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EULER FUNCTION

k>0

E(x) = [J@ - x*) }

Defined by Leonhard Euler.
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IRRELEVANT FACTS

RELATION TO PARTITION NUMBERS
Let p,, be the number of partitions of m. Then

E(x) Z Pmx”
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IRRELEVANT FACTS

RELATION TO PARTITION NUMBERS
Let p,, be the number of partitions of m. Then

EL Z pmx"

m>0

Proof. Note that

I 1 B th
E(x) B Hk>0(1 — xk) B H Z

k>0 t>0
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IRRELEVANT FACTS

EULER IDENTITY

o

E(X): Z (_1)mX(3m2—m)/2.

m=—0oQ
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IRRELEVANT FACTS

EULER IDENTITY

E(X): i (_1)mX(3m2—m)/2.

m=—0o0

Proof. Set up an involution between terms of same degree and opposite
signs. Only a few survive.
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IRRELEVANT FACTS

OVER COMPLEX PLANE

E(x) =[x
k>0
@ Undefined outside unit disk.
@ Zero at unit circle.
@ Bounded inside the unit disk.
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IRRELEVANT FACTS

OVER COMPLEX PLANE

E(x) =[x
k>0
@ Undefined outside unit disk.
@ Zero at unit circle.
@ Bounded inside the unit disk.

Proof. Straightforward.
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IRRELEVANT FACTS

DEDEKIND ETA FUNCTION

n(z) = eT E(e2™2).

1(z) is defined on the upper half of the complex plane and satisfies many

interesting properties:
o n(z +1) = elin(z).
o n(~1) = v=izn(2).
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IRRELEVANT FACTS

DEDEKIND ETA FUNCTION
n(z) = €% £(e*"7).
1(z) is defined on the upper half of the complex plane and satisfies many
interesting properties:
o 1z +1) = eBn(z).
o n(~1) = V=izn(2).

Proof. First part is trivial. Second part requires non-trivial complex
analysis.
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PERMANENT POLYNOMIAL

e Forany n >0, let X = [x;;] be a n x n matrix with variable elements.
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PERMANENT POLYNOMIAL

e Forany n >0, let X = [x; ] be a n x n matrix with variable elements.

@ Then permanent polynomial of degree n is the permanent of X:

per n()_() = Z HXi,U(i)'

c€eS, i=1
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PERMANENT POLYNOMIAL

e Forany n >0, let X = [x; ] be a n x n matrix with variable elements.

@ Then permanent polynomial of degree n is the permanent of X:

per n()_() = Z HXi,U(i)'

c€eS, i=1

@ It is believed to be hard to compute.
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COMPUTING EULER FUNCTION

o Let

En(x) = JJ(1—x").
k=1

e So, E(x) = limpoo En(x).
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COMPUTING EULER FUNCTION

o Let

So, E(x) = limpe0 En(x).

A circuit family computing E,(x) can be viewed as computing E(x).

e We will consider arithmetic circuits for computing E,(x).
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CIRCUITS FOR Ep(x)

e A circuit computing E,(x) over field F takes as input x and —1; and
outputs Ep(x).

o It is allowed to use addition and multiplication gates of arbitrary fanin
over F.

e Size of a circuit is the number of gates in it (not the number of wires).
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CIRCUITS FOR Ep(x)

e A circuit computing E,(x) over field F takes as input x and —1; and
outputs Ep(x).

It is allowed to use addition and multiplication gates of arbitrary fanin
over F.

Size of a circuit is the number of gates in it (not the number of wires).

A depth three circuit of size ©(n) can compute E,(x) over any field
F: follows from definition.
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CIRCUITS FOR Ep(x)

o Can a depth three or four circuit do significantly better?
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CIRCUITS FOR Ep(x)

o Can a depth three or four circuit do significantly better?

@ It is not clear.

@ A proof of this for a field of finite characteristic gives a
superpolynomial lower bound on computing permanent polynomial
family by arithmetic circuits.
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THE MAIN THEOREM

THEOREM

Suppose every depth four circuit family computing E,(x) over F, char(F)
> 0, has size at least n°, for some fixed e > 0. Then permanent polynomial
family cannot be computed by polynomial-size arithmetic circuits over Z.
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THE MAIN THEOREM

THEOREM

Suppose every depth four circuit family computing E,(x) over F, char(F)
> 0, has size at least n°, for some fixed e > 0. Then permanent polynomial
family cannot be computed by polynomial-size arithmetic circuits over Z.

