
Faster Compact DiffieHellman:

Endomorphisms on the x-line

Craig Costello

craigco@microsoft.com

Microsoft Resesarch
Redmond

Seattle, USA
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Yaşar University
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At a high level. . .

A software implementation of Diffie-Hellman key-exchange targeting
128-bit security (EUROCRYPT 2013):

Fast: 148,000 cycles (Intel Core i7-3520M – Ivy Bridge) for

key gen and shared secret

Compact: 256-bit keys (purely x-coordinates only)

Constant-time: execution independent of input – side-channel
resistant

Software (in SUPERCOP format) available at:

http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz
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Outline

1 Endomorphisms

replace single scalar with half-sized double-scalars

2 Selecting the curve

parameter fine tuning, twist security, large discriminant, . . .

3 Endomorphisms on the x-line

use x coordinates throughout, instead of (x , y) coordinates,
and work on curve and twist simultaneously

4 Fast finite field arithmetic

non-unique representation, assembly tricks, btrq, . . .
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Standard definitions I [Silverman]

Let E1 and E2 be elliptic curves.

An isogeny is a homomorphism

φ : E1 → E2 with finite kernel satisfying φ(O) = O, φ(E1) 6= {O}.

Let P ∈ E1. Observe that the set

Hom(E1,E2) :=
{
isogenies φ : E1 → E2

}
.

becomes a group under the addition law

(φ+ ψ)(P) = φ(P) + ψ(P).
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Standard definitions II [Silverman]

Now let E := E1 = E2. An endomorphism is an element of

End(E ) := Hom(E ,E ).

End(E ) is called the endomorphism ring of E since we have for all
points on E ;

◮ the addition –homomorphism property–

(φ+ ψ)(P) = φ(P) + ψ(P),

◮ the multiplication –composition–

(φψ)(P) = φ(ψ(P)).
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Classic examples for endomorphisms

Multiplication-by-m map for m ∈ Z.

[m] : P 7→ P + P + . . . + P︸ ︷︷ ︸
m times

.

Computing [m](P) is the bottleneck for many curve based protocols.

Therefore, we want to speed up [m](P).
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Classic examples for endomorphisms

Let p ≡ 1 (mod 4) be a prime. Define

E : y2 = x3 + ax

over Fp. Let κ ∈ Fp suct that κ2 = −1. Then the map

µ : (x , y) 7−→ (−x , κy)
is an endomorphism with characteristic polynomial

P(X ) = X 2 + 1.

Suppose N | #E (Fq) but N
2 ∤ #E (Fq).

Now, E (Fq) contains exactly one subgroup of order N.

Assume P ∈ E (Fq)[N]. Then µ(P) ∈ E (Fq)[N].

Therefore, µ(P) = [λ]P for some λ ∈ [1,N − 1] when P 6= O.
Furthermore, λ is a root modulo N of P(X ).
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Gallant/Lambert/Vanstone technique CRYPTO’01

Speeding up scalar multiplication with GLV:

Replace
(m,P) 7→ [m](P)

with

((a, b),P) 7−→ [a]P + [b]µ(P) =

[a]P + [bλ](P) =

[m](P)

where (a, b) is a short multiscalar decomposition of a random full-length
scalar m.

Endomorphism examples by Gallant/Lambert/Vanstone’01 are only
applicaple to a very limited set of elliptic curves.
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Classic examples for endomorphisms

The q-power Frobenius endomorphism πq (if E is defined over Fq).

πq : (x , y) 7→ (xq , yq)

where πq satisfies the characteristic polynomial

P(X ) = X 2 − tX + q

where t = q + 1−#E (Fq).

We have πq(P) = P for all P ∈ E (Fq), i.e. the set of points fixed by
πq is exactly E (Fq).

