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Abstract A feedback vertex set in an undirected graph is a subset of vertices whose removal results
in an acyclic graph. We consider the parameterized and kernelization complexity of feedback vertex
set where the parameter is the size of some structure in the input. In particular, we consider
parameterizations where the parameter is (instead of the solution size), the distance to a class of
graphs where the problem is polynomial time solvable, and sometimes smaller than the solution size.
Here, by distance to a class of graphs, we mean the minimum number of vertices whose removal results
in a graph in the class. Such a set of vertices is also called the ‘deletion set’. In this paper, we show
that

– FVS is fixed-parameter tractable by an O(2knO(1)) time algorithm, but is unlikely to have
polynomial kernel when parameterized by the number of vertices of the graph whose degree is at
least 4. This answers a question asked in an earlier paper. We also show that an algorithm with
running time O((

√
2− ε)knO(1)) is not possible unless SETH fails.

– When parameterized by k, the number of vertices, whose deletion results in a split graph, we give
an O(3.148knO(1)) time algorithm.

– When parameterized by k, the number of vertices whose deletion results in a cluster graph (a
disjoint union of cliques), we give an O(5knO(1)) algorithm.

Regarding kernelization results, we show that

– When parameterized by k, the number of vertices, whose deletion results in a pseudo-forest, FVS
has an O(k7) vertices kernel improving from the previously known O(k10) bound.

– When parameterized by the number k of vertices, whose deletion results in a mock-d-forest, we give
a kernel with O(k3d+3) vertices. We also prove a lower bound of Ω(kd+2) size (under complexity
theoretic assumptions). Mock-forest is a graph where each vertex is contained in at most one cycle.
Mock-d-forest for a constant d is a mock-forest where each component has at most d cycles.

Keywords Parameterized Complexity · Kernelization · Feedback Vertex Set · Structural
Parameterization · W-hardness

1 Introduction

In the early years of parameterized complexity and algorithms, problems were almost always parame-
terized by solution size. Recent research has focused on other parameterizations based on structural
properties of the input [26,14,25,13,33] and above or below guaranteed optimum values [22]. Such
‘non-standard’ parameters are known to be small in practice. It is a natural question to identify the

? Preliminary versions of this paper appeared in proceedings of IPEC 2016 [31] and FAW 2017 [32]

Diptapriyo Majumdar
The Institute of Mathematical Sciences, HBNI, Chennai, India
E-mail: diptapriyom@imsc.res.in

Venkatesh Raman
The Institute of Mathematical Sciences, HBNI, Chennai, India
E-mail: vraman@imsc.res.in



2 D. Majumdar and V. Raman

Vertex
Cover

Feedback
Vertex Set

Pseudo-Forest
Deletion Set

Mock-d-Forest
Deletion Set

Mock-Forest
Deletion Set

Outer-Planar
Deletion Set

Distance to
(c, i)-Graph

Distance to
(c, 1)-Graph

Cluster
Deletion Set

Chordal
Deletion Set

Odd Cycle
Transversal

Distance to
(c, 0)-Graph

Split
Deletion Set

Clique
Deletion Set

Distance to
(sub)-cubic Graph

Number of Vertices
with Degree � 4

FPT with polynomial kernel

FPT but conditionally lacks polynomial kernel

W [1]-hard, but in XP when c is part of parameter

para-NP-hard when i � 2

Open

?

?
?

?

?

?

?
?

??

Fig. 1: Ecology of Parameters for Feedback Vertex Set. The parameter values are the minimum
possible for a given graph. An arrow from parameter x to parameter y means that x ≥ y for a given

graph. ? indicates the results that are shown in this paper. ?? indicates the parameterizations for
which the fixed-parameter tractability status is open.

smallest parameter under which a problem is fixed-parameter tractable and/or has a polynomial kernel.
It means that once a problem is shown to be fixed-parameter tractable (and/or having a polynomial
kernel) with respect to a parameter, it is a natural question whether it has a fixed-parameter algorithm
or polynomial kernel with respect to a smaller parameter. Similarly, when a problem is W-hard or has
no polynomial kernel then it is interesting to ask whether it is fixed-parameter tractable or admits a
polynomial kernel when it is parameterized by a structurally larger parameter (See Figure 1 for the
parameterizations considered in this paper). Kernelization is usually harder when the parameter is a
structural parameter on the input as opposed to the solution size, where one can exploit the properties
of an optimal (or k-sized) solutions.

Feedback Vertex Set in an undirected graph G asks whether G has a subset S of at most k
vertices such that G \ S is a forest, for a given integer k. The set S is called a feedback vertex set of
the graph. The problem is known to be NP-Complete even on bipartite graphs [21] and in graphs
of degree at most 4 [35], but is polynomial time solvable in sub-cubic graphs [37,8,7], asteroidal
triple free graphs [30] and chordal bipartite graphs [27]. The problem is polynomial time solvable
in pseudo-forests (graphs in which each component has at most one cycle), in mock-forests (graphs
where each vertex is part of at most one cycle), in cliques and disjoint union of cliques. This is also
one of the well-studied problems in parameterized complexity and when parameterized by solution
size, it has an algorithm with running time O∗(3.619k)1 [28] and a kernel with O(k2) vertices and
edges [36]. Cygan et al. [34,9] have provided a randomized O∗(3k) algorithm when k is solution size of
the input graph. Cygan et al. [34] also have provided a randomized O∗(3k) time algorithm when the
parameter is the treewidth of the input graph. It is also known that Feedback Vertex Set admits a
deterministic fixed-parameter tractable algorithm when parameterized by treewidth [2,18].

1 O∗ notation suppresses the polynomial factors
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Parameterizations of Feedback Vertex Set by the size of some structure in the input have also
been explored. Feedback Vertex Set parameterized by the size of maximum induced matching (also
maximum independent set and vertex clique cover) has been shown to be W[1]-hard but is in XP

(See [26,1]) (See Section 2 for definitions). Bodlaender et al. [4] proved that Feedback Vertex Set

parameterized by deletion distance to a cluster graph (disjoint union of cliques) has no polynomial
kernel unless NP ⊆ coNP/poly. If there is a set of at most k vertices whose deletion from G results
in a graph of class F , we say that “G is k-away from graph class F”. We use ‘deletion distance’
and ‘k-away’ alternatively to mean the same thing throughout the paper. We study such ecology
of parameterization for Feedback Vertex Set continuing on the work in the survey by Jansen et
al. [26].

Our Results: Jansen et al. suggested in [26], “An interesting question in this direction is whether

Feedback Vertex Set is XP or FPT when parameterized by the vertex deletion distance to sub-cubic

graphs or alternatively, parameterized by the number of vertices of degree more than 3”. While the first
question remains open, our first result is an answer to the latter question (FVS-High-Degree defined
below). We answer it positively by providing a fixed parameter algorithm running in time O∗(2k). We
also prove that this problem has no polynomial kernel unless NP ⊆ coNP/poly.

FVS-High-Degree Parameter: k

Input: An undirected graph G such that |{u ∈ V (G)|degG(u) > 3}| ≤ k and ` ∈ N.
Question: Does G have a feedback vertex set of size at most `?

We then study the parameterized complexity of Feedback Vertex Set when parameterized by
the size of a split vertex deletion set. Feedback Vertex Set is polynomial time solvable on split
graphs.

FVS-SVD Parameter: k

Input: An undirected multigraph G, S ⊆ V (G) of size at most k such that G \ S is a split graph
and an integer `.
Question: Does G have a feedback vertex set of size at most `?

Our algorithm for this problem runs in O∗(3.148k) time.

We also completely characterize the parameterized complexity of Feedback Vertex Set when it
is parameterized by the number of vertices whose deletion results in a (c, i)-graph (introduced in [29])
for different values of c and i. A graph is called a (c, i)-graph if its vertex set can be partitioned into c
cliques and i independent sets. So a split graph is a (1, 1)-graph and a bipartite graph is a (0, 2) graph.
Hence some special cases of this parameterization include Feedback Vertex Set parameterized by
split vertex deletion set and odd cycle transversal.

Next we consider the case when feedback vertex set is parameterized by the number of vertices
whose deletion results in a disjoint union of cliques. Such a set of vertices is called a cluster vertex

deletion set.

FVS-CVD Parameter: k

Input: An undirected multigraph G, S ⊆ V (G) of size at most k such that every component of
G \ S is a clique and an integer `.
Question: Does G have a feedback vertex set of size at most `?

We provide an algorithm with running time O∗(5k) for this problem. It is known that FVS-CVD

and FVS-SVD have no polynomial kernel [4] unless NP ⊆ coNP/poly.

Our next set of results, which form the main results of the paper is on kernelization for some
specific parameterizations for which FVS is known to be fixed-parameter tractable. To start with,
we give an improved kernel for the following problem for which an O(k10) vertex kernel and a lower
bound of Ω(k4) (unless NP ⊆ coNP/poly) were given by Jansen et al. [26].

FVS-Pseudo-Forest Parameter: k

Input: An undirected graph G, S ⊆ V (G) of size at most k such that G[V (G) \ S] is a graph in
which every component has at most one cycle and an integer `.
Question: Does G have a feedback vertex set of size at most `?

We give a kernel on O(k7) vertices, narrowing the gap between upper and lower bound for the
size of the kernel. Then, we consider a variation of mock-forests (called mock-d-forest) where each
component has at most d cycles, where d is a constant, and consider the kernelization complexity of
FVS parameterized by the deletion distance to mock-d-forests. It is easy to see that FVS is fixed-
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parameter tractable when parameterized by the deletion distance to mock-d-forest (or any mock-forest)
as any mock-forest has treewidth at most 2. When d is not bounded, then we know that this problem
has no polynomial kernel unless NP ⊆ coNP/poly [26]. We consider the case when the number of cycles
in a mock-forest is bounded by a constant.

FVS-Mock-d-Forest where d ≥ 2 Parameter: k

Input: An undirected graph G, S ⊆ V (G) of size at most k such that G[V (G)\S] is a mock-forest
where every component has at most d cycles and an integer `.
Question: Does G have a feedback vertex set of size at most `?

Here, we provide a O(k3d+3) vertex kernel for this problem when d is a constant. And we also prove
that a kernel consisting of O(kd+2−ε) size is unlikely for any ε > 0 unless NP ⊆ coNP/poly. Deletion
distance to a mock-forest is smaller than the deletion distance to mock-d-forest. Also deletion distance
to the class of pseudo-forests is larger than deletion distance to mock-d-forests (See Figure 1 for the
hierarchy of parameters).

Note that both the above mentioned parameters, i.e. pseudo-forest deletion set, mock-d-forest deletion

set are provably smaller than the solution size. However, mock-d-forest deletion set is provably larger
than mock-forest deletion set but provably smaller than pseudo-forest deletion set. We assume that for
all our parameterizations, the deletion set is given with the input. For some of these parameters,
this assumption is not critical. We discuss about the algorithms to find those deletion sets in the
appropriate sections. See Figure 1 for a hierarchy of parameters considered in the paper. Sometimes,
we call these deletion sets as “modulator” (See more results in [24,33,16,14,4,25]).

We organize our paper as follows. In Section 2, we introduce the required notation. In Section 3, we
provide the FPT Algorithms for FVS-High-Degree, FVS-SVD, FVS-Deletion-to-(c, i)-Graph and
FVS-CVD. In Section 4, we provide the improved polynomial kernel for FVS-Pseudo-Forest and a
polynomial kernel for FVS-Mock-d-Forest. In Section 4, we also prove that FVS-High-Degree has
no polynomial kernel unless NP ⊆ coNP/poly.

2 Preliminaries and Notations

By [r], we mean the set {1, 2, . . . , r}. We use A ] B to mean A ∪ B when A ∩ B = ∅. We denote the
feedback vertex set number (the size of a minimum feedback vertex set) by fvs(G) or sometimes simply
fvs when the context of the graph is clear. Let S be a set of vertices. By (Sr), we denote the family of

subsets of S containing exactly r vertices. By ( S≤r), we denote the family of subsets of S containing at

most r vertices. By ( S≥r), we denote the family of subsets of S containing at least r vertices.
We allow our input graph to be a multigraph allowing multiple edges between a pair of vertices.

We call a pair of vertices (u, v) a double edge if there are 2 edges between u and v. Otherwise we call
(u, v) a non-double-pair. While computing the degree of a vertex, we take the multiplicity of edges
into account. For a vertex u ∈ V (G) and a subgraph H of G, by degH(u), we denote the degree of
u in H. A set of vertices V ′ ⊆ V (G) is a degree-2-path if V ′ induces an acyclic path and every vertex
of the path has degree exactly 2 in G. A degree-2-path is maximal if no proper superset of V ′ is a
degree-2-path. Let G be a graph and (u, v) be an edge. We denote G′ = G/(u, v) as the graph created
by contraction of the edge (u, v). Let uv be the contracted vertex as a result of contraction. Then,
NG′(uv) = (NG(u)∪NG(v))\{u, v}. We denote G[B] by the graph induced on the vertex set B ⊆ V (G).
We say that G[B] is a double-clique if there are at least 2 edges between every pair of vertices in B.

We give the definitions of fixed-parameter tractability, W-hardness, kernelization, polynomial
parameter transformation and their related facts.

2.1 Definitions and Properties

A language is L is called a parameterized language if its input instance consists of a pair (x, k) where
x ∈ Σ∗ and k ∈ N.

Definition 1 (Fixed-Parameter Tractability) Let L ⊆ Σ∗ × N is a parameterized language. L is
said to be fixed-parameter tractable (or FPT) if there exists an algorithm B, a constant c and a
computable function f such that for all x ∈ Σ∗, for all k ∈ N, algorithm B on input (x, k) runs in
at most f(k)|x|c time and outputs (x, k) ∈ L if and only if B([x, k]) = 1. We call the algorithm B as
fixed-parameter algorithm. Note that c is a constant that is independent of |x| and k.
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Definition 2 (Slice-Wise Polynomial (XP)) Let L ⊆ Σ∗ ×N is a parameterized language. L is said
to be Slice-Wise Polynomial (or in XP) if there exists an algorithm B, a constant c and computable
functions f, g such that for all x ∈ Σ∗, forall k ∈ N, algorithm B on input (x, k) runs in at most
f(k)|x|g(k)+c time and outputs (x, k) ∈ L if and only if B([x, k]) = 1. We call the algorithm B as an
XP Algorithm.

Definition 3 (Parameterized Reduction) Let L1, L2 ⊆ Σ∗ × N be two parameterized languages.
We say that there exists a parameterized reduction from L1 to L2 if there exists a constant c, an
algorithm B and computable functions f, g : N→ N such that B on input instance (x, k) of L1 outputs
an instance (x′, k′) of L2 such that

– B runs in f(k)nc time.
– k′ = g(k).
– (x, k) ∈ L1 if and only if (x′, k′) ∈ L2.

