 =210 — 1 and w:= (p + 1)/4 = 21?5,
o We get

#HE=4-N and #&' =8N
where N is a 252 bit and N/ is a 251 bit prime.
N = v? +2u? and N =2w? — 2.
October 8, 2014 18 / 41



Tar

o Large embedding degrees of £ and &;
Menezes/Okamoto/Vanstone'93 or Frey/Riick'99 attacks are not a
threat.

@ The trace of £ is p? +1 — 4N # =+1, so neither £ nor £ are amenable
to the Smart—-Satoh—Araki-Semaev’'98-'99 attacks.

@ The WEeil restriction of & (or £’) to F, as in the
Gaudry/Hess/Smart'02 produces a simple abelian surface over F;
which is also secure.

e End(&) = Z[v], see the paper.

@ The safecurves specification suggests that the discriminant of the
CM field should have at least 100 bits; our &£ easily meets this
requirement, since Dy has 130 bits.
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Tar

@ Brainpool requires the ideal class number of K to be larger than
107; £ easily meets this requirement: the class number of End(£) is

h(End(£)) = h(Dy) = 27 - 31 - 37517 - 146099 - 505117 ~ 10%° .

@ Both £ and £’ are compatible with the Elligator 2 construction, see
Bernstein/Hamburg/Krasnova/Lange’'13

@ Theorem 5 of Elligator: invertible injective maps F,. — S(sz) and
Fp — &'(Fy). £ and/or £ can be encoded in such a way that they
are indistinguishable from uniformly random 254-bit strings.

@ Twist secure, so immune to Fouque/Lercier/Réal/Valette'08 fault
attacks
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Compact scalar multiplications:
E[Fq: By? = x* + Ax® + x

x([m]P) = LADDER (m,x(P),A)

@ BUT only =~ half of x € F give point on By? = x3 4+ Ax?> + x
@ Other ~ half give point on twist £ : B'y? = x3 + Ax? + x

@ Bernstein'01: LADDER(m, x, A) will give hard ECDLP for all x € Fy if
€ and &' are both secure (i.e. same A for &, £')
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o All possible x € IF;, “partitioned” to & or &’
o But LADDER(m, x, A) doesn't distinguish: so users needn't

o Bernstein'06: curve25519 built on this notion
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// MONTGOMERY CURVE: Y~2*xZ = X"3 + A*xX"2%Z + X*772

function LADDER(k,X1,Z1,A) //MONTGOMERY LADDER
X2:=(X1"2-21"2)"2; Z2:=4*X1*Z1* (X1 2+A*X1*Z1+Z172) ;
X3:=X1; 73:=71;
for j:=#k-1 to 1 by -1 do
if k[j] eq 1 then
X2,72,X3,Z3:=DBLADD(X2,Z2,X3,Z3,X1,Z1,A);
else
X3,Z3,X2,72:=DBLADD(X3,Z3,X2,Z22,X1,Z1,A);
end if;
end for;
return X3,Z3;
end function;
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 xeline scalar multiplication it oi S

// MONTGOMERY CURVE: Y~2%xZ = X~3 + AxX"2%Z + X*Z~2
DBLADD:=function(X2,722,X3,Z3,X1,Z1,A)
X4:=(X2"2-22"2)"2; Z4 :=4xX2xZ2x (X2~ 2+A*xX2xZ2+Z2"2) ; //DBL
X5:=Z1*%(X2*X3-Z2*Z3) "2; Z5:=X1*(X2%Z3-Z2%X3)"2; //ADD

return X4,7Z4,X5,7Z5;
end function;

function LADDER(k,X1,Z1,A) //MONTGOMERY LADDER
X2:=(X1"2-21"2)"2; Z2:=4%X1*Z1* (X1 2+A*X1*Z1+Z1°2) ;
X3:=X1; 73:=71;

for j:=#k-1 to 1 by -1 do
if k[j] eq 1 then
X2,72,X3,Z3:=DBLADD(X2,Z2,X3,Z3,X1,Z1,A);
else
X3,Z3,X2,72:=DBLADD(X3,Z3,X2,Z22,X1,Z1,A);
end if;
end for;
return X3,Z3;
end function;
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__ Scalar decomposition |

We want to evaluate scalar multiplications [m]P as [a]P & [b]y)(P), where
m=a+ b\ (mod N)

and the multiscalar (a, b) has a significantly shorter bitlength than m.