Observe that (X 2 − tX + q) mod #E factors as (x − 1)(x − q).
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Galbraith/Lin/Scott endomorphism EUROCRYPT’09

Ingredients for GLS construction (just an overview):

1 E : an elliptic curve defined over Fp where p > 3

2 E ′: the quadratic twist of E/Fp2

3 φ : E → E ′: twisting Fp4-isomorphism

4 πq : E → (q)E : q-power Frobenius isogeny; (p)E = E , so πp ∈ End(E )

Now define ψ := φ ◦ πp ◦ φ−1
ψ is a (degree 2) Fp2-endomorphism of E ′ satisfying ψ2 = [−1]
If N is a prime such that N | #E (Fp2) and N > 2p then

ψ2(P) + P = O for P ∈ E ′(Fp2)[N]

ψ(P) = [λ]P for P ∈ E ′(Fp2)[N] where λ2 ≡ −1 (mod N)
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Galbraith/Lin/Scott endomorphism EUROCRYPT’09

Ingredients for GLS construction (just an overview):

1 E : an elliptic curve defined over Fp where p > 3

2 E ′: the quadratic twist of E/Fp2

3 φ : E → E ′: twisting Fp4-isomorphism

4 πq : E → (q)E : q-power Frobenius isogeny; (p)E = E , so πp ∈ End(E )

Pros and cons (see Smith’13):

Approximately p isomorphism classes ,

#E ′(Fp2) can be a prime ,

#E (Fp2) cannot be a prime /

Requires checking prohibited points on the quadratic twist /

see Bernstein’06, Fouque/Lercier/Réal/Valette’08

Hüseyin Hışıl (CHS2013) Endomorphisms on the x-line October 8, 2014 10 / 41



Smith’s endomorphism ASIACRYPT’13

Let ∆ be a square-free integer.

Quadratic Q-curves

A quadratic Q-curve of degree d :

an elliptic curve Ẽ without complex multiplication

Ẽ is defined over Q(
√
∆)

existence of an isogeny of degree d

from E to its Galois conjugate σẼ ,

where

〈σ〉 = Gal(Q(
√
∆)/Q)

The Galois conjugate σẼ is the curve formed by applying σ to all of the
coefficients of E .
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Smith’s endomorphism ASIACRYPT’13

Ingredients for the construction (an overview of the degree 2 case):

1 Ẽ/Q(
√
∆): a quadratic Q-curve of degree 2

2 E : the elliptic curve “Ẽ/Q(
√
∆) mod p” with j(E/Fp2) ∈ Fp2 \ Fp

3 φ : E → (p)E : a degree 2 isogeny to (Galois) conjugate curve

4 πq :
(q)E → E : the q-power Frobenius isogeny

Now define ψ := πp ◦ φ
ψ is a (degree 2p) Fp2-endomorphism of E satisfying ψ2 = [±2]πp2
If N is a prime such that N | #E (Fp2) and N2 ∤ #E (Fp2) then

ψ2(P)± rψ(P) + 2p = O for P ∈ E (Fp2)[N]

for some integer r .
ψ(P) = [λ]P for P ∈ E ′(Fp2)[N] where λ2 ≡ ±2 (mod N)
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Smith’s endomorphism ASIACRYPT’13

Ingredients for the construction (an overview of the degree 2 case):

1 Ẽ/Q(
√
∆): a quadratic Q-curve of degree 2

2 E : the elliptic curve “Ẽ/Q(
√
∆) mod p” with j(E/Fp2) ∈ Fp2 \ Fp

3 φ : E → (p)E : a degree 2 isogeny to (Galois) conjugate curve

4 πq :
(q)E → E : the q-power Frobenius isogeny

Pros and pros (see Smith’13):

Approximately p isomorphism classes ,

#E (Fp2) can be a prime ,

#E ′(Fp2) can be a prime ,

Immune to fault attacks exploiting insecure quadratic twists ,
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Writing the Smith’s endomorphism explicitly I

Hasegawa family of elliptic curves over Q(
√
∆):

ẼW : y2 = x3 − 6(5 − 3s
√
∆)x + 8(7 − 9s

√
∆).