W-hardness: In order to classify parameterized problems as being FPT or not, the W-hierarchy
is defined as FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP using Boolean circuits and parameterized reductions.
A parameterized language L ⊆ Σ∗ × N is said to be W[i]-hard for a given i ≥ 1 when for every
parameterized language L′ ∈W[i], there exists a parameterized reduction from L′ to L in g(k)nO(1)

time. It is believed that the subset relations in this sequence are all strict and a parameterized
problem that is hard for some complexity class above FPT in this hierarchy is unlikely to be FPT.
A parameterized problem L ⊆ Σ∗ × N is said to be para-NP-hard if it is not in XP unless P = NP.
The complexity classes FPT and para-NP can be viewed as the parameterized analogues of P and NP.
For more details about W-hierarchy, please refer to [15]. There are problems that are W-hard but
contained in XP.

A concept closely associated with fixed-parameter tractability is the notion of kernelization.

Definition 4 (Kernelization) Let L ⊆ Σ∗ × N be a parameterized language. Kernelization is a
procedure that replaces the input instance (I, k) by a reduced instance (I ′, k′) such that

– k′ ≤ f(k), |I ′| ≤ g(k) for some computable functions f, g depending only on k.
– (I, k) ∈ L if and only if (I ′, k′) ∈ L.

The reduction from (I, k) to (I ′, k′) must be computable in poly(|I|+ k) time. If f(k) + g(k) = kO(1)

then we say that L admits a polynomial kernel.

It is well-known that a decidable parameterized problem is fixed-parameter tractable if and only
if it has a kernel though the kernel size is exponential. Kernels are obtained using what are called
reduction rules which replace the given input by an equivalent input.

Definition 5 (Soundness/Safeness of Reduction Rule) A reduction rule that replaces an instance
(I, k) of a parameterized language L by a reduced instance (I ′, k′) is said to be sound or safe if (I, k) ∈ L
if and only if (I ′, k′) ∈ L.

Definition 6 (Polynomial parameter transformation (PPT)) Let P1 and P2 be two parameterized
languages. We say that P1 is polynomial parameter reducible to P2 if there exists a polynomial time
computable function (or an algorithm) f : Σ∗ × N → Σ∗ × N, a polynomial p : N → N such that
(x, k) ∈ P1 if and only if f(x, k) ∈ P2 and k′ ≤ p(k) where f [(x, k)] = (x′, k′). We call f to be a
polynomial parameter transformation from P1 to P2.

Definition 7 (Parameter Preserving Transformation) Let P1 and P2 be two parameterized lan-
guages. We say that there exists a parameter preserving transformation from P1 to P2 if there exists a
polynomial time computable function (or algorithm) f : Σ∗ ×N→ Σ∗ ×N such that (x, k) ∈ P1 if and
only if f(x, k) ∈ P2 and k′ ≤ ck where f [(x, k)] = (x′, k′) and c is a constant independent of |x| and k.
We call f to be a parameter preserving transformation from P1 to P2.

The following proposition gives the use of the polynomial parameter transformation for obtaining
kernels for one problem from another.

Proposition 1 ([5]) Let P,Q ⊆ Σ∗ × N be two parameterized problems and assume that there exists a

PPT from P to Q. Furthermore, assume that classical version of P is NP-hard and Q is in NP. Then if Q

has a polynomial kernel then P has a polynomial kernel.
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In our kernelization algorithms, we use Menger’s Theorem the statement of which is as follows.

Theorem 1 (Menger’s Theorem [12]) Let G = (V,E) be an undirected graph with a pair of specified

vertices x, y ∈ V (G). There exists a polynomial time algorithm that finds the maximum number of internally

vertex disjoint paths from x to y in G.

Some of our lower bounds are shown using what is called the Strong Exponential Time Hypothesis

(SETH).

Conjecture 1 (Strong Exponential Time Hypothesis (SETH) [23]) For every ε > 0, CNF-SAT

cannot be solved in time O∗((2− ε)n) time where n is the number of variables in the input formula.

2.2 Initial Preprocessing Rules

For the algorithms in Section 3 and 4, we use the following well known reduction rules. See Chapter
3, 4 of [8] for safeness of these Reduction Rules. Here ` is the size of the solution (fvs) being sought.
The following reduction rules can be implemented in polynomial time. We use ← in the reduction
rules (or pseudocodes of algorithm) to mean that the variable on the left is assigned the value in the
right of the arrow.

Reduction Rule 1 If there exists u ∈ V (G) such that u has a self loop, then G′ ← G \ {u}, `′ ← `− 1.

Reduction Rule 2 If there exists a vertex v such that degG(v) ≤ 1, then G′ ← G \ v, `′ ← `.

Reduction Rule 3 If there exists a vertex v such that degG(v) = 2 and NG(v) = {u,w} (u and w could

be the same vertex in case of parallel edge (u, v)), then delete the vertex v and add an extra edge (u,w) into

G.

Note that Reduction Rule 3 can create parallel edges or self loops. Also at intermediate steps of
our algorithm, u and/or w may be forced not to be in the solution in which case we cannot apply
Reduction Rule 3.

Reduction Rule 4 If there exists an edge (u, v) whose multiplicity is more than 2, then reduce its multi-

plicity to 2 by deleting the other edges.

3 Fixed Parameter Algorithms

In this section, we describe fixed-parameter algorithms for FVS when parameterized by the number
of vertices of degree more than three, the size of a split vertex deletion set and the size of a cluster
vertex deletion set. Before describing all the fixed-parameter algorithms of this section, we provide
some general subroutines used in the structural parameterizations we consider in Sections 3.2 and 3.3.

3.1 Disjoint and Special Disjoint Feedback Vertex Set

The following is a problem that we have to solve for both FVS-High-Degree as well as FVS-SVD.

Disjoint Feedback Vertex Set Parameter: |S1|
Input: An undirected graph G = (V,E), S1 ∪ S2 = V (G), S1 ∩ S2 = ∅, G[S1] is a forest, S2 is an
independent set and an integer `′.
Question: Is there a feedback vertex set W of G such that W ∩ S1 = ∅ and |W | ≤ `′?

We show in Sections 3.2 and 3.3 that the above problem reduces to the following special case when
every vertex in S2 has exactly three neighbors in S1 and all such neighbors are in different components
of G[S1].

Special Disjoint Feedback Vertex Set

Input: A simple undirected graph G = (V,E), S1 ∪ S2 = V (G), S1 ∩ S2 = ∅, G[S1] is a forest, S2
is an independent set and every vertex of S2 has exactly 3 neighbors and all are in different
components of G[S1].
Goal: Find a minimum feedback vertex set W of G such that W ∩ S1 = ∅.

The following Lemma due to Kociumaka and Pilipczuk [28] uses matroid techniques to give a
polynomial time algorithm for the above problem.



FPT algorithms and Kernels for Structural Parameterizations of UFVS 7

Lemma 1 [28] Let (G,S1, S2) be an instance of Special Disjoint Feedback Vertex Set. Then there

exists a polynomial time algorithm that solves the problem.

We use this polynomial time algorithm as a subroutine in some of our fixed-parameter tractable
algorithms.

3.2 Feedback Vertex Set Parameterized by the number of vertices of degree more than 3

FVS-High-Degree Parameter: |{u ∈ V (G)|degG(u) > 3}| ≤ k
Input: An undirected multigraph G = (V,E) and an integer `.
Question: Does G have a feedback vertex set of size at most `?

We prove that this problem is fixed parameter tractable and has no polynomial kernel unless
NP ⊆ coNP/poly. Let S = {u ∈ V (G)|degG(u) > 3}. Throughout the Sections 3 and 4, we use F

to denote G[V (G) \ S] (or in other words G \ S).

Fixed Parameter Algorithm

Theorem 2 There exists an algorithm that runs in O(2k · nO(1)) time for FVS-High-Degree problem.

Proof First we apply Reduction Rules 1, 2, 3, 4 in sequence. It is easy to see that these reduction rules
do not increase the degree of any vertex. So, the parameter does not increase when these reduction
rules are applied. Once the graph has minimum degree three, the algorithm works as follows (see
Algorithm 1 for a detailed pseudo-code).

We guess a subset S′ ⊆ S that intersects S with an ` sized feedback vertex set we are seeking for.
If G[S \ S′] has a cycle, then we move on to the next guess. Otherwise, let S′′ = S \ S′ and G[S′′] is a
forest. We update our budget from ` to `′. We denote `′ = `− |S′|. Now, we aim to find a minimum

feedback vertex set D of G \ S′ such that S′′ ∩D = ∅.
Note that every vertex in F has degree at most three in G and also in G \ S′. Now, we subdivide

every edge (u, v) ∈ E(F ), by adding a new vertex eu,v and we add eu,v to S′′. As the cycle structures
are preserved, this subdivision creates an equivalent instance where our solution is allowed to contain
vertices from F only as a feedback vertex set need not pick the newly created vertices. Let the resulting
graph be G′′. Let T ′ = S′′ ∪ {eu,v|(u, v) ∈ E(F )}. Note that u and v are the only two neighbors of eu,v.
Hence we have that for every vertex u ∈ V (F ), u has no neighbor in F . Let I = V (G′′) \ T ′. Note that
I is an independent set. Our goal is to find a feedback vertex set of G′′ of at most `′ vertices that is
disjoint from T ′.

Note that after deleting S′, some of the vertices of I can become degree at most 2 in G′′. So,
we apply Reduction Rule 2 to get rid of the vertices having degree at most one. As discussed in
Subsection 2.2, Reduction Rule 3 is not applicable when the neighbors of the degree two vertex are
forced to be not in the solution we seek. Hence, we have the following two special rules (Reduction
Rule 5 and Reduction Rule 6) to deal with degree two vertices in this case. These two reduction rules
are also discussed in [28].

Reduction Rule 5 If there exists u ∈ I such that G′′[T ′ ∪ {u}] has a cycle, then delete u from G′′ and

reduce `′ by 1.

Safeness of this rule is easy to see. Notice that Reduction Rule 5 is also applicable when a vertex
u ∈ I has exactly two neighbors in T ′ that are in the same component of G′′[T ′]. Also note that this
reduction rule gets rid of all the multiple edges from the graph.

It is possible that after exhaustive application of Reduction Rule 5, there can exist a vertex u ∈ I
such that u has exactly 2 neighbors in T ′ and those are in different components of G′′[T ′].

Reduction Rule 6 If there exists a vertex u ∈ I such that u has exactly 2 neighbors in T ′ and those two

neighbors are in different components of G′′[T ′], then move u to T ′.

Lemma 2 Reduction Rule 6 is safe.
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Proof Reduction Rule 6 is applied only when Reduction Rules 2 and 5 are not applicable. Then
G′[T ′ ∪ {u}] does not create a cycle for any vertex u ∈ I. The intuition behind this reduction rule is
that there exists an optimal solution that does not contain u. Suppose that some optimal solution
D contains u. Let t1, t2 be the two neighbors of u in G′′[T ′]. As D is a minimal feedback vertex set,
G′′ \ (D \ {u}) has a cycle containing u (and hence t1 and t2) and no other vertex of D. In this cycle,
there is a path between t1 and t2 not containing u. But t1 and t2 are in different components of G′′[T ′],
and hence that path must contain a vertex u′ 6= u from I. Then (D ∪ {u′}) \ {u} is also a minimum
feedback vertex set of G′′. ut

When Reduction Rules 2, 5, 6 are not applicable, our problem reduces to the Special Disjoint

Feedback Vertex Set problem which is polynomial time solvable due to Lemma 1.

Now, if the size of the solution W returned by Lemma 1 is at most `′, then we output Yes.
Otherwise we repeat the above steps for another subset of S. There are at most 2|S| many such subset
S′ of S and after guessing the subset and some preprocessing the problem is polynomial time solvable.
It is easy to see that all the above mentioned reduction rules can be implemented in polynomial time.
If for every subset of S, it is seen that the solution size is more than `′, then we output No. Therefore,
we have an algorithm that runs in time O∗(2k). Please refer to Algorithm 1 which gives a pseudocode
of the algorithm. This completes the proof. ut

But it is still open whether Feedback Vertex Set is FPT when parameterized by the number of
vertices whose deletion results in a graph of degree at most 3. Note that this parameter (the minimum
number of vertices whose deletion results in a (sub)-cubic graph) is provably smaller than the number
of vertices with degree more than 3 of the graph. For, if we remove all vertices with degree more than
3, then the resulting graph becomes (sub)-cubic. However it is possible that among them, some of
them become degree at most 3 even when we remove some of their neighbors.

We show that the related problem of Feedback Vertex Set when parameterized by the number
of edges whose removal results in a graph of degree at most 3, is fixed-parameter tractable. This follows
as a consequence of Theorem 2.

Corollary 1 Let G = (V,E) be a graph with a set of edges E′ such that G′ = (V,E \E′) is a (sub)-cubic

graph. Then, Feedback Vertex Set is fixed parameter tractable when it is parameterized by |E′|.

Proof As deletion of E′ results in a (sub)-cubic graph, the end points of E′ are the only vertices
of G that have degree at least four. Now, the number of end points of E′ is at most 2|E′|. So, the
number of vertices of G with degree more than three is at most 2|E′|. By Theorem 2, there exists an

algorithm that runs in time O(22|E
′| ·nO(1)) and finds a minimum feedback vertex set. So, there exists

an algorithm that solves Feedback Vertex Set in time O(4|E
′| · nO(1)) proving the corollary. ut

3.3 Fixed-Parameter Algorithm for FVS-SVD

Recall that a graph G is called a split graph if V (G) = C]I where C is a clique and I is an independent
set. A set of vertices S ⊆ V (G) is called a split vertex deletion set if G \S is a split graph. In this section,
we provide a fixed-parameter algorithm when feedback vertex set is parameterized by the size (number
of vertices) of a split vertex deletion set.

FVS-SVD Parameter: k

Input: An undirected multigraph G, S ⊆ V (G) of size at most k such that G \ S is a split graph
and an integer `
Question: Does G have a feedback vertex set of size at most `?

Note that the size of the split vertex deletion set is incomparable to the solution size. We assume
that the split vertex deletion set is also given with the input. Otherwise we use an algorithm by Cygan
and Pilipczuk [10] that runs in O(1.2738k · kO(log2 k) · nO(1)) time to determine the existence of a split
vertex deletion set of size at most k.