Similar results have been obtained recently by Pascal Koiran.
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Proor

o Without loss of generality, we can assume that the depth four circuit
family computes E,(x) over F with F = F, for some prime p.

> Follows from the fact that circuits over an extension field of F, can be
simulated by circuits over F, with only a small increase in size.
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Proor

o Without loss of generality, we can assume that the depth four circuit
family computes E,(x) over F with F = F, for some prime p.

» Follows from the fact that circuits over an extension field of F, can be
simulated by circuits over F, with only a small increase in size.

@ Assume that there is a polynomial-size circuit family computing
permanent polynomials over Z.
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PROOF: AN ALTERNATIVE EXPRESSION FOR E,(x)

o Let F be an extension of F with t = |F| > n? and t = O(n?).
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PROOF: AN ALTERNATIVE EXPRESSION FOR E,(x)

o Let F be an extension of F with t = |F| > n? and t = O(n?).
o Let ¢, = E,(a) for every a € F.
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PROOF: AN ALTERNATIVE EXPRESSION FOR E,(x)

o Let F be an extension of F with t = |F| > n? and t = O(n?).
o Let ¢, = E,(a) for every a € F.
e Define G(x) as:

) — o Hggﬁ,g;ﬁa(x_ﬁ)
Gn( )_ Z (e Hﬁef:’ﬁ#a(a _5)

acF
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PROOF: AN ALTERNATIVE EXPRESSION FOR E,(x)

o Let F be an extension of F with t = |F| > n? and t = O(n?).
Let ¢, = En(«) for every a € F.
Define G(x) as:

) — o Hﬁgﬁ,g;ﬁa(x_ﬁ)
Gn( )_ Z (e Hﬁeﬁﬂ#a(a _6)

acF

Gn(x) agrees with E,(x) at every point in F.

And Gp(x) — En(x) is a polynomial of degree < t.
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PROOF: AN ALTERNATIVE EXPRESSION FOR E,(x)

o Let F be an extension of F with t = |F| > n? and t = O(n?).
Let ¢, = En(«) for every a € F.
Define G(x) as:

) — o Hﬁgﬁ,g;ﬁa(x_ﬁ)
Gn( )_ Z (e Hﬁeﬁﬂ#a(a _6)

acF

Gn(x) agrees with E,(x) at every point in F.

And Gp(x) — En(x) is a polynomial of degree < t.
Therefore, E,(x) = Gp(x).
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PROOF: COMPUTING G,(x)

o Let g be a generator of F*.
o Rewrite G,(x) as:
2 pep ppge(x = 5)
Go(x) = x—x'14 c . —L<hb7e
2 Mot g )

= u(n, k)xk.
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PROOF: COMPUTING G,(x)

o Let g be a generator of F*.
o Rewrite G,(x) as:

Go(x) = xt= 1+Z

@ We show that the function u belongs to #P#P.
@ The size of inputs in computations below is O(log n).
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PROOF: COMPUTING G,(x)

o Let g be a generator of F*.
Rewrite G,(x) as

X J—
Gn(x) = X Z HBEF el K

We show that the function v belongs to #P#P.
The size of inputs in computations below is O(log n).
Notice that

oy =[]0 - ) = gZiam,
(=1
for appropriate numbers hy.
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PROOF: COMPUTING G,(x)

o Let g be a generator of F*.
Rewrite G,(x) as

X J—
Gn(x) = X Z HBEF el K

We show that the function v belongs to #P#P.
The size of inputs in computations below is O(log n).
Notice that

g =110 - &) = g=Him,
=1
for appropriate numbers hy.
e From ¢ and k, numbers h; can be computed by a single-valued NP
machine.
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PROOF: COMPUTING G,(x)

o Observe that

II -8=]]s=-1

BEF B£gk BeF~
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PROOF: COMPUTING G,(x)

o Observe that

I[I &-p=]]s8=-1

BeF B+#gk BeF+
e And
[ - - He?
- k
X J—
BEF Bgk g
B xt — x
= gk
— xt-1 + gkxt—z +g2kxt—3 4. _i_g(t—z)kX’
for 0 < k < t.
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PROOF: COMPUTING G,(x)

@ Hence,
t—2 t—1
Go(x) = x—xt"1— Cgk * g(t_z_l)kxg

k=0 (=1
t—1 t—2

— x—xt1_ Z( Cgkg(t—ﬁ—l)k)xi
(=1 k=0
t—1 t—2

— oy xt1 ( g(t—é—l)k—i-zg,, hm)XZ
(=1 k=0
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PROOF: COMPUTING G,(x)

@ Hence,
t—2 t—1
G,,(X) — x—xt1_ Cgk g(t—f—l)k 0
k=0 /=1
t—1 t—2
t—0—1)k

= x=xT=) chkg‘
/=1 k=0
t—1

— X—Xt_ Zg(t l— 1 k+2m 1 )
(=1 k=0

@ The above equation shows that the function v is in #P#P.
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PROOF: COMPUTING G,(x)

@ We have assumed that the permanent polynomial can be computed
by a polynomial size circuit.