φ̂W : ẼW −→ ẼW /〈(4, 0)〉 = (σẼ )
√
−2,

(x , y) 7−→
(
x + 2

9(1 + s
√
∆)

x − 4
, y

(
1− 2

9(1 + s
√
∆)

(x − 4)2

))

δW : ẼW /〈(4, 0)〉 −→ σẼW , (x , y) 7−→
(
λ2x , λ3y

)

φ̃W : ẼW −→ σẼW , (x , y) 7−→ δW (φ̂W (x , y))

φ̃W is defined over Q(
√
∆,
√
−2)

σφ̃W ◦ φ̃W = [2] if σ(
√
−2) = −

√
−2 and [−2] if σ(

√
−2) =

√
−2.
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Writing the Smith’s endomorphism explicitly II

We reduce ẼW and φ̃W modulo a “good” p and obtain EW and φ.

We see that

σẼW reduces to (p)EW

and

φ̃W : ẼW → σẼW reduces to φW : EW → (p)EW .

πp : (p)EW −→ EW (x , y) 7−→
(
(p)x , (p)y

)

ψW : EW −→ EW ,

(x , y) 7−→ πp(φW (x , y)) =
(
−xp
2
− 9(1 + s

√
∆)

xp − 4
,

yp√
−2

(
−1
2

+
9(1 + s

√
∆)

(xp − 4)2

))
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Smith’s endomorphism for Montgomery form I

Assume that 8/A2 = 1 + s
√
∆ from now on.

We define E to be the elliptic curve over Fp2 with affine Montgomery
model

E : y2 = x(x2 + Ax + 1)

If the element 12/A is not a square in Fp2 , the curve over Fp2 defined
by

E ′ : (12/A)y2 = x(x2 + Ax + 1)

is a model of the quadratic twist of E .

The twisting Fp4-isomorphism δ : E → E ′ is defined by

δ : (x , y) 7→ (x , y
√

A/12).

Hüseyin Hışıl (CHS2013) Endomorphisms on the x-line October 8, 2014 15 / 41



Smith’s endomorphism for Montgomery form II

The map

δ1 : (x , y) 7→ (xW , yW ) = (
12

A
x + 4,

122

A2
y)

defines an Fp2-isomorphism between E ′ and the Hasegawa curve in
Weierstrass form.

Applying the isomorphisms δ and δ1, we define efficient
Fp2-endomorphisms

ψ := (δ1δ)
−1ψW δ1δ and ψ′ := δψδ−1 = δ−1

1 ψW δ1

of degree 2p on E and E ′, respectively, each with kernel 〈(0, 0)〉.
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Smith’s endomorphism for Montgomery form III

More explicitly, ψ and ψ′ reads as follows:

ψ : (x , y) 7−→
(
s(x) ,

−12(p−1)/2

A(p−1)/2
√
−2

ypm(x)p

d(x)2p

)
,

ψ′ : (x , y) 7−→
(
s(x) ,

−12p−1
√
−2

Ap−1

ypr(x)p

d(x)2p

)

where

n(x) := Ap

A

(
x2 + Ax + 1

)
, d(x) := −2x , s(x) := n(x)p/d(x)p ,

r(x) := Ap

A
(x2 − 1) , m(x) := n′(x)d(x) − n(x)d ′(x) .
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Selecting a secure Montgomery curve y 2 = x3 + Ax + x

We are at a point to fix all free parameters for cryptographic concern:

We set ∆ =
√
−1 = i , p = 2127 − 1, and Fp2 = Fp[x ]/〈i2 + 1〉.

We fix
√
−2 := 264 · i .

We chose s = 86878915556079486902897638486322141403.

Then, we get A = A0 + A1 · i where
{

A0 = 45116554344555875085017627593321485421 ,

A1 = 2415910908 satisfying 8/A2 = 1 + s
√
∆.

We define u := 1466100457131508421.

We define v := (p − 1)/2 = 2126 − 1 and w := (p + 1)/4 = 2125.

We get
#E = 4 · N and #E ′ = 8 · N ′

where N is a 252 bit and N ′ is a 251 bit prime.

N = v2 + 2u2 and N ′ = 2w2 − u2.
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Targeting 128-bit security level

Large embedding degrees of E and E ′;
Menezes/Okamoto/Vanstone’93 or Frey/Rück’99 attacks are not a
threat.