We use (G,S, `) to denote the input instance and set F = G \ S. F is a split graph whose vertices
can be partitioned into a clique and an independent set. So, we denote F = (C, I) where V (F ) = C ] I.
Note that S ∪ C is a feedback vertex set of G as I is an independent set. So, if ` ≥ |S|+ |C|, then
(G,S, `) is an Yes-Instance. Thus the following reduction rule is easy to see.
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Algorithm 1: FVS-Param-High-Degree-Vertices

input :G = (V,E) and ` ∈ N
output : Yes if ∃C ⊆ V (G), |C| ≤ ` such that G \ C is a forest, No otherwise

1 S ← {u ∈ V (G)|degG(u) ≥ 4};
2 `′ ← `;
3 Apply Reduction Rules 1 2, 3 and 4 exhaustively;
4 for every S′ ⊆ S do
5 if G[S \ S′] is a forest then
6 S′′ ← S \ S′;
7 `′ ← `− |S′|;
8 F = G \ S;
9 T = ∅;

10 for each (u, v) ∈ E(F ) do
11 T ← T ∪ {eu,v};
12 T ′ ← T ∪ S′′;
13 E′ = E(G[S′′]) ∪ {(u, eu,v)|(u, v) ∈ E(F )};
14 G′′ = (T ′, E′);
15 Apply Reduction Rules 2, 5, 6 in this sequence and keep updating `′ appropriately.;
16 When Reduction Rules 2, 5, 6 are not applicable, run algorithm for Lemma 1 and get W ;
17 if |W | ≤ `′ then
18 Return Yes

19 Return No;

Reduction Rule 7 If ` ≥ |S|+ |C|, then return YES.

So, we can assume that ` ≤ |S|+ |C| − 1. Now we apply Reduction Rules 1, 2, 3 and 4 exhaustively to
make the graph minimum degree three. It is easy to see that these rules do not increase the size of S,
the parameter.

Now, our algorithm proceeds as follows. We guess a subset S′ ⊆ S and a subset C′ ∈ ( C
≥|C|−2) that

intersect the feedback vertex set of G we are looking for. Note that |C′| ≥ |C| − 2 as C is a clique. If
G[(S \ S′) ∪ (C \ C′)] is not a forest, then clearly the guess is wrong, we move on to a different subset.
So assume that G[(S \ S′) ∪ (C \C′)] is a forest. Now, we have to find a subset I ′ from I with at most
`′ = `− |S′| − |C′| ≤ |S|+ |C| − 1− |C|+ 2− |S′| = |S| − |S′|+ 1 vertices such that G \ (S′ ∪ I ′ ∪ C′)
becomes a forest. We define a measure µ(G′) = `′ + d(G′) where d(G′) is the number of components in
G′[S′′ ∪C′′] to analyze the algorithm. We will use µ and µ(G′) interchangeably as we describe the rest
of the parts for our algorithm. Let |S′| = i. Note that |S′′ ∪ C′′| = k − i+ 2. But, one (or two vertices)
from C also is part of S′′ ∪ C′′. So, d(G′) ≤ k − i+ 1, and `′ ≤ k − i+ 1. Hence µ ≤ 2(k − i) + 2.

Thus our problem now reduces to the Disjoint Feedback Vertex Set problem (defined in
Section 3.1) on the instance (G′, (S \ S′) ∪ (C \ C′), I, |S| − |S′|+ 1). Let C′′ = C \ C′ and S′′ = S \ S′.
Let T ′ = S′′ ∪ C′′. We use S′′ ∪ C′′ and T ′ interchangeably for the rest of this algorithm. Let G′ be
the graph obtained after deletion of C′ ∪ S′ from G. Now, we apply Reduction Rules 2, 5, 6 in G′

for vertices of I in sequence. Now, we argue that the measure does not increase when Reduction
Rules 2, 5, 6 are applied.

Lemma 3 Application of Reduction Rules 2, 5, 6 does not increase µ(G′).

Proof Reduction Rule 2 does not increase `. A vertex u ∈ I on which this rule has been applied can
be adjacent to only one vertex of T ′. Such a vertex does not increase d(G′) also. So, µ(G′) does not
increase. Reduction Rule 5 deletes a vertex from I, reduces `, but does not increase d(G′). So, µ(G′)
does not increase by the application of this rule. Reduction Rule 6 does not increase `, but it decreases
d as two components in G′[T ′] merges into one single component after pushing such a vertex u from I

to T ′. So, again µ does not increase. ut

Now, when Reduction Rules 2, 5, 6 are not applicable, every vertex of I has at least three neighbors
that are in T ′ and all these neighbors are in different components of G′[T ′].

If there exists a vertex u ∈ I that has at least four neighbors in S′′ ∪ C′′ and all are in different
components and we apply the following branching rule.

Branching Rule 1 If there exists a vertex u ∈ I such that u has at least four neighbors all of whom are

in different components of G′[T ′], then in one branch, we pick u into the solution and in another branch,

we push the vertex u from I to S′′ ∪ C′′.
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Clearly the branching rule is exhaustive. When Branching Rule 1 is applied, in the first branch `

decreases by 1. So, µ(G′) drops by 1 in the first branch. In the other branch, d(G′) decreases by at
least 3 because u has at least 4 neighbors and all the neighbors are in different connected components.
So, in the other branch, µ(G′) drops by at least 3 (as four components get merged into a single one).
So, we get the following recurrence for this branching rule.

T (µ) ≤ T (µ− 1) + T (µ− 3)

Solving this recurrence, we get
T (µ) ≤ 1.4656µ ≤ 2.148k−i+1·

If for every vertex u ∈ I, u has exactly three neighbors all in different components of G′[T ′],
then the instance is an instance of the Special Disjoint Feedback Vertex Set problem which is
polynomial time solvable due to Lemma 1. So, we get an algorithm with running time O∗(2.148k−i+1)
for Disjoint Feedback Vertex Set problem implying the following lemma.

Lemma 4 Given an instance (G,X, Y, `) of Disjoint Feedback Vertex Set problem where ` ≤ |X|−1,

there exists an algorithm that runs in O(2.148|X| · nO(1)) time and solves this problem.

As this algorithm for Disjoint Feedback Vertex Set is run over all subsets of S, the algorithm

runs in time
k∑
i=0

(ki)2.148k−i+1 ·nO(1) which is O(3.148k ·nO(1)). Given k, finding a split vertex deletion

set of size at most k takes O∗(1.2738k · kO(log2 k)) time [10]. So, we have the following theorem.

Theorem 3 Feedback Vertex Set parameterized by Split Vertex Deletion Set ( FVS-SVD ) can

be solved in O(3.148k · nO(1)) time.

Now we observe that this algorithm can be generalized even when the vertex set can be partitioned
into c > 1 cliques. A graph is called a (c, i)-graph (introduced in [29]) if its vertex set can be partitioned
into c cliques, and i independent sets.

FVS-deletion to (c, i)-graph
Input: An undirected graph G = (V,E), S ⊆ V (G) such that G \ S is a graph for which
V (G) \ S = A1 ] . . . ] Ac ] B1 ] . . . ] Bi where the induced subgraph on A1, . . . , Ac are cliques,
and the induced subgraph on B1, . . . , Bi are independent sets and an integer `.
Goal: Is there a feedback vertex set of G with at most ` vertices?

First we explain how our algorithm for FVS-SVD generalizes to an algorithm with running time
O(3.148k+cnO(c)) when F is a (c, 1)-graph. Observe that determining whether a given graph is a
(c, 0)-graph is the same as determining whether the complement graph is c-colorable, which is NP-hard
for c ≥ 3. There is also an easy polynomial time reduction from recognition of (c, 0)-graph to the
recognition of (c, 1)-graph. So for this problem, we need to assume that the deletion set (S ⊆ V (G))
and the partition of V (G) \ S = A1 ] . . . ]Ac ] I are given with the input.

So, when c ≥ 3, then we cannot even hope to have an FPT algorithm that outputs a (c, 0) (or
a (c, 1)) deletion Set. When c ≤ 2, Kolay and Panolan [29] provided an algorithm with runtime
O∗(3.314k) to find an S ⊆ V (G) of size at most k such that G \ S is a (c, 1)-graph.

The algorithm for FVS-deletion to (c, 1)-graph follows a similar strategy. Let G \ S = A1 ]
. . . ]Ac ]B where each of A1, . . . , Ac induces a clique, c ≥ 1 and B induces an independent set. Any

feedback vertex set of G intersects Aj in at least |Aj | − 2 vertices for all j ∈ [c]. If ` ≥ |S|+
c∑
j=1

|Aj |,

then it is a yes-instance, and so we modify the Reduction Rule 7 appropriately and assume that

` ≤ |S|+
c∑
j=1

|Aj |−1. Now we make the minimum degree of G to three by using Reduction Rules 1, 2, 3

and 4.
Let D be a feedback vertex set of G. Then, for every j ∈ [c], |D ∩ Aj | ≥ |Aj | − 2. So, we have

c∏
j=1

(1 + |Aj | + (|Aj |
2 )), i.e. O(n2c) many choices of intersections of a feedback vertex set of G with

A1, . . . , Ac. Now, fix one such choice (A′1, . . . , A
′
c) from Aj ’s. And we guess a subset S′ ⊆ S that

intersects with the feedback vertex set in G. Note that we have excluded the vertices of Aj \A′j from

the feedback vertex set. If G[(S \ S′) ∪ (
c⋃
j=1

(Aj \A′j))] is not a forest, then we move to the next guess.
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Otherwise G[(S \S′)∪ (
c⋃
j=1

(Ai \A′j))] is a forest. We update `′ = |S|+
c∑
j=1

|Aj |−1−
c∑
j=1

|A′j | ≤ k+2c−1.

Now, our goal is to identify whether there exists a feedback vertex set of size at most `′ contained
in B, after deletion of vertices of A′1, . . . , A

′
c, S
′. This is again the Disjoint Feedback Vertex Set

problem where V (G′) = S′′ ] B such that S′′ induces a forest, B is an independent set problem.

Let |S′| = p. As ` ≤ |S| +
c∑
j=1

|Aj |, we have that `′ ≤ |S| − |S′| + 2c − 1 ≤ k − p + 2c − 1 as at

least two vertices from each of A1, . . . , Ac have been deleted. Let S′′ = (S \ S′) ∪ (
c⋃
j=1

(Aj \ A′j)).

Also, the number of connected components in G[(S \ S′) ∪ (
c⋃
j=1

(Aj \A′j))] is c(S′′) which is at most

|S| − |S′|+ c− 1 ≤ k+ c− p− 1 there are c components of them having at least two vertices. We define
a measure µ(G′) = `′ + c(S′′) ≤ 2k + 3c − 2p − 1. Now we run the Disjoint Feedback Vertex Set

algorithm as described earlier on this instance. So, we get an algorithm with running time O∗(1.4656µ)
which is O∗(3.148c · 2.148k−j−1) The total running time of the algorithm is as follows.

3.148cn2c+O(1) ·
k∑
j=0

(
k

j

)
· 2.148k−j+1 = n2c+O(1)3.148c ·

k∑
j=0

(
k

k − j

)
· 2.148k−j

= 3.148k+c · n2c+O(1)

Theorem 4 FVS deletion to (c, 1)-graph admits an algorithm with running time O(3.148k+c·n2c+O(1)),

i.e. the problem admits an XP algorithm when parameterized by c and k.

Note that the same algorithm without the call to Disjoint Feedback Vertex Set works when B,
the independent set is empty, i.e. i = 0. Thus we have an algorithm running in time O(2kn2c+O(1))
when i = 0.

Theorem 5 FVS deletion to (c, 0)-graph admits an algorithm with running time O(2k · n2c+O(1)),

i.e. the problem admits an XP algorithm when parameterized by c and k.

The above algorithm (for i = 0) generalizes the XP algorithm for FVS parameterized by the number c
of cliques in a vertex clique cover by Jansen et al. [26]. Here we have generalized for the case when G

is k away from a graph with vertex clique cover number c.

FVS-Deletion (c, 0)-graph when parameterized by c and k: Jansen et al. [26] also proved that
FVS parameterized by the number of cliques in a vertex clique cover (a vertex clique cover is a set
of cliques of a graph such that every vertex of the graph participates in some clique) of a graph is
W[1]-hard. So it follows that the same is true even when G is k away from a graph with clique cover
number c.

Observation 1 FVS-deletion to (c, 0)-graph is W[1]-hard when parameterized by c and k.

It is easy to see that deletion distance to (c, 1)-graph is provably smaller than deletion distance to
(c, 0)-graph. So, we have the following observation.

Observation 2 For i ≤ 1, FVS-deletion to (c, i)-graph is W[1]-hard when parameterized by c and k.

Finally, we complete the picture for FVS deletion to (c, i)-graph for i ≥ 2 by an easy observation.
As Feedback Vertex Set on bipartite graphs is NP-Complete, we have the following.

Observation 3 When c = 0, i ≥ 2, Feedback Vertex Set is NP-Complete on (c, i) graphs. So, when the

parameter is either c or k and i ≥ 2, FVS-deletion to (c, i)-graph is para-NP-hard. When c = 0, i = 2,

then FVS-deletion to (0, 2)-graph is exactly the Feedback Vertex Set problem parameterized by the

size of a smallest odd cycle transversal.
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3.4 FVS Parameterized by Cluster Vertex Deletion Set

Now, we consider the parameter which is the distance to a cluster graph. Here, S is the modulator,
|S| is the parameter and G \ S is a collection of cliques, i.e. it is a (c, 0) graph with the property that
there are no edges between the c cliques. G \ S is also called a cluster graph, and S ⊆ V (G) is called a
“cluster vertex deletion set”. A set S is called a cluster vertex deletion set if every component of G \ S
is a clique. As before, we can omit the assumption that the cluster vertex deletion set (S) is given
along with the input as there is an algorithm by Boral et al. [6] that runs in O(1.9106k(n+m)) time
and either outputs a cluster vertex deletion set of size at most k (if one exists) or says that no cluster
vertex deletion set of size at most k exists.

FVS-CVD Parameter: k

Input: An undirected multigraph G, S ⊆ V (G) of size at most k such that every component of
G \ S is a clique and an integer `
Question: Does G have a feedback vertex set of size at most `?

Central to our algorithm is a theorem (Theorem 4.5 of Bodlaender et al. [2]) which is used in the
proof of our result. Before stating that theorem, we need the notions of a path decomposition, more
specifically a nicer path decomposition of a graph and pathwidth of a graph.

Definition 8 (Path Decomposition) Let G = (V,E) be an undirected graph. A path decomposition
of G is a sequence of bags P = (X1, . . . , Xq) where ∀i ∈ [q], Xi ⊆ V (G) such that the following
properties are satisfied.