@ This implies that any function in #P can be computed by a
polynomial size arithmetic circuit.
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PROOF: COMPUTING G,(x)

@ We have assumed that the permanent polynomial can be computed
by a polynomial size circuit.

@ This implies that any function in #P can be computed by a
polynomial size arithmetic circuit.

e This implies that the function u is in #P/poly.
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PROOF: COMPUTING G,(x)

@ We have assumed that the permanent polynomial can be computed
by a polynomial size circuit.

This implies that any function in #P can be computed by a
polynomial size arithmetic circuit.

This implies that the function u is in #P/poly.

@ Since

it follows that G,(x) can be computed as permanent of a small size
(= O(log n)) matrix.

@ This matrix will have entries 0, —1, and following powers of x: x, x2,
22 23 2llogt]
X7, X7, o, X :

» permanent of a matrix is a multilinear polynomial of its entries, and so

these powers of x can be used to create all the other powers of x < t.
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PROOF: COMPUTING G,(x)

@ We have assumed that the permanent polynomial can be computed
by a polynomial size circuit.

@ This implies that any function in #P can be computed by a
polynomial size arithmetic circuit.

e This implies that the function u is in #P/poly.

@ Since

it follows that G,(x) can be computed as permanent of a small size
(= O(log n)) matrix.

@ This matrix will have entries 0, —1, and following powers of x: x, x2,
22 23 2llogt]
X7, X7, o, X :

» permanent of a matrix is a multilinear polynomial of its entries, and so

these powers of x can be used to create all the other powers of x < t.

o This gives log®™) n-size circuit to compute G,(x) over Z.
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PROOF: COMPUTING E,(x)

0(1)

@ This circuit can be converted to a log n-size arithmetic circuit

over F since coefficients of G,(x) are in F.
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PrROOF: COMPUTING E,(x)

@ This circuit can be converted to a Iogo(l) n-size arithmetic circuit
over F since coefficients of G,(x) are in F.

e Using [AV08], this circuit can be transformed to a depth four circuit
of size n°(1).

e This implies that the polynomial E,(x) can be computed by a
n°M_size arithmetic circuit over F.

e This contradicts the hypothesis that E,(x) requires circuit of size n
over F for some ¢ > 0.
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GENERALIZATIONS

@ The theorem can be strengthened to show that permanent polynomial
requires size s(n) where s is any function satisfying s(s(n)) = 2°(").
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GENERALIZATIONS

@ The theorem can be strengthened to show that permanent polynomial
requires size s(n) where s is any function satisfying s(s(n)) = 2°(").
o It should be possible to strengthen it further to s(n) = 2",
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A CONJECTURE

CONJECTURE

Let P(x) be a polynomial computed by a depth four circuit of size m.
Then P(x) # 0 (mod x* — 1) for some k < m!/4.
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A CONJECTURE

CONJECTURE

Let P(x) be a polynomial computed by a depth four circuit of size m.
Then P(x) # 0 (mod xk — 1) for some k < m'/4.

If the conjecture is true then the lower bound on permanent polynomial
follows.
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THOUGHTS ON THE CONJECTURE

@ The conjecture relates the size of a shallow circuit computing a
polynomial to the number of small roots of unity that the polynomial
can have.
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THOUGHTS ON THE CONJECTURE

@ The conjecture relates the size of a shallow circuit computing a
polynomial to the number of small roots of unity that the polynomial
can have.

@ It is similar in spirit to T-conjecture of Shub-Smale that relates the
size of an arithmetic circuit computing a polynomial to the number of
integer roots the polynomial can have.
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OPEN PROBLEMS

e Prove the theorem for s(n) = 2.
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OPEN PROBLEMS

e Prove the theorem for s(n) = 2.

@ Prove the theorem for permanent polynomial computed by circuits
over Q.
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OPEN PROBLEMS

e Prove the theorem for s(n) = 2.

@ Prove the theorem for permanent polynomial computed by circuits
over Q.

@ Prove the conjecture.
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