The trace of E is p2 +1− 4N 6= ±1, so neither E nor E ′ are amenable
to the Smart–Satoh–Araki–Semaev’98 -’99 attacks.

The Weil restriction of E (or E ′) to Fp as in the
Gaudry/Hess/Smart’02 produces a simple abelian surface over Fp;
which is also secure.

End(E) = Z[ψ], see the paper.

The safecurves specification suggests that the discriminant of the
CM field should have at least 100 bits; our E easily meets this
requirement, since DK has 130 bits.
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Targeting 128-bit security level

Brainpool requires the ideal class number of K to be larger than
107; E easily meets this requirement: the class number of End(E) is

h(End(E)) = h(DK ) = 27 · 31 · 37517 · 146099 · 505117 ∼ 1019 .

Both E and E ′ are compatible with the Elligator 2 construction, see
Bernstein/Hamburg/Krasnova/Lange’13

Theorem 5 of Elligator: invertible injective maps Fp2 → E(Fp2) and
Fp2 → E ′(Fp2). E and/or E ′ can be encoded in such a way that they
are indistinguishable from uniformly random 254-bit strings.

Twist secure, so immune to Fouque/Lercier/Réal/Valette’08 fault
attacks
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The importance of twist-security

Compact scalar multiplications:

E/Fq : By2 = x3 + Ax2 + x

x([m]P) = LADDER (m, x(P),A)

BUT only ≈ half of x ∈ Fq give point on By2 = x3 + Ax2 + x

Other ≈ half give point on twist E ′ : B ′y2 = x3 + Ax2 + x

Bernstein’01: LADDER(m, x ,A) will give hard ECDLP for all x ∈ Fq if
E and E ′ are both secure (i.e. same A for E , E ′)
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The picture

••••••• ••••••••••••••••••••••••••••• ••••••• •••••••••••••••••••••••••••••

All possible x ∈ Fq “partitioned” to E or E ′

But LADDER(m, x ,A) doesn’t distinguish: so users needn’t

Bernstein’06: curve25519 built on this notion
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x-line scalar multiplication without endomorphisms

// MONTGOMERY CURVE: Y^2*Z = X^3 + A*X^2*Z + X*Z^2

function LADDER(k,X1,Z1,A) //MONTGOMERY LADDER

X2:=(X1^2-Z1^2)^2; Z2:=4*X1*Z1*(X1^2+A*X1*Z1+Z1^2);

X3:=X1; Z3:=Z1;

for j:=#k-1 to 1 by -1 do

if k[j] eq 1 then

X2,Z2,X3,Z3:=DBLADD(X2,Z2,X3,Z3,X1,Z1,A);

else

X3,Z3,X2,Z2:=DBLADD(X3,Z3,X2,Z2,X1,Z1,A);

end if;

end for;

return X3,Z3;

end function;
Hüseyin Hışıl (CHS2013) Endomorphisms on the x-line October 8, 2014 23 / 41



x-line scalar multiplication without endomorphisms

// MONTGOMERY CURVE: Y^2*Z = X^3 + A*X^2*Z + X*Z^2

DBLADD:=function(X2,Z2,X3,Z3,X1,Z1,A)

X4:=(X2^2-Z2^2)^2; Z4:=4*X2*Z2*(X2^2+A*X2*Z2+Z2^2); //DBL

X5:=Z1*(X2*X3-Z2*Z3)^2; Z5:=X1*(X2*Z3-Z2*X3)^2; //ADD

return X4,Z4,X5,Z5;

end function;

function LADDER(k,X1,Z1,A) //MONTGOMERY LADDER

X2:=(X1^2-Z1^2)^2; Z2:=4*X1*Z1*(X1^2+A*X1*Z1+Z1^2);

X3:=X1; Z3:=Z1;

for j:=#k-1 to 1 by -1 do

if k[j] eq 1 then

X2,Z2,X3,Z3:=DBLADD(X2,Z2,X3,Z3,X1,Z1,A);

else

X3,Z3,X2,Z2:=DBLADD(X3,Z3,X2,Z2,X1,Z1,A);

end if;

end for;

return X3,Z3;

end function;
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Scalar decomposition I

We want to evaluate scalar multiplications [m]P as [a]P ⊕ [b]ψ(P), where

m ≡ a+ bλ (mod N)

and the multiscalar (a, b) has a significantly shorter bitlength than m.