1. For every vertex u ∈ V (G), there exists i ∈ [q] such that u ∈ Xi.
2. For every edge (u, v) ∈ E(G), there exists i ∈ [q] such that u, v ∈ Xi.
3. For any vertex u ∈ V (G), if u ∈ Xi ∩Xk for some i ≤ k, then u ∈ Xj for all i ≤ j ≤ k.

Definition 9 (Pathwidth) Let P = (X1, . . . , Xq) be a path-decomposition of G. Then, the width of
P is denoted as pw(P) = maxi∈[q]{|Xi| − 1}. The path-width of G is the minimum width over all

possible path-decompositions of G. More specifically, if Å is the set of path decompositions of G, then
pw(G) = minP∈Åpw(P).

A path decomposition is called nice if all of its bags are one of the following types.

– Introduce Bag: A bag Xi+1 is called an introduce bag if Xi+1 = Xi ∪ {u} where u /∈ Xi.
– Forget Bag: A bag Xi+1 is called a forget bag if Xi+1 = Xi \ {u} where u ∈ Xi.
– X1 = Xq = ∅.

We also have the following lemma which is Lemma 7.2 of [8].

Lemma 5 If a graph G admits a path decomposition of width p, then it also admits a nice path decompo-

sition of width p. Moreover, given a path decomposition P = (X1, . . . , Xq) of G of width at most p, one

can in time O(p2max(q, |V (G)|)) compute a nice path decomposition of G of width p.

Furthermore, we can convert a nice path decomposition into a nicer path decomposition in polynomial
time where the bags are of three types (see again [8]).

– Introduce Vertex Bag: A bag Xi+1 is called an introduce vertex bag if Xi+1 = Xi∪{u} where u /∈ Xi.
– Introduce Edge Bag: We say a bag Xi is introduce edge bag if it is labelled by an edge (u, v) and
Xi = Xi−1. Note that in such case u, v ∈ Xi. Also note that an edge is introduced exactly once in
the entire decomposition.

– Forget Bag: A bag Xi+1 is called a forget bag if Xi+1 = Xi \ {u} where u ∈ Xi.

Let V (Gi) = (
i⋃

j=1

Xi) and E(Gi) = {(u, v) ∈ E(G)|(u, v) is introduced in one of the bags Xj for some

j ∈ [i]}. It is easy to see that a given a nice path decomposition can be converted into a nicer path

decomposition also in O(p2max(q2, |V (G)|2)) time (See [8]).

Now, we get back to our problem FVS-CVD. Let C1, . . . , Cc be the set of connected components
of G \ S. We argue that (S ∪ C1, . . . , S ∪ Cc) is a path-decomposition.

Lemma 6 For the problem FVS-CVD, (S ∪ C1, . . . , S ∪ Cc) forms a path-decomposition of G.
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Proof Consider any vertex u ∈ V (G). If u ∈ S, then u ∈ S ∪ Ci for all i ∈ [q]. So, both property 1 and
3 are satisfied for all u ∈ S. If u ∈ Ci for some i ∈ [c], then u ∈ S ∪ Ci and there is exactly one i ∈ [c]
in which u exists. So, property 1 and 3 are satisfied for all u ∈ V (G). Consider any edge (u, v) ∈ E(G).
If u, v ∈ S, then u, v ∈ S ∪ C1. If u ∈ S, v ∈ Ci for some i ∈ [c], then u, v ∈ S ∪ Ci. If u, v ∈ Ci, then
u, v ∈ S ∪ Ci. So, property 2 is satisfied. ut

Now we are ready to state Theorem 4.5 of Bodlaender et al. [2].

Theorem 6 Let G be a graph given with a nicer path decomposition P = (X1, . . . , Xq) such that the

intersection of any feedback vertex set with any bag Xi has at most 2k · (|Xi| − k)O(1) possibilities. Then,

Feedback Vertex Set can be solved in O(5k · nO(1)) time.

Now, notice that in our path decomposition (Lemma 6), a feedback vertex set of G can intersect any
bag (S ∪ Ci) in at most 2|S| · |Ci|2 possibilities, as any feedback vertex set intersects Ci in at least
|Ci − 2| vertices. It can be easily shown that this path decomposition can be converted into a nicer
path decomposition of the same width by introducing (and forgetting) the vertices of each of the Ci’s
one by one in polynomial time. Each bag in that nicer path decomposition is S ∪ C′i where C′i is a set
of vertices of Ci. It is easy to see that in this nicer path decomposition too, a feasible feedback vertex
set of G can intersect any bag (S ∪ C′i) in at most 2|S| · |C′i|

3 vertices. Now, using this property and
Theorem 6 we get the following theorem.

Theorem 7 FVS-CVD admits an algorithm that runs in O(5k · nO(1)) time.

4 Kernelizations Algorithms: Upper and Lower Bounds

In the previous section, we have discussed FPT algorithm for FVS when it is parameterized by the size
of a cluster vertex deletion set and the size of a set whose deletion results in a (c, 1)-graph where c is
a constant. In this section, we discuss upper and lower bounds of kernelization for Feedback Vertex

Set for structural parameterizations. It is known by Bodlaender et al. [4] that Feedback Vertex

Set parameterized by the size of a clique deletion set (number of vertices whose deletion results in a
clique) has no polynomial kernel unless NP ⊆ coNP/poly. Any clique deletion set is also a (c, i)-deletion
set with c = 1, i = 0. So, it follows easily that Feedback Vertex Set does not have a polynomial
kernel (unless NP ⊆ coNP/poly) when it is parameterized by the size of a set whose deletion results in
a (c, 1)-graph (or disjoint union of cliques) even when c is a constant and c ≥ 1.

4.1 Kernelization Lower Bound for FVS-High-Degree

We restate the problem definition for FVS-High-Degree. We prove that this problem has no polynomial
kernel unles NP ⊆ coNP/poly.

FVS-High-Degree Parameter: k

Input: An undirected graph G such that |{u ∈ V (G)|degG(u) > 3}| ≤ k and ` ∈ N.
Question: Does G have a feedback vertex set of size at most `?

Now, to show that FVS-High-Degree has no polynomial kernel unless NP ⊆ coNP/poly, we use
the following theorem.

Theorem 8 ( [19]) Let φ be a boolean formula in CNF form with n variables and m clauses. CNF-SAT

parameterized by n has no polynomial kernel unless NP ⊆ coNP/poly.

Jansen et al. [26] provided a polynomial parameter transformation from CNF-SAT parameterized
by the number of variables n, to Feedback Vertex Set parameterized by deletion distance to Mock-

Forest. Recall that a graph is a mock-forest if every vertex participates in at most one cycle. In that
construction, the size of the deletion distance to Mock-Forest is at most 4n. In the same construction,
the number of vertices of the graph whose degree is at least 4 is 2n. So, the same transformation is
also a polynomial parameter transformation from CNF-SAT to FVS-High-Degree. So, we have the
following lemma. A brief proof sketch is presented here for completeness. For details, see Section 6
in [26].
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Terminal Vertices

C = {x1 _ x̄2 _ x̄3 _ x4 _ x̄5 _ x6 _ x7 _ x̄8}

e1 e01 e2 e02 e03 e04 e05 e06 e07 e08e8e7e6e5e4e3

t1 t2 t3 t4 t5 t6 t7 t8f1 f2 f3 f4 f5 f6 f7 f8

yr,1 yr,2 yr,3 yr,4 yr,5 yr,6 yr,7 yr,8

Fig. 2: Illustration of Gadget Constructions for a clause C with 8 literals. This is the r’th copy of
clause gadget for clause C. Literal xi (or x̄i) is the i’th literal and it corresponds to the vertex yr,i

Lemma 7 Let (φ, n) be an input instance for CNF-SAT with n variables. There is a polynomial time

reduction that transforms (φ, n) to (Gφ, 2n) where Gφ is an instance of FVS-High-Degree and 2n is the

number of vertices having degree more than 3 in Gφ.

Proof (Sketch) The reduction from CNF-SAT parameterized by number of variables to FVS parame-
terized by deletion distance to mock-forest is from Theorem 6 [26]. Let the number of variables in the
formula φ be n and the number of clauses be m. Without loss of generality we can assume that the
number of literals in each clause is a power of 2 (otherwise just duplicate literals). We provide a clause
gadget of height j where d = 2j . We create n2 many copies for this clause gadget. In this gadget, the
terminal vertices are the corresponding vertices of literals (see Figure 2). For clause C of length d

with its r’th copy, we name literals as yr,1, . . . , yr,d. And we create a variable gadget for variable xi

as a cycle of 4 vertices. Let {ti, fi, ei, e′i} (See Figure 2) be those vertices. We define S =
n⋃
i=1

{ti, fi}.

Let yr,j be the vertex corresponding to the j’th literal of clause C. Let the variable corresponding to
that literal is xi. Then, if yr,j corresponds to the literal x̄i, then we connect yr,j with fi by an edge.
Otherwise the literal corresponding to yr,j is xi. In such case, we connect yr,j with ti by an edge. We

do the same for each of the n2 copies of the clause gadget. We set ` = n2
m∑
i=1

(di − 2) where di is the

number of literals in i’th clause. Any terminal vertex is adjacent to exactly one vertex which is either
ti or fi for some i (See Figure 2 for illustration). And every vertex in clause gadget has degree exactly
3 in the whole graph, while ei, e

′
i have degree exactly 2. Therefore, any vertex in G \ S has degree

at most 3 in the whole graph. It can be shown that any feedback vertex set of G of size ` (which is
optimal) must contain either ti or fi for all i ∈ [n] (See [26] for details). This feedback vertex set can
be transformed into a satisfying assignment of the formula φ and vice versa. ut

From Theorem 8, Lemma 7 and Proposition 1, we have that FVS-High-Degree has no polynomial
kernel unless NP ⊆ coNP/poly. Consider the related problem in which Feedback Vertex Set is
parameterized by the number of vertices whose deletion results in a (sub)-cubic graph. The existence
of an FPT algorithm for that problem still remains open. Note that number of vertices that has degree
more than three is provably larger than the number of vertices whose deletion results in a (sub)-cubic
graph. So, we can conclude that FVS has no polynomial kernel unless NP ⊆ coNP/poly when it is
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parameterized by the deletion distance to (sub)-cubic graph (even if it turns to be FPT). So, we have
the following theorem.

Theorem 9 FVS-High-Degree has no polynomial kernel unless NP ⊆ coNP/poly. In particular, Feed-

back Vertex Set also has no polynomial kernel unless NP ⊆ coNP/poly when parameterized by the dele-

tion distance to (sub)cubic graph.

Note that in this polynomial time reduction, the parameter is transformed from n to 2n. So,
assuming Conjecture 1 and Lemma 7, we have the following corollary.

Corollary 2 For any ε > 0, there does not exist any algorithm for FVS-High-Degree with running

time O((
√

2− ε)k · nO(1)) (where k is the number of vertices of degree more than three) unless SETH (or

Conjecture 1) fails.

Proof Suppose, there exists an algorithm B for FVS-High-Degree running in O∗((
√

2 − ε)k) time.
Now, we take an instance φ of CNF-SAT problem. Let φ has k variables. We apply the polynomial
time reduction from CNF-SAT to FVS-High-Degree. We get the graph Gφ where the number of
vertices with degree more than three is 2k. We run algorithm B on Gφ. If B outputs “No”, then we say
that φ is unsatisfiable. Otherwise we get a feedback vertex set of size at most `. Clearly, the feedback
vertex set is optimal. From this feedback vertex set, we can construct an assignment using Lemma 7
for φ which satisfies φ. Now (

√
2− ε)2k is O((2− ε′)k) for some ε′ > 0 as ε > 0. So, we get an algorithm

with running time O∗((2− ε′)k) for CNF-SAT contradicting SETH. ut

4.2 Some General Reduction Rules

In the next two subsections, we describe the kernelization algorithms for FVS-Pseudo-Forest and
FVS-Mock-d-Forest. Here, we first describe the common rules and prove some general properties
that we use to get the kernels. Recall that a pseudo-forest is a graph where every component has at
most one cycle and a mock-forest is a graph where every vertex participates in at most one cycle. A
mock-forest is called mock-d-forest if each of its connected components have at most d cycles. We use
F to denote G \ S for both FVS-Pseudo-Forest and FVS-Mock-d-Forest problems, i.e. F is either
a pseudo-forest or a mock-d-forest.

Let C1, . . . , Cr be a collection of r cycles in a graph G such that for all i 6= j, V (Ci) ∩ V (Cj) = {u}
for some u ∈ V (G). Then we say that G has an r-flower with core u and C1, . . . , Cr is an r-flower with

core u.

Reduction Rule 8 (Flower Rule) Let x ∈ S and F ′ be an induced subgraph of F such that there are c

cycles in F containing some vertex of F ′. If G[{x} ∪ V (F ′)] has an (|S|+ c+ 1)-flower with core x, then

– G′ ← G \ {x}.
– `′ ← `− 1

Lemma 8 Reduction Rule 8 is safe and can be implemented in polynomial time.

Proof Safeness of the reduction rule is based on the fact that any minimum feedback vertex set of G
must contain x when the precondition of the reduction rule is satisfied. Suppose not. Then, there exists
a minimum feedback vertex set D such that x /∈ D and the precondition applies. As D is a minimum
feedback vertex set, we know that |D| = fvs(G) ≤ |S|+ fvs(F ). Now, as x /∈ D, D must contain at
least |S|+ c + 1 vertices from F ′. Note that fvs(G[V (F ′) ∪ {x}]) ≤ |S|+ c. Let fvs(F \ F ′) = c′. It
means that there are c′ cycles in F that do not contain any vertex from F ′. So, fvs(F ) = c′ + c. Now
D has to pick at least one vertex from each of the cycles in F \ F ′ also. So, D must pick c′ other
vertices from F \ F ′. So, |D| ≥ |S|+ c+ 1 + c′ = |S|+ fvs(F ) + 1. This is a contradiction to the fact
that D is an optimal feedback vertex set. So, the reduction rule is safe.
To check whether this flower rule is applicable for a vertex x ∈ S, we need to run a polynomial time
algorithm that detects a flower, if exists, with core x, using Gallai’s Theorem (See Chapter 9 in [8] for
more details). ut

Reduction Rule 9 (Vertex-Disjoint-Path-Rule) Let x, y ∈ S such that (x, y) is not a double-edge

and F ′ be an induced subgraph of F . Let c be the number of cycles in F containing the vertices of F ′. If

there are at least |S|+ c+ 2 pairwise internally vertex disjoint paths from x to y in G[V (F ′)∪{x, y}], then

make (x, y) a double-edge.
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u uv vuv
uv

Fig. 3: An illustration of Reduction Rule 10

Lemma 9 Reduction Rule 9 is safe and can be implemented in polynomial time.