Two extra requirements on (a, b), so as to add a measure of side-channel
resistance:
© both a and b must be positive, to avoid branching and to simplify
our algorithms; and
@ the multiscalar (a, b) must have constant bitlength (independent of
m as m varies over Z), so that multiexponentiation can run in
constant time.
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_ Scalar decomposition 11—
The usual technique:
© Compute a reduced basis for
L ={(N,0),(=\,1)) and  £'={((N,0),(-X,1))
using one of the available techniques e.g. LLL algorithm.
@ Compute the unique (a, §) € Q? satisfying
ae; + fe; = (m,0).

Q Use~Babai rounding to transform each scalar m into the multiscalar
(3, b) by )
(3,b) :=(m,0) — |a]er — [Blez.
o Consequence: Bitlength of 3 and b can be at most 126 bits.

@ Problem: Bitlength of 3 and b can be less than 126 bits.
@ Problem: 3 or b can be negative.
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_ Scalar decomposition IV

o Solution: Add a carefully selected offset vector to (3, b).
(3,b) = (m,0) — Lales — |Fles + 3(e1 + e2).

@ Consequence: Bitlength of a and b are exactly 128 bits.
@ Consequence: Both a and b are positive.

Theorem
Given an integer m, let (a, b) be the multiscalar defined by

a=m+ B —[(v/N)m])v—-23—|—(u/N)m])u
b:=(3— [(v/N)m])u+ (3 —[—(u/N)m])v

We have 21?7 < a, b < 2128 and
m=a+ b\ (mod N).
October 8, 2014 28 / 41




x-lin

@ One dimensional (1-D) ladder:
m,x(P) — x([m]P)

@ Two-dimensional (2-D) ladder:

a, b, x(P), x(¢(P)), x(¥(P) = P) +— x([a]P + [b]4(P))

@ Three 2-D ladders chosen from the literature:

chain by # steps ops per step
PRAC | Montgomery ~ 0.9¢ ~ 1.6 ADD + 0.6 DBL
Azarderakhsh
AK ~ 1.4¢ 1 ADD + 1 DBL
& Karabina
DJB Bernstein 4 2 ADD + 1 DBL

¢ = max{|log, a|, |log, b]} +1
Octaber 8 201430 /a1



o All three chains requires a computation of

x(Y(P) = P) = x((¢y = 1)(P))

Computing the initial difference:
(¥ = Dx(x) = f(x) + g(x) - xPHD72,

where f and g have low degree.

@ Exponentiation to (p + 1)/2 = 226 — 126 squarings

@ (¢ — 1) not as fast as 1)y, or other endomorphisms around, but it
could be worse . ..
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@ The pseudo-doubling on P! is
[21((X : Z)) = (X + Z)*(X — 2)?: (4XZ) (X — 2)* + 22 . 4X2Z))
@ Our endomorphism v induces the pseudo-endomorphism
Gl(X 2 2)) = (AP (X = 2)? = 442(-2X2))" - A(-2X2)P) .

o Composing 1 with itself, we confirm that ¥, = —[2]x(7g)x.
® ¢ + 1 is as follows:

(¥ = 1x(x) = (' = Du(x)
_252nd* — x(xn)Pm?P AP~ mP(xn)(Pt1)/2,/ =2
© 2s(x — s)2d*rAP-1 i AlP—1)/2(x — 5)2d2p °
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_ Performance results vy B rid S

The routine
Input: scalar m € Z and x(P) € Fp2

© a, b < DECOMPOSE(m)

Q x(¥(P)),x((¢ — 1)(P)) « ENDO(x(P))

Q x([m]P) « CHAIN (x(P), x(4:(P)), x((¢ — 1)(P))
Output: x([m]P)

CHAIN  dimension uniform?  constant time? cycles
LADDER 1 v v 159,000
DJB 2 v v 148,000
AK 2 v X 133,000
PRAC 2 X X 109,000

Compare to curve25519 (V& v'): 182,000 cycles
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@ Slightly faster/simpler if choosing (a, b) at random (see paper)

o Faster key_gen in ephemeral Diffie-Hellman: Alice may want to
exploit pre-computations on the public generator x(P):

» precompute x(t(P)) and x((v) + 1)P), or

> Alice works on twisted Edwards form of £ before pushing to x-line for
Bob

@ Genus 2 analogue still open: even more attractive on the Kummer
surface
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@ Yanik/Tugrul/Koc'02, Longa/Miri'08

> Inputs come from range [0, p — 1].
» Outputs are generated in range [0,2° — 1].
» An addition is prohibited to be followed by another addition

@ This restriction can be eliminated for p = 2127 — 1:
> Inputs come from range [0, 21?7 — 1].