Two extra requirements on (a, b), so as to add a measure of side-channel
resistance:

1 both a and b must be positive, to avoid branching and to simplify
our algorithms; and

2 the multiscalar (a, b) must have constant bitlength (independent of
m as m varies over Z), so that multiexponentiation can run in
constant time.
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Scalar decomposition II

The usual technique:

1 Compute a reduced basis for

L = 〈(N, 0), (−λ, 1)〉 and L′ =
〈
(N ′, 0), (−λ′, 1)

〉

using one of the available techniques e.g. LLL algorithm.

2 Compute the unique (α, β) ∈ Q2 satisfying

αe1 + βe2 = (m, 0).

3 Use Babai rounding to transform each scalar m into the multiscalar
(ã, b̃) by

(ã, b̃) := (m, 0)− ⌊α⌉e1 − ⌊β⌉e2.

Consequence: Bitlength of ã and b̃ can be at most 126 bits.

Problem: Bitlength of ã and b̃ can be less than 126 bits.

Problem: ã or b̃ can be negative.
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Scalar decomposition III

−2126 2126 2127 2128

−2126

2126

2127

2128
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Scalar decomposition IV

Solution: Add a carefully selected offset vector to (ã, b̃).

(a, b) := (m, 0)− ⌊α⌉e1 − ⌊β⌉e2 + 3(e1 + e2).

Consequence: Bitlength of a and b are exactly 128 bits.

Consequence: Both a and b are positive.

Theorem

Given an integer m, let (a, b) be the multiscalar defined by

a := m + (3− ⌊(v/N)m⌉) v − 2 (3− ⌊−(u/N)m⌉) u
b := (3− ⌊(v/N)m⌉) u + (3− ⌊−(u/N)m⌉) v

We have 2127 < a, b < 2128, and

m ≡ a + bλ (mod N).
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x-line scalar multiplication with endomorphisms

One dimensional (1-D) ladder:

m, x(P) 7−→ x([m]P)

Two-dimensional (2-D) ladder:

a, b, x(P), x(ψ(P)), x(ψ(P) − P) 7−→ x([a]P + [b]ψ(P))

Three 2-D ladders chosen from the literature:

chain by # steps ops per step

PRAC Montgomery ≈ 0.9ℓ ≈ 1.6 ADD+ 0.6 DBL

AK
Azarderakhsh ≈ 1.4ℓ 1 ADD+ 1 DBL
& Karabina

DJB Bernstein ℓ 2 ADD+ 1 DBL

ℓ = max{⌊log2 a⌋, ⌊log2 b⌋}+ 1
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Kickstarting 2-D addition chains . . .

All three chains requires a computation of

x(ψ(P)− P) = x ((ψ − 1)(P))

Computing the initial difference:

(ψ − 1)x(x) = f (x) + g(x) · x (p+1)/2,

where f and g have low degree.

Exponentiation to (p + 1)/2 = 2126 −→ 126 squarings

(ψ − 1)x not as fast as ψx , or other endomorphisms around, but it
could be worse . . .
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Projective ψ and ψ + 1

The pseudo-doubling on P1 is

[2]x((X : Z )) =
(
(X + Z )2(X − Z )2 : (4XZ )

(
(X − Z )2 + A+2

4 · 4XZ
))
.

Our endomorphism ψ induces the pseudo-endomorphism

ψx((X : Z )) =
(
Ap
(
(X − Z )2 − A+2

2 (−2XZ )
)p

: A(−2XZ )p
)
.