Proof It suffices to prove that any minimum feedback vertex set of G contains at least one vertex from
x and y. Suppose not. Then, there exists a minimum feedback vertex set D such that x, y /∈ D. We
also know at |D| = fvs(G) ≤ |S|+ fvs(F ) as D is a minimum feedback vertex set. As D is a feedback
vertex set of G, there is at most one path between x and y in G \ D. By the precondition of the
reduction rule, there are |S|+ c+ 2 internally vertex disjoint paths in G. So, D must contain at least
|S|+ c+ 1 vertices from those paths. Now c cycles of F contain the vertices of F ′. Let fvs(F \F ′) = c′.
So, fvs(F ) = c+ c′. So, there are c cycles that do not contain any vertex of F ′. So, D must contain c′

other vertices from F \ F ′. Then, |D| ≥ |S|+ c+ 1 + c′ = |S|+ fvs(F ) + 1 which is a contradiction to
the fact that D is an optimal feedback vertex set. So, this reduction rule is safe.
Checking whether the precondition is satisfied or not requires to compute the number of internally
vertex disjoint paths from x to y in the subgraph G[F ′ ∪ {x, y}]. We can find this in polynomial time
using Theorem 1 (Menger’s Theorem). ut

Though the above reduction rule does not decrease the size of the graph, it helps to apply some
other reduction rules, e.g. Reduction Rule 10. We call a cycle C in F as 2-cycle if C is a double-edge.

Reduction Rule 10 (Edge-Rule) 1. If there exists a vertex u ∈ F such that degF (u) = 0, and there

is no double edge attached to u and if NG(u) ∩ S forms a double-clique, then G′ ← G \ {u}.
2. If there exists u ∈ F such that degF (u) = 1, and there is no double edge attached to u and NG(u) ∩ S

forms a double-clique, then G′ ← G/(u, v) (recall the notation of contracting an edge) where {v} =
NG(u) ∩ F . However, the multiple edges created because of contraction should not be deleted.

3. Let (u, v) ∈ E(F ) such that (u, v) is not a double-edge and both degF (u) = degF (v) = 2. So, u and

v have exactly one other neighbor in F each with multiplicity 1. If (NG(u) ∩ S) ∩ (NG(v) ∩ S) = ∅,
no double edge is attached to either of u or v and G[(NG(u) ∪ NG(v)) ∩ S] forms a double-clique,

then G′ ← G/(u, v). However, multiple edges or self loops created because of contraction should not be

deleted.

(See Figure 3 for illustration)

Lemma 10 Reduction Rule 10 is safe and can be implemented in polynomial time.

Proof We formally prove the safeness in the given order.

1. The intuition is that as u becomes a degree 1 vertex after having all but at most one vertex from
NG(u) ∩ S. So, we can delete u.
(⇒) If D is a feedback vertex set of G of size at most `, then D \ {u} is a feedback vertex set of
G \ {u}. Therefore, G \ {u} has a feedback vertex set of size at most `.
(⇐) Let D be a minimum feedback vertex set of G\{u}. Note that there is no double edge attached
to u and NG(u) ∩ S is a double clique. Then, any feedback vertex set of G \ {u} must contain at
least |NG(u) ∩ S| − 1 many vertices. Now consider S′ = S \D. Clearly NG(u) ∩ S′ has at most one
vertex say x and (u, x) is not a double edge. Therefore, adding u into V (G) \D does not create
any cycle. Therefore, D is a minimum feedback vertex set of G as well.
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2. The intuition is that as u becomes a degree-2-vertex after having all but at most one vertex from
NG(u) ∩ S, we can contract the edge (u, v).
(⇐) Let D be a minimum feedback vertex set of G′ = G/(u, v). Since NG(u) ∩ S forms a double
clique, D must contain at least |NG(u)∩S| − 1 vertices from NG(u)∩S. Let V ′ = V (G′) \D. G′[V ′]
be a forest. Suppose G[V ′ ∪ {u}] has a cycle. Then, note that u can have at most 2 neighbors in
V ′ ∪ {u}. One of them is v and other one is exactly one vertex x ∈ NG(u) ∩ S. Then, there exists a
path from v to x in G. Note that the same path exists in G′ where uv be the vertex resulted after
contracting edge (u, v). Moreover, (v, x) forms an edge in G′ because of contraction. Therefore,
G[V ′] contains a cycle which is a contradiction. Therefore, G[V ′ ∪ {u}] is also a forest and hence D
is a feedback vertex set of G as well.
(⇒) Let D be a feedback vertex set of G. Then G \ D is a forest. If both the vertices u and v

are in G \ D, then the edge (u, v) exists in G \ D, then (NG\D(u) \ {v}) ∩ (NG\D(v) \ {u}) = ∅.
Then contracting the edge (u, v) does not make (G \D)/(u, v) into a graph containing some cycle.
Otherwise one of u and v is in D. Now, we say that (D \ {u, v}) ∪ {uv} is a feedback vertex set of
G/(u, v). |(D \ {u, v}) ∪ {uv}| ≤ |D|. So, the reduction rule is safe.

3. The intuition is that either u or v becomes a vertex of degree 2 after having all but at most one
vertex from (NG(u) ∪NG(v)) ∩ S. So, we can contract the edge (u, v).
(⇒) Let D be a minimum feedback vertex set of G. By a similar argument as before, G/(u, v) also
has a feedback vertex set of |D| vertices.
(⇐) Let (u, v) is an edge satisfying the precondition of the rule such that NG(u)∩NG(v)∩S = ∅ and
(NG(u) ∪NG(v)) ∩ S forms a double-clique. Then, let D be a feedback vertex set of G′ = G/(u, v)
where uv be the contracted vertex as a result of contracting the edge (u, v). Note that D contains
at least |(NG(u) ∪NG(v)) ∩ S| − 1 vertices from (NG(u) ∪NG(v)) ∩ S. Now there are two cases.
– If uv ∈ D, then by the precondition of the reduction rule, there is at most one vertex z from S

such that z ∈ V (G′) \D and z is a neighbor of uv. Now, either z ∈ NG(u) ∩ S or z ∈ NG(v) ∩ S
but not both. If z ∈ NG(u) ∩ S, then we say that (D \ {uv}) ∪ {u} is a feedback vertex set
of G and clearly |D′| = |D|. Note that in this case v cannot have more than one neighbor in
G′ \D and hence G \D′ is also acyclic. Similarly, we can prove that when z ∈ NG(v) ∩ S, then
D′ = (D \ {uv}) ∪ {v} is a feedback vertex set of G and again |D′| = |D|.

– If uv /∈ D, then suppose there exists z ∈ NG′(uv)∩S. Then, we claim that D is a feedback vertex
set of G as well. The reason is that z ∈ NG(u) ∩ S or z ∈ NG(v) ∩ S but not both. Therefore,
consider G \D. Neither u nor v is in D. Then when there is a cycle in G \D consisting of both
u and v, then that cycle was there in G′ \D consiting of uv which is a contradiction to the fact
that D is a feedback vertex set of G′. Therefore, the reduction rule is safe.

This completes the proof. ut

Note that variants of Reduction Rules 8, 9 and 10 also appeared in [3] but in different forms. We
recall the following concept due to Jansen et al. [26]. The following definition will be used crucially to
get kernel upper bounds for FVS-Pseudo-Forest and FVS-Mock-d-Forest.

Definition 10 Let C be a connected component in F that has cycle. Let X ⊆ NG(C)∩S. We say that
C can be resolved with respect to X if there exists A ⊆ C such that A is a minimum feedback vertex
set of G[C] and for every connected component C′ in C \A, |NG(C′) ∩X| ≤ 1, |NG(X) ∩ C′| ≤ 1 and
G[(C \A) ∪X] has no cycle.

The intuition behind this idea is that if a component C can be resolved with respect to its
neighborhood in S, then we can just delete that component and reduce the budget by fvs(C).

Definition 11 Let (G,S, `) be an instance of FVS-Pseudo-Forest. Let X ⊆ S be such that t connected
components in F cannot be resolved with respect to X, then we say that X is saturated by t unresolvable

components in F .

Let (G,S, `) be an instance of FVS-F-Deletion parameterized by |S| where S is a set of vertices
whose deletion results in a hereditary class of graph F . Moreover, assume that FVS is polynomial
time solvable on F . Also, let us assume the following assumption holds true.

Assumption 1 Let C be any component of G \ S. Then if C cannot be resolved with respect to X ⊆
NG(C) ∩ S, then C cannot be resolved with respect to X ′ ⊆ X such that |X ′| ≤ tF for some constant tF .
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For both FVS-Pseudo-Forest and FVS-Mock-d-Forest, we will prove that the above assumption
holds true with different values of tF . If a very large number of components cannot be resolved by A

for some A ⊆ S, then that A must intersect any optimal solution of G. Using this intuition, we have
the following lemma.

Lemma 11 Let (G,S, `) be an instance of FVS-F-Deletion. Let A ⊆ S, |A| ≤ tF as used in Assumption 1

and A is saturated by |S|+ (tF2 ) + 1 components of F . Then any minimum feedback vertex set of G must

intersect A.

Proof The intuition for the proof of this lemma is the following. Suppose D is a minimum feedback
vertex set of G. Clearly |D| ≤ |S|+fvs(G\S). Let A ∈ ( StF) be saturated by |S|+(tF2 )+1 components of

G \S. For the sake of contradiction, suppose D∩A = ∅. Let p = (tF2 ). There are |S|+ p+ 1 components
that cannot be resolved with respect to A. As |D| ≤ |S|+ fvs(G \S), there are at most |S| components
C1, . . . , C|S| in G \S having more than fvs(Ci) many vertices from Ci in D. So, there are at least p+ 1
components in G \ S that cannot be resolved with respect to A and have exactly fvs(C) vertices from
C into D. Let Z be the set of such components. Let C ∈ Z be one such component. As C cannot be
resolved with respect to A, for all B ⊆ C such that B is a minimum feedback vertex set of C, either
G[(C \ B) ∪ A] has a cycle or there exists a component C′ of C \ B such that |NG(C′) ∩ A| ≥ 2 or
|NG(A)∩C′| ≥ 2. Let B = D∩C. The case “G[(C \B)∪A] has a cycle” cannot happen as it contradicts
that D is a feedback vertex set. It also cannot be the case that for some vertex x ∈ A and some
component C′ in C \B, |NG(x)∩C′| ≥ 2, then G[C′∪{x}] will form a cycle and will contradict the fact
that D is a feedback vertex set. So, as there exists a component C′ of C \D such that |NG(C′)∩A| ≥ 2
or |NG(A) ∩C′| ≥ 2. In either case, there are two vertices in A between which there is a path in G \D
and that path avoids D and uses vertices of C \D only. Now, as C ∈ Z was arbitrary, this holds true
for other components in Z as well. There are at most (tF2 ) such pairs in A. But there are (tF2 ) + 1
components in Z for each of which there is a path between some pair of vertices from A. Then, by
pigeon hole principle, there exists a pair a, b ∈ A such that there are two components P1, P2 ∈ Z such
that there is one path from a to b using vertices of P1 \D and the other path from a to b uses vertices
of P2 \D. This creates a cycle containing a and b in G \D. Now, this is a contradiction to the fact
that D is a feedback vertex set. So, D ∩A 6= ∅. ut

Now, we have the following reduction rule. We will use the above lemma and the following reduction
rule with different values of tF for both FVS-Pseudo-Forest and FVS-Mock-d-Forest.

Reduction Rule 11 Let C be a connected component of G \ S and let Assumption 1 holds true. If for

each A ∈ (NG(C)∩S
≤tF ), either component C can be resolved with respect to A or A is saturated by at least

|S|+ (tF2 ) + 2 components of G \ S, then delete C and reduce ` by fvs(C).

Lemma 12 Reduction Rule 11 is safe.

Proof (⇒) Let (G,S, `) be an Yes-Instance, then any feedback vertex set D of size at most ` must
have at least fvs(C) vertices from C. So, G \ C has a feedback vertex set of size `− fvs(C).

(⇐) Let D′ be a minimum feedback vertex set of G \C. Consider S′ = S \D′. We claim that C can
be resolved with respect to S′. Suppose not. Then, by Assumption 1 (as we assume that it holds true

for this problem), there exists S′′ ∈ ( S′

≤tF) such that C cannot be resolved with respect to S′′. But, by

the precondition of the reduction rule, S′′ is saturated by |S|+ (tF2 ) + 2 components of G \ S in G. So,
even in G \C we have that S′′ is saturated by |S|+ (tF2 ) + 1 components in G \ (S ∪C). So, D′ ∩S′′ 6= ∅
by Lemma 11. This contradicts our choice of D′ as D′ ∩ S′′ = ∅ by our choice. So, C can be resolved
with respect to S′ and we can add exactly fvs(C) vertices into D to get a feedback vertex set of size
at most |D′|+ fvs(C). In particular, we have proved that OPT (G) = OPT (G \ C) + fvs(C). ut

4.3 Polynomial Kernel when parameterized by Deletion Distance to Pseudo-Forest

FVS-Pseudo-Forest Parameter: k

Input: An undirected graph G, S ⊆ V (G) of size at most k such that G[V (G) \ S] is a graph in
which every component has at most one cycle, and an integer `.
Question: Does G have a feedback vertex set of size at most `?
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Throughout the section for input (G,S, `), we use F to denote G[V (G) \ S]. An O(k10) vertex kernel
is provided by Jansen et al. [26]. We provide here an improved kernel. We assume that the pseudo-

forest deletion set is given with the input. But, this assumption can be omitted as there are 2-factor
approximation algorithms (see [17,20]) that provide a pseudo-forest deletion set of size at most
2k and this does not asymptotically increase the size bound we get. We first apply the Reduction
Rules 1, 2, 3, 4. When Reduction Rules 1, 2, 3, 4 are not applicable, then every vertex of the graph
has degree at least three and there are at most two edges between every pair of vertices. In particular,
every vertex in V (F ) has at least one neighbor in S. We partition the vertices of F into H1, H2, H3 as
below. Let HT be the set of vertices of F that do not participate in any cycle in F . And HC be the
set of vertices of F that participates in some cycle in F . We also partition the components of F into
F1, F2, F3. Formal definitions are given as follows. In particular, we use the following notations.