» Outputs are generated in range [0, 212" — 1].

» An addition can be followed by another addition
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The operation f := (a+ b) mod p is replaced by the following algorithm:
Let a,b € Z such that 0 < a,b < p

Q c:=(a+ b) mod 2!

Q d:=(c,c1,...,¢126), €:=(c127)

© f:=(d+e) mod 2?8

o Line-1: Noticethat 0 < c=a+b<2p < 2128
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_ Semi-reduced addition mod O

The operation f := (a+ b) mod p is replaced by the following algorithm:
Let a,b € Z such that 0 < a,b < p

O c:=(a+ b) mod 2!%®

Q d:=(c,c1,...,¢126), €:=(c127)

© f:=(d+e) mod 2?8

@ Line-1: Notice that 0 < c = a+ b < 2p < 2128,
@ Line-2: Write ¢ = d + 2'%"¢ for integers 0 < d < 2?7 and e. There
are two cases to investigate:
» Case 1: Assume that a+ b < p. The bounds on ¢ and d imply that
{0/2127J < {C/2127J — L(d+2127e)/2127J —
|d/2127| + |21%7e/21%7| = e < | p/2'%"|, s0 e = 0. Thus
at+b=d+2%e=d+2%.0=d+0=d+e (mod p).
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 Semi-reduced addition MmO O

The operation f := (a+ b) mod p is replaced by the following algorithm:
Let a,b € Z such that 0 < a,b < p

O c:=(a+ b) mod 2!%®

Q d:=(c,c1,...,¢126), €:=(c127)

© f:=(d+e) mod 2?8

@ Line-1: Notice that 0 < c = a+ b < 2p < 2128,
@ Line-2: Write ¢ = d + 2'%"¢ for integers 0 < d < 2?7 and e. There
are two cases to investigate:

» Case 2: Assume that a+ b > p. Then p < ¢ < 2p. The bounds on ¢
and d imply that |(p+1)/2'%"| < e < [2p/2'%"|, so e=1. The
bounds on ¢ also imply that p — 21?7 < ¢ — 2127 < 2p — 2127 and we
have d = c —2%e=¢c—2"" 500<d < p. Thus
at+tb=d+2%e=d+2%.1=d+1=d+e (mod p).
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The operation f := (a+ b) mod p is replaced by the following algorithm:
Let a,b € Z such that 0 < a,b < p

Q c:=(a+ b) mod 2!

Q d:=(c,c1,...,¢126), €:=(c127)

© f:=(d+e) mod 2?8

o Line-1: Noticethat 0 < c=a+b<2p < 2128

o Line-3: A semi-reduced output is given by f := (d + e) mod 2!,
observing that 0 < f < p.
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Max 9 instructions:

movq 8*0+0PERAND1, %ril2
addq 8+*0+0PERAND2, %ril2
movq 8*1+0PERAND1, Yrsi
adcq 8*1+0PERAND2, Y%rsi
btrq $63, Yrsi

adcq $0, %ri2

movq %rl2, 8+0+0UTPUT
adcq $0, %rsi

movq %rsi, 8*1+0UTPUT
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The operation f := (a — b) mod p is replaced by the following algorithm:
a,be Zsuchthat 0 <a,b<p

Q c:=(a— b) mod 2!

Q d:=(c,c1,...,¢126), €:=(c127)

© f:=(d—e) mod 2?8

@ Line-1: Notice that 0 < ¢ < 2128,
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 Semi-reduced subtraction i d N

The operation f := (a — b) mod p is replaced by the following algorithm:
a,be Zsuchthat 0<a,b<p

Q c:=(a— b) mod 2!

Q d:=(c,c1,...,¢126), €:=(c127)

© f:=(d—e) mod 2?8

@ Line-1: Notice that 0 < ¢ < 2128,
@ Line-2: Write ¢ = d + 21?7 ¢ for integers 0 < d < 227 and e. There
are two cases to investigate:
» Case 1. Assume that a> b. Then 0 < ¢c=a— b < p. The bounds on
c and d imply that
[0/2127| < |c/2¥| = |(d +2'%7€)/21%"| = e < |p/2"|, 50 e = 0.
Thusa— b=d+2%e=d — e (mod p).
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_ Semi-reduced subtraction o

The operation f := (a — b) mod p is replaced by the following algorithm:
a,be Zsuchthat 0<a,b<p

Q c:=(a— b) mod 2!