Composing ψx with itself, we confirm that ψxψx = −[2]x(πq)x .
ψ + 1 is as follows:

(ψ − 1)x (x) = (ψ′ − 1)x (x)

=
2s2nd4p − x(xn)pm2pAp−1

2s(x − s)2d4pAp−1
∓ mp(xn)(p+1)/2

√
−2

A(p−1)/2(x − s)2d2p
.
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Performance results (Ivy Bridge)

The routine

Input: scalar m ∈ Z and x(P) ∈ Fp2

1 a, b ← DECOMPOSE(m)

2 x(ψ(P)), x((ψ − 1)(P))← ENDO(x(P))

3 x([m]P)← CHAIN (x(P), x(ψ(P)), x((ψ − 1)(P))

Output: x([m]P)

CHAIN dimension uniform? constant time? cycles

LADDER 1 ✓ ✓ 159,000

DJB 2 ✓ ✓ 148,000

AK 2 ✓ ✗ 133,000

PRAC 2 ✗ ✗ 109,000

Compare to curve25519 (✓& ✓): 182,000 cycles
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Variants / alternatives / spin-offs . . .

Slightly faster/simpler if choosing (a, b) at random (see paper)

Faster key gen in ephemeral Diffie-Hellman: Alice may want to
exploit pre-computations on the public generator x(P):

◮ precompute x(ψ(P)) and x((ψ + 1)P), or

◮ Alice works on twisted Edwards form of E before pushing to x-line for
Bob

Genus 2 analogue still open: even more attractive on the Kummer
surface
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Incomplete reduction modulo primes of the form 2b − c

Yanik/Tugrul/Koc’02, Longa/Miri’08
◮ Inputs come from range [0, p − 1].

◮ Outputs are generated in range [0, 2b − 1].

◮ An addition is prohibited to be followed by another addition

This restriction can be eliminated for p = 2127 − 1:
◮ Inputs come from range [0, 2127 − 1].

◮ Outputs are generated in range [0, 2127 − 1].

◮ An addition can be followed by another addition
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Semi-reduced addition modulo p = 2127 − 1

The operation f := (a + b) mod p is replaced by the following algorithm:

Let a, b ∈ Z such that 0 ≤ a, b ≤ p

1 c := (a + b) mod 2128

2 d := (c0, c1, . . . , c126), e := (c127)

3 f := (d + e) mod 2128

Line-1: Notice that 0 ≤ c = a+ b ≤ 2p < 2128.
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Semi-reduced addition modulo p = 2127 − 1

The operation f := (a + b) mod p is replaced by the following algorithm:

Let a, b ∈ Z such that 0 ≤ a, b ≤ p

1 c := (a + b) mod 2128

2 d := (c0, c1, . . . , c126), e := (c127)

3 f := (d + e) mod 2128

Line-1: Notice that 0 ≤ c = a+ b ≤ 2p < 2128.

Line-2: Write c = d + 2127e for integers 0 ≤ d < 2127 and e. There
are two cases to investigate:

◮ Case 1: Assume that a+ b ≤ p. The bounds on c and d imply that⌊
0/2127

⌋
≤
⌊
c/2127

⌋
=
⌊
(d + 2127e)/2127

⌋
=⌊

d/2127
⌋
+
⌊
2127e/2127

⌋
= e ≤

⌊
p/2127

⌋
, so e = 0. Thus

a+ b ≡ d + 2127e ≡ d + 2127 · 0 ≡ d + 0 ≡ d + e (mod p).
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Semi-reduced addition modulo p = 2127 − 1

The operation f := (a + b) mod p is replaced by the following algorithm:

Let a, b ∈ Z such that 0 ≤ a, b ≤ p

1 c := (a + b) mod 2128

2 d := (c0, c1, . . . , c126), e := (c127)

3 f := (d + e) mod 2128

Line-1: Notice that 0 ≤ c = a+ b ≤ 2p < 2128.