– H1 = {u ∈ V (F )|degF (u) ≤ 1}.
– H2 = {u ∈ V (F )|degF (u) = 2}.
– H3 = {u ∈ V (F )|degF (u) ≥ 3}.
– HT = {u ∈ V (F )|u does not participate in any cycle in F}.
– F1 = {connected components of F that is a tree}.
– F2 = {connected components of F that contains a vertex from H1 and also contains

a cycle}. Let c2 = |F2|.
– F3 = {connected components of F that are induced cycles}. Let c3 = |F3|.
– Let P be the collection of maximal degree-2-paths in F1 ∪ F2. Let M be a maximum

matching in P ∪ F3.
– Let ĉ = c2 + c3.

We will use the above set of notations in the rest of the sections for our kernelization algorithm.
Also note that fvs(F ) = ĉ because ĉ is the number of cycles in F . We have the following observation
which is easy to see.

Observation 4 F = F1 ] F2 ] F3.

Proof It is clear that any connected component of F1 ] F2 ] F3 is in F . So, F1 ] F2 ] F3 ⊆ F . Let C
be a connected component in F . It C is a tree, then C ∈ F1. Otherwise, C is a cycle. In that case C
has exactly one cycle. Then either C has a vertex with degree one in which case C ∈ F2. Otherwise C
is an induced cycle in which case C ∈ F3. So, F ⊆ F1 ] F2 ] F3. This completes the proof.

The following observation is also easy to see as a vertex of degree at most one does not participate
in any cycle.

Observation 5 Let H1, HT be the set of vertices as defined in the previous box. Then, H1 ⊆ HT .

4.3.1 General Reduction Rules for FVS-Pseudo-Forest

Our first step is to devise some reduction rules to bound the number of vertices in H1. As soon as the
number of vertices in H1 is bounded, the number of vertices in H3 is also bounded by a pseudo-forest
property (See Observations 6, 7 for more details). Now, to bound the number of vertices in H2, we
need to bound the number of edges in M , the number of maximal degree-2-paths in P and c3. By
the pseudo-forest property, the number of maximal degree-2-paths in P also becomes bounded once
|H1| and |H3| are bounded. In order to define our reduction rules, we crucially use the fact that the
minimum degree of G is at least 3. In particular, for every vertex v ∈ H1, either there exists x ∈ S
such that (x, v) is a double-edge or there exists x, y ∈ NG(v) ∩ S. The reduction rules described in this
subsection help to bound H1 and also M ∩ (E(F1) ∪ E(F2)). Our first two reduction rules are similar
to Reduction Rules 8 and 9. But, here we have to apply this rule for specific subgraphs of F , so we
state them separately.

Reduction Rule 12 (Flower Rule) Let x ∈ S. Then G′ ← G \ {x}, `′ ← ` − 1 if any of the following

happens.

1. G[{x} ∪HT ] has (|S|+ 1)-flower with core x.

2. G[{x} ∪ F ] has (|S|+ ĉ+ 1)-flower with core x.

Reduction Rule 13 (Vertex Disjoint Path Rule) Let x, y ∈ S such that (x, y) is not a double-edge.

Then, make (x, y) into a double-edge if one of the following happens.
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1. There are at least |S|+ 2 internally vertex disjoint paths from x to y in G[HT ∪ {x, y}].
2. There are at least |S|+ ĉ+ 2 internally vertex disjoint paths from x to y in G[F ∪ {x, y}].

Note that vertices of HT are not part of any cycle in F . So, we put c = 0 in Reduction Rules 8
and 9 to get the first part of both the above rules. And subsequently the vertices of F intersects all
the ĉ cycles from F . So, we put c = ĉ in Reduction Rules 8 and 9 to get the second part of both the
above rules. So, safeness and polynomial running time of the above two reduction rules follow from
the proof of Lemma 8 and 9. Even though Reduction Rule 13 does not reduce the size of the graph, it
helps to capture some constraints and also helps to apply some other reduction rules (for example
Reduction Rule 10). We apply Reduction Rule 10 after applying Reduction Rules 12 and 13.

4.3.2 Bounding |H1 ∪H3|

Now, we proceed to bound the number of vertices in F that have degree at most one and at least three.
We know that F is a pseudo-forest. We need to use some structural properties of a pseudo-forest and
also that the Reduction Rules 1, 2, 3, 4 12, 13, 10 are not applicabe. We start with showing that the
following observation, which is a well-known property of forests, holds true also about pseudo-forests.

Observation 6 Let G = (V,E) be a pseudo-forest and let V1 = {v ∈ V (G)|degG(v) ≤ 1}, V2 = {v ∈
V (G)|degG(v) = 2} and V3 = {v ∈ V (G)|degG(v) ≥ 3}. Then, |V3| ≤ |V1|.

Proof Since G is a pseudo-forest, |E| ≤ |V |. Let us first assume that G has no isolated vertices. Then
by standard graph theoretic property, we have the following.

2|V | ≥ 2|E| =
∑
v∈V

degG(v) ≥ |V1|+ 2|V2|+ 3|V3|

By definition, we know that |V | = |V1|+ |V2|+ |V3|. So, we have the following.

2(|V1|+ |V2|+ |V3|) ≥ |V1|+ 2|V2|+ 3|V3|

|V3| ≤ |V1|

Now, when it has isolated vertices, then they contribute to V1. So, we have that |V3| ≤ |V1|. ut

Using Observation 6, we have the following lemma.

Lemma 13 When Reduction Rules 1, 2, 3, 4, 12, 13 and 10 are not applicable, |H1 ∪H3| ≤ 2k2 + 2(k +
1)(k2).

Proof By definition of F1, F2, H1, H3, we know that H1 ⊆ V (F1 ∪ F2) and H3 ⊆ V (F1 ∪ F2) because
F3 and F4 contains only induced cycles. So, we have that H1 ∪H3 ⊆ V (F1 ∪ F2). Also H1 ⊆ HT by
Observation 5. Since Reduction Rules 1, 2, 3 are not applicable, for every vertex in H1 either there
are least two neighbors in S or there is at least one neighbor in S which is connected by a double-edge.
As Reduction Rule 10 is not applicable, for every vertex v ∈ H1, we associate z ∈ S when (x, z) is
a double-edge. Otherwise we associate (x, y) ∈ (S2) for v, when x, y ∈ NG(v) ∩ S and (x, y) is not a
double-edge. For any x ∈ S, we define H1,x = {u ∈ H1|(u, x) is a double-edge}. If |H1,x| ≥ |S| + 1,
then in G[HT ∪ {x}], there are at least |S|+ 1 cycles that pairwise intersect in x only. So, Reduction
Rule 12 is applicable. This is a contradiction. So, for every z ∈ S, there are at most |S| vertices in H1

that are connected by a double-edge. Consider any x, y ∈ S such that (x, y) is not a double-edge. If
|NG(x) ∩NG(y) ∩H1| ≥ |S|+ 2, then there are at least |S|+ 2 internally vertex disjoint paths from x

to y in G[{x, y} ∪HT ]. Then Reduction Rule 13 is applicable which is a contradiction. So, for every
(x, y) ∈ (S2) where (x, y) is not a double-edge, NG(x) ∩ NG(y) contains at most |S| + 1 vertices of

H1. Then |H1| ≤ k2 + (k + 1)(k2). By Observation 6, we know that |H3| ≤ |H1| ≤ k2 + (k + 1)(k2). So,

|H1 ∪H3| ≤ 2k2 + 2(k + 1)(k2). ut
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4.3.3 Bounding the number of components in F3

Now, what remains is to bound |H2|. Towards that, we first upper bound the number of induced cycles,
i.e. c3 which is the number of components in F3. By definition, for any component of F3, no vertex
from F3 has exactly one neighbor in F . In particular the graph induced on the set of components of
F3 is a two regular graph.

We recall the idea of Definition 10. The idea is that if a component C can be resolved with respect
to its neighborhood in S, then we can just delete that component and reduce the budget by 1. Every
connected component of F3 is an induced cycle. When Reduction Rules 1 2, 3, 4 are not applicable,
we show that the components in F3 have the following properties. The following lemma is provided as
Lemma 4 in [26] which we refer to for a proof. In particular, the following lemma provides a proof of
the Assumption 1 for FVS-Pseudo-Forest with value of tF ≤ 4 for components of F3.

Lemma 14 (Lemma 4 [26])2 Let C be a connected component in F3 and that Reduction Rules 2, 3 be not

applicable. Then, if there exists X ⊆ NG(C) ∩ S such that C cannot be resolved with respect to X then

there exists X ′ ⊆ X, |X ′| ≤ 4 such that C cannot be resolved with respect to X ′.

The intuition behind the proof of Lemma 14 is that if for some X ⊆ S, |X| ≤ 4, then there are a
large number of components that cannot be resolved with respect to X. Hence any minimum feedback
vertex set must intersect X. Now, we have the following lemma (a variant of which which is also there
as Lemma 5 in [26]) which we get from Lemma 11 by plugging in tF = 4 for the components of F3.

Lemma 15 (Lemma 5 [26]) Let (G,S, `) be an instance of FVS-Pseudo-Forest and A ⊆ S, |A| ≤ 4 and

A is saturated by |S|+ 7 components in F3, then any minimum feedback vertex set of G must intersect A.

Now, we have the following Reduction Rule that we get from Reduction Rule 11 by plugging in
tF = 4 for components of F3. Note that the following reduction rule is available as Reduction Rule 1
in [26].

Reduction Rule 14 Let C be a connected component of F3. If for each A ⊆ (S∩NG(C)
≤4 ), component C

can be resolved with respect to A or A is saturated by at least |S|+ 8 unresolvable components in F3, then

delete C and reduce ` by 1.

Safeness of the above reduction rule is clear from the proof of Lemma 12. After exhaustive
applications of the Reduction Rules 1, 2, 3, 4 and 14, we get the following lemma. The proof uses
arguments similar to that of Lemma 7 in [26].

Lemma 16 When Reduction Rule 1, 2, 4, 3, 14 are not applicable, then the number of connected compo-

nents in F3 is at most (k + 7)
4∑
i=1

(ki).

Proof Assume that the condition holds. Since Reduction Rule 14 is not applicable, for each component
C in F3, there exists a set A ∈ (NG(C)∩S

≤4 ) ⊆ (|S|4 ) such that C can be resolved with respect to A and A

is saturated by at most |S|+ 7 components. Then, for each component C in F3, we choose one such
set A and associate A to C. Clearly there can be at most |S|+ 7 components of F that cannot be
resolved with respect to A, otherwise some set A would be saturated by |S|+ 8 components. Hence

the number of components in F3 is at most (|S|+ 7)
4∑
i=1

(|S|i ) ≤ (k + 7)
4∑
i=1

(ki). ut

4.3.4 Bounding |H2| and Putting Things together

Now, we proceed to get an upper bound on the number of vertices in H2. We need a few more
structural properties of pseudo-forests. As any component in F2 has at least one vertex who has
exactly one neighbor in F , the number of components in F2, i.e. c2 is at most |H1|. Recall that the
number of components in F2 is c2. So, we have the following lemma.

Lemma 17 c2 ≤ |H1|.

Recall that in order to bound |H2|, we also need an upper bound on the number of degree-2-paths
in P. The following structural property of a pseudo-forest is useful.

2 A preliminary version [31] of this paper had a stronger lemma (Lemma 25 of [31]) which gave an upper bound of
3 for |X′|, and this resulted in an overall O(k6) vertex kernel for this problem. However, the lemma had an error.
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Observation 7 Let G = (V,E) be a pseudo-forest where every component has at least one vertex of degree

1. Let V1 = {v ∈ V (G)|degG(v) ≤ 1} and V3 = {v ∈ V (G)|degG(v) ≥ 3} and P be the set of maximal

degree-2-paths in G. Then, |P| ≤ |V3|+ |V1|.

Proof Let |V | = n. Convert the given pseudo-forest G = (V,E) into G′ = (V ′, E′), where V ′ = V1 ∪ V3
and E′ be the set of edges that are constructed after short-circuiting (i.e. after applying Reduction
Rule 3) all degree 2 vertices. Then, |E′| ≤ |V3|+ |V1|. Therefore, |P| ≤ |E′| ≤ |V3|+ |V1|. This completes
the proof. ut

Lemma 18 If Reduction Rule 1, 2, 3, 4, 12, 13, 10, 14 are not applicable, then the number of vertices in

H2 is O(k7).

Proof Recall that by Lemma 17, we have that c2 is O(k3). Also by Lemma 16, we have that c3 is
O(k5). So, ĉ = c2 + c3 which is O(k3) +O(k5). Recall that M is a maximum matching in P ∪ F3. As
Reduction Rule 3 is not applicable, every vertex in H2 has at least one neighbor in S. By Lemma 16,
the number of 2-cycles in F is O(k5). As Reduction Rule 10 is not applicable, for every (u, v) ∈ M
such that (u, v) is not a 2-cycle, we associate z ∈ NG(u) ∩NG(v) ∩ S when NG(u) ∩NG(v) ∩ S 6= ∅ or
(u, z) is a double-edge. Otherwise, we associate x, y ∈ (NG(u) ∪NG(v)) ∩ S such that (x, y) is not a
double-edge. For any z ∈ S, define Matched(z) = {(u, v) ∈M |(u, z) is a double-edge or u, v ∈ NG(z)}.
If for some z ∈ S, |Matched(z)| ≥ |S|+ ĉ+ 1, then there are at least |S|+ ĉ+ 1 cycles in G[({x} ∪ F )]
pairwise intersecting at z only. Then Reduction Rule 12 becomes applicable. This is a contradiction.
So, |Matched(z)| ≤ |S|+ ĉ+ 1. Similarly if for some x, y ∈ (S2) such that (x, y) is not a double-edge and
either NG(x) ∪NG(y) contains both end points of at least |S|+ ĉ+ 2 edges of M or NG(x) ∩NG(y)
contains one end point of at least |S| + ĉ + 2 edges of M , then there are at least (|S| + ĉ + 2)
internally vertex disjoint paths from x to y in G[{x} ∪ F ]. Then, Reduction Rule 13 is applicable. So,

|M | ≤ |S|(|S|+ ĉ) + (|S|2 )2(|S|+ ĉ+ 1) ≤ 2k2 + 2k(k + 7)
4∑
i=1

(ki) + 2(k2)(k + (k + 7)
4∑
i=1

(ki) + 1) which

is O(k7). A maximal degree-2-path can also have only one vertex which is not matched by M . Recall
that P is the collection of all maximal degree-2-paths in F1 ∪ F2. Using Observation 7, we get that
|P| ≤ |H1|+ |H3| which is O(k3). So, the number of vertices in H2 that are not matched by M is at
most |P|+ |M | which is O(k7). So, |H2| is O(k7). ut

The following is the main theorem of this section and this is an easy consequence of Observation 4,
Lemma 13 and Lemma 18.

Theorem 10 FVS-Pseudo-Forest has a kernel with O(k7) vertices.