Q d:=(c,c1,...,¢126), €:=(c127)

© f:=(d—e) mod 2?8

@ Line-1: Notice that 0 < ¢ < 2128,
@ Line-2: Write ¢ = d + 21?7 ¢ for integers 0 < d < 227 and e. There
are two cases to investigate:

» Case 2: Assume that a < b. Then ¢ = 21 4 2 — b and
—p<a—b<0. So, 21" < ¢ < 2'28_ The bounds on ¢ and d imply
that [(2127 +1)/21%7] < e < [(2!% —1)/2'%|, so e = 1. The bounds
on c also imply that 2127 — 2127 < ¢ — 2127 < 2128 _ 2127 ‘3nd we have
d=c—2%e=c—2"" S0, 0<d<pandd>e Thus
a—b=28+a-b)-2B=c_2B=¢ 42127 218 =¢d_¢
(mod p).
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The operation f := (a — b) mod p is replaced by the following algorithm:
a,be Zsuchthat 0 <a,b<p

Q c:=(a— b) mod 2!

Q d:=(c,c1,...,¢126), €:=(c127)

© f:=(d—e) mod 2?8

@ Line-1: Notice that 0 < ¢ < 2128,

o Line-3: A semi-reduced output is given by f := (d — e) mod 2128,
observing that 0 < f < p.
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Max 9 instructions:

movq 8*0+0PERAND1, %ril2
subq 8+0+0PERAND2, %ri12
movq 8*1+0PERAND1, Yrsi
sbbq 8+1+0PERAND2, Yrsi
btrq $63, Yrsi

sbbq $0, %ri2

movq %rl2, 8+0+0UTPUT
sbbq $0, %rsi

movq %rsi, 8*1+0UTPUT
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The operation f := (a- b) mod p is replaced by the following algorithm:
Let a,b € Z such that 0 < a,b < p
© c := (ab) mod 2%56

Q d:=(co,c1,...,C106), €:= (c127,C128; - - -, ©253)
© f := semi-add(d, e)

@ Line-1: Notice that 0 < ¢ = ab < p? < 2256,
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The operation f := (a- b) mod p is replaced by the following algorithm:
Let a,b € Z such that 0 < a,b < p
© c := (ab) mod 2%56

Q d = (Co, Cly..., C126), e .= (C127, C1285 - -+ C253)
© f := semi-add(d, e)

@ Line-1: Notice that 0 < ¢ = ab < p? < 2256,

o Line-2: Write ¢ = d + 2'%¢ for integers 0 < d < 21?7 and e. The
bounds on ¢ and d imply that
L0/2127J < LC/2127J _ L(d+2127e)/2127J —e< Lp2/2127J, o
0<e<p.
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_ Semi-reduced multiplication o

The operation f := (a- b) mod p is replaced by the following algorithm:
Let a,b € Z such that 0 < a,b < p

© c := (ab) mod 2%56

Q d:=(c,c1,...,c16), € := (c127, C128, - - - , C253)

© f := semi-add(d, e)

@ Line-1: Notice that 0 < ¢ = ab < p? < 2256,

@ Line-3: Noting that
ab=d+2%e=d+ (2% —1)et+e=d+pet+e=d+e (mod p),
that 0 < d,e < p, and that 0 < d + e < 2p, a semi-reduced output is
obtained by semi-reduced addition applied on the operands d and e.
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Max 27 instructions:

movq 8*0+0PERAND1, Y%rax
mulq 8+%1+0PERAND2

movq %rdx, %ri0

movq %rax, %rsi

movq 8*1+0PERAND1, Y%rax
mulq 8*0+0PERAND2

addq Y%rax, Jrsi

adcq Y%rdx, %ri0

movq 8*0+0PERAND2, Y%rax
mulq 8+*0+0PERAND1

addq Y%rdx, Jrsi

movq %rax, %ri2

adcq $0, %ri0

movq 8*1+0PERAND1, Y%rax
mulq 8+%1+0PERAND2

addq %r10, Yrax

adcq $0, %rdx

addq %rax, Yrax

adcq %rdx, %rdx

btrq $63, %rsi

adcq Yrax, %ri2

adcq %rdx, Yrsi

btrq $63, Yrsi

adcq $0, %ri2

movq %ri2, 8*0+0UTPUT
adcq $0, %rsi

movq %rsi, 8%1+0UTPUT

Hiiseyin Hisil (CHS2013)




Full version
http://eprint.iacr.org/2013/692

C-and-assembly software implementation
http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz

Magma scripts

http://research.microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/
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