Line-2: Write c = d + 2127e for integers 0 ≤ d < 2127 and e. There
are two cases to investigate:

◮ Case 2: Assume that a+ b > p. Then p < c ≤ 2p. The bounds on c
and d imply that

⌊
(p + 1)/2127

⌋
≤ e ≤

⌊
2p/2127

⌋
, so e = 1. The

bounds on c also imply that p − 2127 < c − 2127 ≤ 2p − 2127 and we
have d = c − 2127e = c − 2127, so 0 ≤ d < p. Thus
a+ b ≡ d + 2127e ≡ d + 2127 · 1 ≡ d + 1 ≡ d + e (mod p).
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Semi-reduced addition modulo p = 2127 − 1

The operation f := (a + b) mod p is replaced by the following algorithm:

Let a, b ∈ Z such that 0 ≤ a, b ≤ p

1 c := (a + b) mod 2128

2 d := (c0, c1, . . . , c126), e := (c127)

3 f := (d + e) mod 2128

Line-1: Notice that 0 ≤ c = a+ b ≤ 2p < 2128.

Line-3: A semi-reduced output is given by f := (d + e) mod 2128,
observing that 0 ≤ f ≤ p.
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Semi-reduced addition modulo p = 2127 − 1

Max 9 instructions:

movq 8*0+OPERAND1, %r12

addq 8*0+OPERAND2, %r12

movq 8*1+OPERAND1, %rsi

adcq 8*1+OPERAND2, %rsi

btrq $63, %rsi

adcq $0, %r12

movq %r12, 8*0+OUTPUT

adcq $0, %rsi

movq %rsi, 8*1+OUTPUT
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Semi-reduced subtraction modulo p = 2127 − 1

The operation f := (a − b) mod p is replaced by the following algorithm:

a, b ∈ Z such that 0 ≤ a, b ≤ p

1 c := (a − b) mod 2128

2 d := (c0, c1, . . . , c126), e := (c127)

3 f := (d − e) mod 2128

Line-1: Notice that 0 ≤ c < 2128.
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Semi-reduced subtraction modulo p = 2127 − 1

The operation f := (a − b) mod p is replaced by the following algorithm:

a, b ∈ Z such that 0 ≤ a, b ≤ p

1 c := (a − b) mod 2128

2 d := (c0, c1, . . . , c126), e := (c127)

3 f := (d − e) mod 2128

Line-1: Notice that 0 ≤ c < 2128.

Line-2: Write c = d + 2127e for integers 0 ≤ d < 2127 and e. There
are two cases to investigate:

◮ Case 1: Assume that a ≥ b. Then 0 ≤ c = a− b ≤ p. The bounds on
c and d imply that⌊
0/2127

⌋
≤
⌊
c/2127

⌋
=
⌊
(d + 2127e)/2127

⌋
= e ≤

⌊
p/2127

⌋
, so e = 0.

Thus a− b ≡ d + 2127e ≡ d − e (mod p).
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Semi-reduced subtraction modulo p = 2127 − 1

The operation f := (a − b) mod p is replaced by the following algorithm:

a, b ∈ Z such that 0 ≤ a, b ≤ p

1 c := (a − b) mod 2128

2 d := (c0, c1, . . . , c126), e := (c127)

3 f := (d − e) mod 2128

Line-1: Notice that 0 ≤ c < 2128.

Line-2: Write c = d + 2127e for integers 0 ≤ d < 2127 and e. There
are two cases to investigate:

◮ Case 2: Assume that a < b. Then c = 2128 + a− b and
−p ≤ a− b < 0. So, 2127 < c < 2128. The bounds on c and d imply
that

⌊
(2127 + 1)/2127

⌋
≤ e ≤

⌊
(2128 − 1)/2127

⌋
, so e = 1. The bounds

on c also imply that 2127 − 2127 < c − 2127 < 2128 − 2127, and we have
d = c − 2127e = c − 2127. So, 0 < d ≤ p and d ≥ e. Thus
a− b ≡ (2128 + a− b)− 2128 ≡ c − 2128 ≡ d + 2127e − 2128 ≡ d − e
(mod p).
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Semi-reduced subtraction modulo p = 2127 − 1

The operation f := (a − b) mod p is replaced by the following algorithm:

a, b ∈ Z such that 0 ≤ a, b ≤ p

1 c := (a − b) mod 2128

2 d := (c0, c1, . . . , c126), e := (c127)

3 f := (d − e) mod 2128

Line-1: Notice that 0 ≤ c < 2128.