4.4 Kernelization algorithm Parameterized by Deletion distance to bounded Mock Forest

Now we consider the Feedback Vertex Set problem parameterized by the size of a deletion set whose
deletion results in a mock-d-forest. Recall that a graph is called mock-d-forest when every vertex is
contained in at most one cycle and every connected component has at most d cycles. Formal definition
of the problem is given below.

FVS-Mock-d-Forest for d ≥ 2 Parameter: k

Input: An undirected graph G, S ⊆ V (G) of size at most k such that G[V (G) \ S] is a graph of
which every vertex participates in at most most one cycle, every component has at most d cycles
for some constant d and an integer `.
Question: Does G have a feedback vertex set of size at most `?

When d is not bounded, then there is no polynomial kernel unless NP ⊆ coNP/poly [26]. In this section,
we first provide a polynomial kernel for this problem when d is a constant and d ≥ 2. After that we
provide a lower bound for this problem.

4.4.1 Polynomial Kernel for FVS-Mock-d-Forest for d ≥ 2

Our kernelization algorithm follows along the line of the kernel for FVS-Pseudo-Forest in Section 4.3.
Here, we need to use some special properties of mock-d-forest. We use F = G \ S throughout the
section. Let PF be the collection of maximal acyclic degree-2-paths in F . Let Q is the set of vertices
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that are in PF or in the induced cycles of F . Let MF be a maximum matching in Q. Let ĉ be the
total number of cycles in F . We partition V (F ) into three parts F1, F2, F3 as follows. In addition, we
denote the set of vertices of F that do not participate in any cycle by FT . In particular, we use the
following notations.

– F1 = {u ∈ V (F )|degF (u) ≤ 1}.
– F2 = {u ∈ V (F )|degF (u) = 2}.
– F3 = {u ∈ V (F )|degF (u) ≥ 3}.
– FT = {u ∈ V (F )|u does not participate in any cycle of F}.

The following two observations are easy to see.

Observation 8 F = F1 ] F2 ] F3.

Observation 9 F1 ⊆ FT .

Our first step is to bound the number of vertices in F1. An upper bound on F1 along with some
properties of a mock-d-forest, we get an upper bound on the number of vertices of F3. Then, we have
to bound the number of edges in MF and the number of maximal acyclic degree-2-paths in PF . Now,
we are ready to state the Reduction Rules. Our Reduction Rules in this section are generalizations of
the Reduction Rules in Section 4.3. In particular, the first two reduction rules (Reduction Rules 15
and 16) are quite similar to Reduction Rules 12 and 13. As, there are some notational differences, we
state them separetely.

Reduction Rule 15 (Flower Rule) Let x ∈ S. Then G′ ← G \ {x}, `′ ← ` − 1 if one of the following

conditions is satisfied.

1. G[{x} ∪ FT ] has (|S|+ 1)-flower with core x.

2. G[{x} ∪ F ] has (|S|+ ĉ+ 1)-flower with core x.

Reduction Rule 16 Let (x, y) ∈ (S2). Then make (x, y) into a double-edge if one of the following condi-

tions is satisfied.

1. There are at least |S|+ 2 internally vertex disjoint paths from x to y in the graph G[{x, y} ∪ FT ].
2. There are at least |S|+ ĉ+ 2 internally vertex disjoint paths from x to y in the graph G[{x, y} ∪ F ].

Note that the first part of both the Reduction Rules 15, 16 are the same as the first condition
of the Reduction Rules 12 and 13 respectively. Vertices of FT do not intersect any cycle in F . On
the other hand, F intersects all cycles in F . So, safeness and polynomial running time of the above
two reduction rules follow from the proof of Lemma 8 and 9. We apply Reduction Rule 10 after
applying Reduction Rules 15, 16. But, the second part, we applied it in a slightly different subgraph
for FVS-Pseudo-Forest.

We apply Reduction Rules 1, 2, 3, 4, 15, 16, 10 in this order (Recall that we did similar in
Section 4.3).

Lemma 19 When Reduction Rules 1 2, 3, 4, 15, 16 are not applicable, |F1| is O(k3).

Proof Recall that F1 is the set of vertices with degree at most 1 in F . So, the proof is exactly the
same as that of Lemma 13. ut

To bound the number of vertices in F2 and F3, we bound the number of components in F . We
need to do a little more work for that. The following lemma is a generalization of Lemma 14 and is
useful to bound the number of components in F . It also proves Assumption 1 with values tF = 3d.

Lemma 20 Let C be a connected component of F having exactly d cycles (d ≥ 2) and let X ⊆ NG(C)∩S
such that C cannot be resolved with respect to X. Then, there exists X ′ ⊆ X, |X ′| ≤ 3d such that C cannot

be resolved with respect to X ′.

Proof This proof uses the idea of Lemma 4 in [26]. Let C1, . . . , Cd be the cycles in C. Let A =
d⋃
i=1

Ci.

So A is the set of vertices of C that participates in some cycle of C. Consider any vertex x ∈ X.
And let u be a vertex of A. We call u as an attachment point for x if the subgraph C contains a path
possibly of length zero from u to a vertex of NG(x) ∩ C that intersects A only at u. A vertex u ∈ A is
called an attachment point if it is an attachment point for some y ∈ X. We use a case distinction to
prove the existence of a set X ′ with the desired properties.
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1. Suppose that there exists an i ∈ [d] such that Ci has 3 distinct attachment points u1, u2, u3 ∈ Ci.
Choose x1, x2, x3 ∈ X such that ui is an attachment point for xi for i ∈ [3]. Then, we claim that
C cannot be resolved with respect to X ′ = {x1, x2, x3}. By Definition 20, we know that for any
{v1, . . . , vd} such that C \{v1, . . . , vd} is acyclic, there exists a component C′ of C \{v1, . . . , vd} such
that either |NG(C′)∩X| ≥ 2 or |NG(X)∩C′| ≥ 2. Now, at most one from {u1, u2, u3} can intersect
{v1, . . . , vd}. Therefore, there are at least 2 attachment points from X ′ that was not chosen to be
deleted. Deleting one from {u1, u2, u3} still keeps the remaining two vertices of {u1, u2, u3} into
the same component. As each such attachment point has a path to a vertex in X ′ that avoids the
vertices of A, removing any d vertices to make C acyclic still leaves a component which is adjacent
to at least 2 vertices of X ′ and hence C cannot be resolved with respect to X ′. Hence, |X ′| ≤ 3 in
this case.

2. Suppose that there exists a component C′ of C \ V (A) such that either |NG(C′) ∩ X| ≥ 2 or
|NG(X) ∩ C′| ≥ 2. If |NG(C′) ∩X| ≥ 2, then pick any two vertices X ′ = {x1, x2} from NG(C′) ∩X
and it is clear that C cannot be resolved with respect to X ′. Similarly if |NG(X) ∩ C′| ≥ 2, then
either there are two distinct points x, y ∈ X such that both x and y have distinct neighbors to C′

in which case X ′ = {x, y}. Otherwise there exists a x ∈ X such that NG(x) contains two neighbors
in C′. In such a case X ′ = {x}.

3. If there exists at most one attachment point in every cycle, let u1, . . . , ud be the attachment points
in C1, . . . , Cd respectively. Then, we claim that C can be resolved with respect to X ′. We choose
{u1, . . . , ud} to delete from C. As none of the previous cases hold, for any component C′ of C \V (A),
|NG(C′)∩X| ≤ 1 and |NG(X)∩C′| ≤ 1. Now suppose that there exists C′′ of C \ {u1, . . . , ud} such
that |NG(C′′)∩X| ≥ 2 or |NG(X)∩C′′| ≥ 2. Suppose |NG(C′′)∩X| ≥ 2. Consider V (C′′)∩V (A). By
the choice of deleted vertices, there is no attachment point in V (C′′)∩V (A). Therefore, V (C′′)∩V (A)
has no neighbor in X. If V (C′′) \ V (A) has a neighbor in X, then V (C′′) ∩ V (A) would be empty
as otherwise some cycle will have one more attachment point which is a contradiction. When
some cycle has no attachment point, then pick an arbitrary vertex from those cycles (that has no
attachment point) and the proof follows using similar arguments.

4. If none of the above cases apply, then every cycle has at most two attachment points and there is
a cycle which has exactly two attachment points. Now some of the attachment points in A may be
attachment points for at least two vertices in X. Let the number of such attachment points be q.
– If q ≥ d + 1, let v1, v2, . . . , vd+1 be those vertices of A and vi is an attachment point for

xi,1, xi,2 ∈ X. Now, we construct X ′ =
d+1⋃
i=1

{xi,1, xi,2} and claim that C cannot be resolved

with respect to X ′. Certainly whichever d vertices are deleted from C, there is a component
consisting of at least one vertex w from A and there are two vertices from X ′ from whom
there is a path to w avoiding A. Therefore, C cannot be resolved with respect to X ′. Therefore,
|X ′| = 2d+ 2 in this case.

– If q ≤ d, then suppose v1, v2, . . . , vq be those vertices. Now, if for some i, j ∈ [q], vi, vj are part
of the same cycle, then C cannot be resolved with respect to {xi,1, xi,2, xj,1, xj,2} since at most
one of vi and vj can be in D. Therefore, all v1, . . . , vq appear in different cycles. Then consider
any D ⊆ C, |D| = d such that C \ D is acyclic. If vi /∈ D for some i ∈ [q], then certainly D

cannot resolve C as there is a path to vi from xi,1, xi,2 whose internal vertices are in C \D and
intersects A only at vi. We pick Xi = {xi,1, xi,2} for all such i ∈ [q]. Now, there are at most
2d− q other attachment points u1, . . . , u2d−q since every cycle can have at most 2 attachment
points. Now, all those 2d − q other attachment points are attachment point for exactly one
vertex of X. Let w1, . . . , w2d−q be those attachment points and they are attachment points for

vertices a1, . . . , a2d−q ∈ X Let X ′ = (
q⋃
i=1

{xi,1, xi,2}) ∪ {a1, . . . , a2d−q}. We claim that C cannot

be resolved with respect to X ′. Suppose not. Then there exists D ⊆ C where |D| = d and
for every component C′ of C \D, |NG(C′) ∩X ′| ≤ 1 and |NG(X ′) ∩ C′| ≤ 1 and there is no
cycle in the graph induced on the vertices of (C \D) ∪X ′. By assumption, D must contain
v1, . . . , vq. Now, D can contain at most d− q other vertices from the other 2d− q attachment
points. So, there are still d attachment points that are in C \D. Now, as C can be resolved
with respect to X ′ but not with respect to X, for some i ∈ [q], vi has another neighbor in
a ∈ X \X ′ which is again an attachment point for some uj where j ∈ [2d− q]. But then uj is
also an attachment point for two vertices in X. Then, there are q + 1 attachment points in C

that are attachment point for two vertices in X which contradicts our assumption that the
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number of such vertices can be at most q. So, C cannot be resolved with respect to X ′. Now

we have that, |X ′| ≤
q∑
i=1

|Xi|+ 2d− q = 2q + 2d− q = 2d+ q. Now, since q ≤ d |X ′| ≤ 3d.

As the case distinction is exhaustive, this concludes the proof. ut

We again recall the Definition 11 in Section 4.2. If some set A ⊆ S of at most 3d vertices is saturated
by a large number of components in F , then any minimum feedback vertex set must intersect A.

The following lemma is obtained from Lemma 11 by plugging in tF = 3d.

Lemma 21 Let (G,S, `) be an instance of FVS-Mock-d-Forest and A ⊆ S, |A| ≤ 3d and A is saturated

by |S|+ (3d2 ) + 1 components in F , then any minimum feedback vertex set of G must intersect A.

Now, we have just one more reduction rule to get an upper bound on the number of components
in F . And Lemma 22 is a consequence of inapplicability of Reduction Rule 17. We get the following
reduction rule from Reduction Rule 11 by putting tF = 3d. Safeness is clear from the proof of safeness
of Reduction Rule 11 (or equivalently Lemma 12).

Reduction Rule 17 Let C be a connected component in F that contains some cycle. If for each A ∈
(NG(C)∩X
≤3d ), C can be resolved with respect to A or A is saturated by |S|+(3d2 )+2 components, then remove

C and reduce ` by the number of cycles in C.

Lemma 22 Let (G,S, `) be an irreducible instance with respect to Reduction Rule 17, then the number of

components in F is at most O(|S|3d+1).

Proof Consider any component C ∈ F . Reduction Rule 17 is not applicable. Hence, there exists
A ⊆ S, |A| ≤ 3d such that C cannot be resolved with respect to A. Also, for the same reason, A can
be saturated by at most |S|+ (3d2 ) + 1 components. Therefore, the number of components is at most

(|S|+ (3d2 ))(|S|3d) ≤ 9d2.|S|3d+1 which is O(d2.|S|3d+1). ut

We have bounded the number of components in F . We already have bounded |F1|. We are left to
bound |F3∪F2|. We need a graph theoretic properties of a mock-d-forest to get an upper bound on |F3|.
Recall that in Section 4.3, we used observations about pseudo-forest. Similarly, in this section, we use
observations about mock-forest when there are at most d cycles in each component of a mock-forest.

Observation 10 Let G = (V,E) be a mock forest with c components where every component has at most

d cycles. V1 = {v ∈ V (G)|degG(v) ≤ 1}, V2 = {v ∈ V (G)|degG(v) = 2}, V3 = {v ∈ V (G)|degG(v) ≥ 3}.
Then |V3| ≤ |V1|+ 2cd− 2c.

Proof Let us first assume that G has no isolated vertex and c be the number of components in G.
Removing at most cd edges makes G into a forest. Therefore |E(G)| = m ≤ n− c+ cd. We know that
2m =

∑
v∈V (G)

degG(v). As G has no isolated vertices, we have that

2m ≥ |V1|+ 2|V2|+ 3|V3|

2n+ 2cd− 2c ≥ |V1|+ 2|V2|+ 3|V3|

2|V1|+ 2|V2|+ 2|V3|+ 2cd− 2c ≥ |V1|+ 2|V2|+ 3|V3|

|V1|+ 2cd− 2c ≥ |V3|

When G has no isolated vertex, we have that |V3| ≤ |V1|+ 2c(d − 1). Now, when G has c′ isolated
vertices, they contribute an additional value of c′ to |V1| and 2c and none to |V3|. Hence, the claim
follows. ut

Using Lemma 19 and Observation 10, we have the following Lemma.

Lemma 23 |F3| is O(k3d+1).