Line-3: A semi-reduced output is given by f := (d − e) mod 2128,
observing that 0 ≤ f ≤ p.
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Semi-reduced subtraction modulo p = 2127 − 1

Max 9 instructions:

movq 8*0+OPERAND1, %r12

subq 8*0+OPERAND2, %r12

movq 8*1+OPERAND1, %rsi

sbbq 8*1+OPERAND2, %rsi

btrq $63, %rsi

sbbq $0, %r12

movq %r12, 8*0+OUTPUT

sbbq $0, %rsi

movq %rsi, 8*1+OUTPUT

Hüseyin Hışıl (CHS2013) Endomorphisms on the x-line October 8, 2014 38 / 41



Semi-reduced multiplication modulo p = 2127 − 1

The operation f := (a · b) mod p is replaced by the following algorithm:

Let a, b ∈ Z such that 0 ≤ a, b ≤ p

1 c := (ab) mod 2256

2 d := (c0, c1, . . . , c126), e := (c127, c128, . . . , c253)

3 f := semi-add(d , e)

Line-1: Notice that 0 ≤ c = ab ≤ p2 < 2256.
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Semi-reduced multiplication modulo p = 2127 − 1

The operation f := (a · b) mod p is replaced by the following algorithm:

Let a, b ∈ Z such that 0 ≤ a, b ≤ p

1 c := (ab) mod 2256

2 d := (c0, c1, . . . , c126), e := (c127, c128, . . . , c253)

3 f := semi-add(d , e)

Line-1: Notice that 0 ≤ c = ab ≤ p2 < 2256.

Line-2: Write c = d + 2127e for integers 0 ≤ d < 2127 and e. The
bounds on c and d imply that⌊
0/2127

⌋
≤
⌊
c/2127

⌋
=
⌊
(d + 2127e)/2127

⌋
= e ≤

⌊
p2/2127

⌋
, so

0 ≤ e < p.
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Semi-reduced multiplication modulo p = 2127 − 1

The operation f := (a · b) mod p is replaced by the following algorithm:

Let a, b ∈ Z such that 0 ≤ a, b ≤ p

1 c := (ab) mod 2256

2 d := (c0, c1, . . . , c126), e := (c127, c128, . . . , c253)

3 f := semi-add(d , e)

Line-1: Notice that 0 ≤ c = ab ≤ p2 < 2256.

Line-3: Noting that
ab ≡ d +2127e ≡ d +(2127 − 1)e + e ≡ d + pe + e ≡ d + e (mod p),
that 0 ≤ d , e ≤ p, and that 0 ≤ d + e ≤ 2p, a semi-reduced output is
obtained by semi-reduced addition applied on the operands d and e.
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Semi-reduced multiplication modulo p = 2127 − 1

Max 27 instructions:

movq 8*0+OPERAND1, %rax

mulq 8*1+OPERAND2

movq %rdx, %r10

movq %rax, %rsi

movq 8*1+OPERAND1, %rax

mulq 8*0+OPERAND2

addq %rax, %rsi

adcq %rdx, %r10

movq 8*0+OPERAND2, %rax

mulq 8*0+OPERAND1

addq %rdx, %rsi

movq %rax, %r12

adcq $0, %r10

movq 8*1+OPERAND1, %rax

mulq 8*1+OPERAND2

addq %r10, %rax

adcq $0, %rdx

addq %rax, %rax

adcq %rdx, %rdx

btrq $63, %rsi

adcq %rax, %r12

adcq %rdx, %rsi

btrq $63, %rsi

adcq $0, %r12

movq %r12, 8*0+OUTPUT

adcq $0, %rsi

movq %rsi, 8*1+OUTPUT
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Full version

http://eprint.iacr.org/2013/692

C-and-assembly software implementation

http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz

Magma scripts
http://research.microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/
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