Proof By Lemma 19, we know that |F1| is O(k3). Now, by Observation 10, we know that |F3| ≤
|F1|+ 2c(d− 1). Now, c(d− 1) ≤ ĉ which is O(k3d+1). So, |F3| is O(k3d+1). ut

Now, what remains is to bound the number of vertices in F2. For that, we need to bound MF and
also the number of maximal acyclic degree-2-paths in PF . Using structural properties of mock-d-forest,
we have the following lemma that bounds the number of maximal acyclic degree-2-paths in F , i.e. PF .
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Lemma 24 |PF | is O(k3d+1) where c′ is the number of components in F that have at least two cycles.

Proof Short-circuit every vertex of a maximal acyclic degree-2-path of F by applying Reduction Rule 3
and we construct F ′. So, the resulting graph F ′ is still remains a mock-d-forest. So, F ′ has at most
|V (F ′)|+ dc′ ≤ |F1|+ |F3|+ dc′ edges. Now, every degree-2-path corresponds to some edge in F ′. So,
|PF | ≤ |F1|+ |F3|+ dc′. As, c′ is O(k3d+1) and |F3| is O(k3d+1), we have that |PF | is O(k3d+1). ut

Using the above observations and lemmas, we have the following lemma.

Lemma 25 |F2| is O(|S|3d+3).

Proof By Lemma 19 and 23, we have that |F1| is O(k3) and |F3| is O(k3d+1) respectively. As Reduction
Rule 10 is not applicable, for every edge (u, v) ∈MF , we associate either x ∈ S when x ∈ NG(u)∩NG(v)
or (x, u) is a double-edge. Otherwise, when NG(u)∩NG(v)∩S = ∅, then we associate (x, y) ∈ S such that
x, y ∈ (NG(u)∪NG(v))∩ S such that (x, y) is not a double-edge. Let Matched(x) = {(u, v) ∈MF |(u, x)
is a double-edge or u, v ∈ NG(x)}. If |Matched(x)| ≥ |S|+ ĉ+ 1, then Reduction Rule 16 is applicable
which is a contradiction. So, |Matched(x)| ≤ |S|+ ĉ. If NG(x) ∪ NG(y) contains both end points of
at least |S|+ ĉ+ 2 edges of MF , then there are at least |S|+ ĉ+ 2 vertex disjoint path from x to y

in G[F ∪ {x, y}]. So, Reduction Rule 16 is applicable which is also a contradiction. Similarly, when
NG(x)∩NG(y) has one end-point of at least |S|+ ĉ+ 2 edges of MF , then there are at least |S|+ ĉ+ 2
internally vertex disjoint paths from x to y in G[{x, y} ∪F ]. So, Reduction Rule 16 is applicable which

is a contradiction. Now using Lemma 22, we get |MF | ≤ 2(|S|+ ĉ+ 1)(|S|+ (|S|2 ) which is O(k3d+3).

Therefore, |MF | is O(|S|3d+3). Also, by using Lemma 19, 23, 24 we get that |PF | is O(k3d+1). The
number of vertices in PF and in induced cycles of F that are not matched by MF is at most |MF |+ |PF |
as a maximal acyclic degree-2-path can be a single vertex which is not matched by MF . Hence the
number of vertices in F2 is at most O(|S|3d+3) and the theorem follows. ut

Combining Lemma 19, 23, 25, we get the following theorem.

Theorem 11 FVS-Mock-d-Forest has a kernel with O(k3d+3) vertices.

4.4.2 Kernel Lower Bound for FVS-Mock-d-Forest for d ≥ 2

We provide a parameter preserving transformation from (d+2)-CNF-SAT parameterized by the number
of variables to Feedback Vertex Set parameterized by deletion distance to Mock-d-Forest where
d ≥ 2. A parameter preserving transformation from CNF-SAT to FVS-Mock-Forest when the length
of every clause is a power of 2 is already known [26] (See Section 4.1). We modify the construction for
a polynomial parameter transformation from (d+ 2)-CNF-SAT to FVS-Mock-d-Forest where d is
not necessarily a power of 2.
Let the clause Ci have di ≤ d+2 literals. We provide a clause gadget of height ji where 2ji−1 < di ≤ 2ji .
We create d2 many copies for this gadget. In this gadget, the terminal vertices are the corresponding
vertices of literals (see Figure 4). For clause Cq with its r’th copy, we name literals as yq,r,1, . . . , yq,r,di .
And we create a variable gadget for variable xi as a cycle of 3 vertices. Let {ti, fi, ei} are those vertices.

We define S =
n⋃
i=1

{ti, fi, ei}. Let yq,r,j be the j’th literal of clause Cq. Let the variable corresponding

to that variable is xi. Then, if the literal yq,r,j is x̄i, then we connect yq,r,j with fi. Otherwise we

connect yq,r,j with ti. We do the same for every r ∈ [d2]. We set ` = d2
m∑
i=1

(di − 2).

For any triangle T other than triangle at the topmost level, we define π(T ) = T ′ where T ′ is the
triangle which is connected to T by an edge. If T is a triangle at the topmost level, then we define
π(T ) =⊥. For any terminal vertex v which is contained in triangle T and also not in the highest level,
we define π(v) as the unique vertex u that is adjacent to the top vertex of T . Note that u = π(v)
means that u is a bottom vertex of the triangle T ′ such that π(T ) = T ′. Similarly if v is a terminal
vertex which belongs to a triangle at the topmost level, then π(v) =⊥. Now we show the following.

Lemma 26 Let φ be a (d+2)-CNF formula. Let Gφ be the graph constructed from φ using the construction

above. Then φ is satisfiable if and only if (Gφ, S, `) is Yes-Instance. Thus there is a parameter preserving

transformation from (d+ 2)-CNF-SAT to FVS-Mock-d-Forest.

Proof The proof goes along the line of the proof of Lemma 7. But there are some differences. We
mention the differences here. The following observation (also available in [26]) is a property of the
clause gadget.
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Terminal Vertices

yq,r,1 yq,r,2
yq,r,3 yq,r,4 yq,r,5 yq,r,6

yq,r,7

Fig. 4: Illustration of Clause Gadget Construction for 7 literals

Observation 11 Let t1, t2 be two terminals (not necessarily distinct) of a clause gadget Gi for i ≥ 2. Then

either π(t1) = π(t2) or any path between t1 and t2 contains both π(t1) and π(t2). ut

Observation 12 Let t1, t2 be two terminals in distinct triangles T1 and T2 respectively of a clause gadget

of Gi for i ≥ 2. Then all paths from t1 to t2 contain the top vertex of both T1 and T2.

We need the following lemma to prove the correctness of the reduction. Proof of this lemma goes
closely along the line of Lemma 3 in [26].

Lemma 27 Let i ≥ 2 be an integer and consider the clause gadget Gi whose height is i with r ≥ 4 literals

where 2i−1 < r ≤ 2i. Then the following are satisfied.

1. S is a feedback vertex set in Gi if and only if S intersects every triangle in Gi.
2. Any feedback vertex set S has size at least r − 2.

3. For any feedback vertex set S in Gi of size at most r − 2, there exists two distinct terminals that are

connected by a path.

4. For any pair of distinct terminals {t, t′} of Gi, there is a feedback vertex set S ⊂ V (Gi) of size r − 2
such that {t, t′} is the only pair of terminals that are connected by a path in Gi \ S.

Proof of Lemma 26: We prove that φ is satisfiable if and only if Gφ has a feedback vertex set of size
at most `.
(⇒) Let φ be satisfiable. Then, there exists a satisfying assignment to variables x1, . . . , xn. Now, we
construct a feedback vertex set D as follows. If xi is set to true by the assignment and that satisfies
the clause Cj , then we pick ti into D otherwise we pick fi into D. Now, corresponding to xi, there is a
literal in every copy of the clause gadget Cj . Let the terminal vertex corresponding to literal xi be
yj,r,p. Then we fix (yj,r,p, yj,r,q) as the pair of literals where yj,r,q is a different literal of Cj . And we
use Lemma 27 to pick exactly dj − 2 vertices from the clause gadget of Cj such that those vertices
make the corresponding clause gadget acyclic and (yj,r,p, yj,r,q) is the only pair of literals which are
connected by a path in this clause gadget. We pick vertices in this way for every such clause gadgets.
Similarly we pick vertices from the other clause gadgets in a similar way. Hence we construct D with `

vertices. Now, we claim that D is a feedback vertex set of Gφ. Suppose not. Then there exists a cycle
in Gφ \D. Now, that cycle must use vertices from a variable gadget and also at least two vertices from
some of the clause gadgets. By Lemma 27, we know that there exists only one pair of terminal vertices
that are connected by a path in Gφ \D. Now, by construction of D, if for a pair of terminal vertices,
the path survives after deletion of D, then one of its literals corresponding to that pair of terminal
vertices is picked in D. Therefore, such a cycle cannot exist. Therefore, D is a feedback vertex set of
Gφ.
(⇐) Let D be a feedback vertex set of Gφ of size `. Note that D picks exactly one vertex from every
variable gadget and exactly one vertex from every triangle of clause gadget (all triangles of clause
gadgets are pairwise disjoint anyway). Now, for every variable xi exactly one of ti and fi is present in
D. Note that in case D picks ei, then we substitute ei by ti or fi arbitrarily. If D picks ti then we
assign xi to true, otherwise D picks fi and we assign xi to false to construct an assignment in {0, 1}n.
Now we claim that φ is satisfiable. Suppose not. Then there exists a clause Cj which is not satisfied
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by this assignment. Then, all literals of Cj are assigned false. Now by the property of a minimum
feedback vertex set D, there exists a pair of terminal vertex in every pair of clause gadgets who are
connected by a path in Gφ \D. Since there are d2 copies of every clause gadget, there are two clause
gadgets where same pair of terminal vertices are connected by a path in both the copies. Now, since
the corresponding literal vertices are not in D, a cycle containing vertices from variable gadgets and
clause gadgets are created. It contradicts the fact that D is a feedback vertex set of Gφ. Therefore,
this assignment satisfies φ. ut

Now to use this transformation to get a lower bound on the kernel size, we have to define Oracle

Communication Protocol.

Definition 12 (Oracle Communication Protocol) (See [11]) Let L ⊆ Σ∗ be a language. An oracle
communication protocol for language L is a communication protocol with two players Alice and Bob.
Alice is given an input x ∈ Σ∗ and can only use poly(|x|) time for her computations. Player Bob is
computationally unbounded, but not given any part of x. At the end of the protocol, Alice should be
able to decide x ∈ L using help (communication) from Bob. The cost of the protocol is the number of
bits communicated between Alice and Bob.

Theorem 12 ( [11]) d-CNF-SAT has no oracle communication protocol of cost O(nd−ε) for any d ≥
3, ε > 0 unless NP ⊆ coNP/poly where n is the number of variables of the input formula.

Using Lemma 26 and Theorem 12, we have the following lemma.

Lemma 28 FVS-Mock-d-Forest has no oracle communication protocol of cost O(kd+2−ε) for any ε > 0
unless NP ⊆ coNP/poly.

Proof Suppose FVS-Mock-d-Forest has an oracle communication protocol P1 of cost O(kd1) where
d1 = d+ 2− ε for some ε > 0. Then we get an oracle communication protocol for (d+ 2)-CNF-SAT

as follows. Given φ an instance of (d+ 2)-CNF-SAT with n variables, Alice (polynomially bounded
player) runs the parameter preserving transformation (as described above) and get (Gφ, S, `) such that
|S| = 2n, G \ S is a mock-forest where every component has at most d cycles. Now, Alice and Bob
use the protocol P1 for FVS-Mock-d-Forest and get the answer (Yes/No) for the (d+ 2)-CNF-SAT.
So, we get an oracle communication protocol of cost O(nd+2−ε) for (d+ 2)-CNF-SAT. This implies
NP ⊆ coNP/poly. So, FVS-Mock-d-Forest has no oracle communication protocol of cost O(kd+2−ε)
unless NP ⊆ coNP/poly. ut

Theorem 13 FVS-d-Mock-Forest has no kernel of O(kd+2−ε) size for every d ≥ 2, ε > 0 unless

NP ⊆ coNP/poly.

Proof Suppose FVS-Mock-d-Forest has a kernel consisting of O(kd+2−ε) size (or edges). We need
log2(O(kd+2−ε)), i.e. O(kd+2−ε · d · log2 k) bits to represent this kernel. So, FVS-Mock-d-Forest has

a kernel with O(kd+2−ε′) bits for some ε′ > 0. Then in the oracle communication protocol, Alice who

is allowed to do polynomial time computation first computes this kernel with O(kd+2−ε′) bits and
sends this entire kernel to Bob. Now Bob is a computationally unbounded player. He can compute
and return Yes or No answer correctly. This protocol has cost O(kd+2−ε′) bits. Then by Lemma 28
we have NP ⊆ coNP/poly. This proves the theorem. ut

5 Conclusion

Continuing the line of research on structural parameterization of Feedback Vertex Set initiated
in [26], we have given substantially improved kernel bounds and considered several other structural
parameterization of Feedback Vertex Set where the parameter is the deletion distance to a graph
class where FVS is polynomially solvable. See Table 1 for the state of the art on some of the structural
parameterizations of FVS, including some results in this paper. A clear open problem is to improve
the runtime of the FPT algorithms and the sizes of the kernel we considered in this paper. Improving
the FPT runtime of FVS parameterized by solution size remains as an open problem by itself. The
existence of an FPT algorithm for Feedback Vertex Set parameterized by deletion distance to a
(sub)-cubic graph remains open, and we do not even know an XP algorithm for the problem. We have
shown that the related edge version is fixed-parameter tractable, though we do not know whether it
admits a polynomial kernel.
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Table 1: Summary of Results: Results marked ? indicate our results

Parameterization FPT Polynomial

Considered Algorithm Kernel

FVS-Solution-Size O∗(3.619k) [28] O(k2) vertices and edges [36]

FVS-High-Degree O∗(2k) ? No polynomial kernel ?

FVS-Vertex-Deletion-to-Sub-Cubic Open No polynomial kernel ?

FVS-Edge-Deletion-to-Sub-Cubic O∗(4k) ? Open

FVS-Vertex-Clique-Cover W[1]-hard [26] No kernel

FVS-deletion to (c, 1)-Graph O(3.148k · nO(c)) ? No polynomial kernel [4]

FVS-SVD O∗(3.148k) ? No polynomial kernel [4]

FVS-CVD O∗(5k) ? No polynomial kernel [4]

FVS-Pseudo-Forest O∗((8 + ε)k) [18] O(k10) vertices and edges [26]

FVS-Pseudo-Forest O∗((8 + ε)k) [18] O(k7) vertices?

FVS-Mock-Forest O∗((8 + ε)k) [18] No polynomial kernel [26]

FVS-Mock-d-Forest O∗((8 + ε)k) [18] O(k3d+3) vertices?
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